
59

Topic 1: Data models and query languages
Unit 2: Logic & relational calculus (continued)
Lecture 05

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
2/1/2022

Updated 2/4/2022

https://northeastern-datalab.github.io/cs7240/sp22/

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
• Project ideas
• Slides from today likely only posted tomorrow night. Sorry!

• today:
- logic continued (likely next time algebra and the connection)
- logic becomes super important today again, lack of expertise; thus lots of

practice today J
- in particular the concept of "undecidability": intuition for why things can

quickly get complicated without giving proofs

https://northeastern-datalab.github.io/cs7240/

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

62

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus

– Syntax and Semantics
– Domain Independence and Safety

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Entire Story in One Slide

1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on
the domain from which values are taken (domain dependence)

3. We cannot test whether an RC query is “good,” but we can use a ”good”
subset of RC that captures all “good” queries (safety)

4. “Good” RC and RA can express the same queries! (equivalence = Codd's theorem)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

64Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relational Calculus (RC)

• RC is, essentially, first-order logic (FOL) over the schema relations
- A query has the form “find all tuples (x1,...,xk) that satisfy an FOL condition”

• RC is a declarative query language
- Meaning: a query is not defined by a sequence of operations, but rather by

a condition that the result should satisfy

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

70

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus

– Syntax and Semantics
– Domain Independence and Safety

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Query

{ (x,u)	|	Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

x

y

z

w u
ParentParent

Parent Spouse

assume symmetric relation
(a,b)∊Spouse ⇔ (b,a)∊Spouse

Which relatives does
this query find? ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Symbols

• Constant values: a, b, c, female, Canada, ...
- Values that may appear in table cells (optionally with quotation marks)

• Variables: x, y, z, ...
- Range over the values that may appear in table cells

• Relation symbols: R, S, T, Person, Parent, ...
- Each with a specified arity
- Will be fixed by the relational schema at hand
- No attribute names, only attribute positions (= unnamed perspective)!

• Unlike general FOL, no function symbols!
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC Formulas (atomic and non-atomic)

• Atomic formulas:
- R(t1,...,tk)
• R is a k-ary relation, Each ti is a variable or a constant
• Semantically it states that (t1,...,tk) is a tuple in R

- x op u
• x is a variable, u is a variable/constant, op is one of >, <, =, ≠
• Simply binary predicates, predefined interpretation

• Formula:
- Atomic formula
- If φ and ψ are formulas then these are formulas:

φ ⋀ ψ φ ⋁ ψ φ → ψ φ → ψ ¬φ ∃x φ ∀x φ

Person(x, 'female', 'Canada')

x=y, y≠w, z>5, z='female'

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Free Variables

• Intuitively: free variable are not bound to quantifiers
• Formally:

- A free variable of an atomic formula is a variable that occurs in the atomic formula

- A free variable of φ ⋀	ψ,φ ⋁	ψ,	φ⟶ ψ is a free variable of either φ or ψ

- A free variable of ¬φ is a free variable of φ

- A free variable of ∃x φ and ∀x φ is a free variable y of φ such that y≠x
• We write φ(x1,...,xk) to state that x1,...,xk are the free variables of formula φ

(in some order)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to our earlier example

Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

What are the free
variables? ?

This is a formula!

x

y

z

w u
ParentParent

Parent Spouse

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to our earlier example

Notation:

φ(x,u) / CanadianAunt(u,x)

Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

x

y

z

w u
ParentParent

Parent Spouse

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

80Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

RC query

Person(u,	'female',	'Canada')	⋀
∃z,y [Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

{ (x,u)	|

}

{	(x1,...,xk)	| φ(x1,...,xk)	}

x

y

z

w u
ParentParent

Parent Spouse φ(x,u) / CanadianAunt(u,x)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relation Calculus Query

• An RC query is an expression of the form

{	(x1,...,xk)	|	φ(x1,...,xk)	}
where φ(x1,...,xk) is an RC formula

• An RC query is over a relational schema S if all the relation symbols
belong to S (with matching arities)

some condition on the variables
COND(x1,...,xk)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

DRC vs. TRC

• There are two common variants of RC:
- DRC: Domain Relational Calculus (what we have seen so far)
- TRC: Tuple Relational Calculus

• DRC applies vanilla FO: terms interpreted as attribute values, relations have
arity but no attribute names (= unnamed perspective)

• TRC is more “database friendly”: terms interpreted as tuples with named
attributes

• There are easy conversions between the two formalisms

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Our Example in TRC

{ t | ∃a ∈ Person [a.gender = 'female' ⋀ a.country = 'Canada'] ⋀
∃p,q,w ∈ Parent [p.child = t.nephew ⋀ q.child = p.parent ⋀
w.parent = q.parent ⋀ w.child ≠ q.child ⋀ a.id = t.aunt ⋀

(w.child = a.id ⋁ ∃s [s∈ Spouse ⋀ s.person1 = w.child ⋀ s.person2 = a.id])]]}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

tuple variables like in SQL instead of
domain variables: {t | COND(t)}

p

q w
s

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018. However, notice I prefer and follow here the notation of
[Ramakrishnan, Gehrke' 03] and [Elmasri, Navathe'15] of using a.country = 'Canada', instead of the alternative notation a[country]='Canada' used by [Silberschatz, Korth, Sudarshan 2010]

often used short forms:
∀x∊R[φ] same as ∀x[x∊R ⇒ φ]
∃x∊R[φ] same as ∃x[x∊R ⋀ φ]

optionally "t(nephew, aunt)"

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Different TRC notations
Find persons that frequent only bars that serve only drinks they like.
(Find persons who like all drinks that are served in all the bars they visit.)
(Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

{q(person) | ∃f ∊ Frequents [f.person=q.person ⋀ ¬(∃f2 ∊ Frequents [f2.person=f.person ⋀ my preferred notation
¬(∃l ∊ Likes, ∃s ∊ Serves [l.drink=s.drink ⋀ f2.bar=s.bar ⋀ f2.person=l.person])])]}

{F.person | F ∊ Frequents.(∄F2 ∊ Frequents.(F2.person=F.person ⋀ my earlier preferred notation
(∄L ∊ Likes, ∄S ∊ Serves.(L.drink=S.drink ⋀ F2.bar=S.bar ⋀ F2.person=L.person))))}

{t: Person | ∃f ∊ Frequents [t(Person)=f(Person) ⋀ ¬∃f2 ∊ Frequents [F2(person)=F(person) ⋀ [Deutsch 2019]
¬(∃l ∊ Likes ∃s ∊ Serves) [l(Drink)=s(Drink) ⋀ f2(Bar)=s(Bar) ⋀ f2(Person)=l(Person)]]]}

{f.Person | Frequents(f) AND (NOT(∃f2)(Frequents(f2) AND f2.person=f.person ⋀ [Elmasri 2015]
(NOT(∃l)(∃s)(Likes(l) AND Serves(s) AND l.drink=s.drink AND f2.bar=s.bar AND f2.person=l.person))))}

{𝜇(1) | (∃𝜌(2)) (Frequents(𝜌) ⋀ 𝜌[1]= 𝜇[1] ⋀ ¬((∃𝜆(2))(Frequents(𝜆) ⋀ 𝜆[1] = 𝜌[1] ⋀ [Ullman 1988]
¬((∃𝜈(2))(∃𝜃(2))(Likes(𝜈) ⋀ Serves(𝜃) ⋀ 𝜈(2)= 𝜃(2) ⋀ 𝜆(2)=𝜃(1) ⋀ 𝜆(1)=𝜈(1)))))}

{P| ∃F ∊ Frequents (F.person=P.person ⋀ ¬∃F2 ∊ Frequents(F2.person=F.person ⋀ [Ramakrishnan 2003]
¬(∃L ∊ Likes ∃S ∊ Serves (L.drink=S.drink ⋀ F2.bar=S.bar ⋀ F2.person=L.person))))}

331

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

https://northeastern-datalab.github.io/cs7240/

86

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus

– Syntax and Semantics
– Domain Independence and Safety

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bringing in the Domain

• Let S be a schema, D a database over S, and Q an RC query over S
• Then D gives an interpretation for the underlying FOL

- Predicates ⟶ relations; constants copied; no functions

Is this true ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

88Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bringing in the Domain

• Let S be a schema, D a database over S, and Q an RC query over S
• Then D gives an interpretation for the underlying FOL

- Predicates ⟶ relations; constants copied; no functions

- Not yet! We need to answer first: What is the domain?

• The active domain ADom (of D and Q) is the set of all the values that occur
in either D or Q

• The query Q is evaluated over D with respect to a domain Dom that contains
the active domain (Dom ⊇ ADom)

• Denote by QDom(D) the result of evaluating Q over D relative to the domain
Dom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

89Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Domain Independence

• Let S be a schema, and let Q be an RC query over S
• We say that Q is domain independent if for every database D over S

and ...

How could we continue the definition ?

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Domain Independence

• Let S be a schema, and let Q be an RC query over S
• We say that Q is domain independent if for every database D over S

and every two domains Dom1 and Dom2 that contain the active
domain, we have:

QDom1(D)	=	QDom2(D)	=	QADom(D)	

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Bad News...

• We would like be able to tell whether a given RC query is domain
independent, and then reject “bad queries”

• Alas, this problem is undecidable!
- That is, there is no algorithm that takes as input an RC query and returns

true iff the query is domain independent

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
First observed in "Di Paola. The Recursive Unsolvability of the Decision Problem for the Class of Definite Formulas, JACM 1969. https://doi.org/10.1145/321510.321524"

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/321510.321524

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Good News

Domain-independent RC has an "effective syntax", that is:
- A syntactic restriction of RC in which every query is domain

independent
- Restricted queries are said to be safe

• Safety can be tested automatically (and efficiently)
- Most importantly, for every domain independent RC query

there exists an equivalent safe RC query!

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Safety

• We do not formally define the safe syntax in this course
• Details on the safe syntax can be found in Ch 5.4 of [Alice'95]: Foundations of

Databases by Abiteboul, Hull and Vianu
- Example:
• In ∃x	φ, the variable x should be guarded by φ
• Every variable xi	is guarded by R(x1,...,xk)	
• In φ ⋀	(x=y), the variable x is guarded if and only if either x or y is guarded by φ
• ... and so on

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.
An accessible overview of issues involving safety is: Topor, Safety and Domain Independence, Encyclopedia of Database Systems. https://doi.org/10.1007/978-0-387-39940-9_1255

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1007/978-0-387-39940-9_1255

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

?

?

?

ADom = {1, 2, 3, 'female', 'Canada'}
Dom = ADom ⋃ {'elefant', 'car', 'lemon', 𝜋, ...}

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

?

Not DI

https://northeastern-datalab.github.io/cs7240/

105Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Not DI

DI

https://northeastern-datalab.github.io/cs7240/

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

same as {(x,y) | Spouse(x,y)}

D: Spouse('Alice','Bob')
ADom={'Alice','Bob'}
Dom={'Alice','Bob','Charly'}

→ {('Alice','Alice')}
→ {('Alice','Alice'), ('Alice','Charly')}Dom ⊇ ADom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Not DI

DI

https://northeastern-datalab.github.io/cs7240/

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Not DI

DI

Not DI

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

same as {(x,y) | Spouse(x,y)}

D: Spouse('Alice','Bob')
ADom={'Alice','Bob'}
Dom={'Alice','Bob','Charly'}

→ {('Alice','Alice')}
→ {('Alice','Alice'), ('Alice','Charly')}Dom ⊇ ADom

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}
Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')

ADom =

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

?

https://northeastern-datalab.github.io/cs7240/

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile',	'female',	'Canada')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

https://northeastern-datalab.github.io/cs7240/

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

?

https://northeastern-datalab.github.io/cs7240/

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

?
Not DI

https://northeastern-datalab.github.io/cs7240/

113Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?
?

Likes('Alice',	'Alice')

Person(y,_,_)

Not DI

https://northeastern-datalab.github.io/cs7240/

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

?

Likes('Alice',	'Alice')

Not DI

DI

Person(y,_,_)

https://northeastern-datalab.github.io/cs7240/

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Not DI

DI

DI

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

implication (absorption) if Dom ≠ ∅, which is necessary for there to be Person(x,_,_)

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (e.g., Dora is in Dom)

Based on material by Benny Kimelfeld and Oded Shmueli for 236363 Database Management Systems, Technion, 2018.

Likes('Alice',	'Alice')

Person(y,_,_)

https://northeastern-datalab.github.io/cs7240/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	∃y.	R(x)} ?
?
?

https://northeastern-datalab.github.io/cs7240/

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	∃y.	R(x)} logically equivalent to { x | R(x)} = R(x)

?
?

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∃y.	R(x)} logically equivalent to { x | R(x)} = R(x)

What if Dom=ℕ? DI:

?

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}

{ x |	∃y.	R(x)}

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

logically equivalent to { x | R(x)} = R(x)

What if Dom=ℕ? DI:

DI ?:

?

https://northeastern-datalab.github.io/cs7240/

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

logically equivalent to { x | R(x)} = R(x)

What if Dom=ℕ? DI:

DI ?:

?

https://northeastern-datalab.github.io/cs7240/

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}
1. always true for A=∅

DI:

DI ?:

https://northeastern-datalab.github.io/cs7240/

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

Neutral	element for	∀	is	TRUE
∑:	
∏:	
⋁:
⋀:

MIN:

0	+	x	=	x

FALSE	⋁	x	=	x
TRUE	⋀	x	=	x

1	⋅	x	=	x

∀:
∃	:

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}

x1 ⋀	x2 ⋀	...	⋀	TRUE
x1 ⋁	x2 ⋁	...	⋁	FALSE	

MIN(∞,	x)	=	x

1. always true for A=∅

2. alternative way
to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

https://northeastern-datalab.github.io/cs7240/

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

Neutral	element for	∀	is	TRUE

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}
1. always true for A=∅

2. alternative way
to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

DI:

not DI:

∀y	[R(y)]

true if the domain for y is empty set!
∀y	[y∈Dom→R(y)]

another way to see it:

https://northeastern-datalab.github.io/cs7240/

124Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

DI:

not DI:

DI: ?

https://northeastern-datalab.github.io/cs7240/

125Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What is the meaning of following unsafe expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

DI:

not DI:

{ x |	A(x)	⋀	∀y	[A(y)	→	R(x,y)]}DI:

{ x |	A(x)	⋀	∄y	[A(y)	⋀	¬R(x,y)]}

or R(x,_) ∃z[R(x,z) ⋀ ...]

https://northeastern-datalab.github.io/cs7240/

126Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

?

?

?
Based on an example by Dan Suciu from CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

127Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}
?

?

Nodes	that	have	at	least	one	child: ?

Based on an example by Dan Suciu from CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

128Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}
?

?

Nodes	that	have	at	least	one	child: {1,2,3}

Based on an example by Dan Suciu from CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

129Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

?

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: ?

Based on an example by Dan Suciu from CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

130Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

?

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}
y≠u not necessary!
Contrast homomorphism
vs. isomorphism
("Hamiltoninan Path")

Based on an example by Dan Suciu from CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

131Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the
following tuples
fulfill the condition?

(1,1) (4,4) (1,3) (3,1) (4,1)

∄z.[A(x,z) ⋀ ¬A(y,z)]

?
Based on an example by Dan Suciu from CSE 554, 2011.

https://northeastern-datalab.github.io/cs7240/

132Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Querying a Graph

A encodes the directed
edges of a graph ("arcs")

1 2
2 1
2 3
1 4
3 4

A:

What do these queries return ?1

32

4

{ x |	∃y. A(x,y)	}

{ x |	∃y,z,u.[A(x,y)	⋀	A(y,z)	⋀	A(z,u)]}

{ (x,y)	|	∀z.[A(x,z)	→	A(y,z)]}

Nodes	that	have	at	least	one	child: {1,2,3}

Nodes	that	have	a	great-grand-child: {1,2}

Every	child	of	x	is	a	child	of	y.

Which of the
following tuples
fulfill the condition?

(1,1) (4,4) (1,3) (3,1) (4,1)

∄z.[A(x,z) ⋀ ¬A(y,z)]

Based on an example by Dan Suciu from CSE 554, 2011.
{(1,1),(2,2),(3,1),(3,3),(4,1),	(4,2),	(4,3),	(4,4)}

https://northeastern-datalab.github.io/cs7240/

133Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

What does the following query compute?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

?

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790

134Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serve	some drink	they	like.

What does the following query compute?

Is this query domain independent?

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

?
If not, how to fix?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790

135Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serve	some drink	they	like.

Careful! This query is not domain independent.

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

∃w.[Frequents(x,w) ⋀ ...
∃w.[Likes(x,w) ⋀ ... ?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Are those two options to
make it safe identical

What does the following query compute?

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790

136Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serve	some drink	they	like.

Challenge: write this query without the ∀ quantifier!
And then in SQL

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

∃w.[Frequents(x,w) ⋀ ...

?

∃w.[Likes(x,w) ⋀ ...
Both safe, but not identical. Tip: Should a drinker who
likes a drink but does not frequent a bar be returned?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

What does the following query compute?

https://northeastern-datalab.github.io/cs7240/
https://dl.acm.org/doi/book/10.5555/42790

137Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The person/bar/drinks example

Find persons that frequent some bar that serves some drink they like.

Find persons that frequent only bars that serve some drink they like.

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

Find persons that frequent some bar that serves only drinks they like.

Challenge: write these in SQL.
Solutions at: https://demo.queryvis.com

331

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters. https://dl.acm.org/doi/book/10.5555/42790

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

?

?

?

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
https://dl.acm.org/doi/book/10.5555/42790

