
1

Topic 1: Data models and query languages
Unit 2: Logic &relational calculus
Lecture 04

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
1/28/2022

Updated 1/28/2022

https://northeastern-datalab.github.io/cs7240/sp22/

2Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

3

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus

– Syntax and Semantics
– Domain Independence and Safety

4Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logic as foundation of Computer Science and Databases
• Logic has had an immense impact on CS
• Computing has strongly driven a particular branch of logic: finite model theory

- That is, First-order logic (FOL) restricted to finite models
- Has strong connections to complexity theory
- The basis of various branches in Artificial Intelligence (not the ones favored today)

• It is a natural tool to capture and attack fundamental problems in data management
- Relations as first-class citizens
- Inference for assuring data integrity (integrity constraints)
- Inference for question answering (queries)

• It has been used for developing and analyzing the relational model from the early days
[Codd'72]

Based on material by Benny Kimelfeld for 236363 Database Management Systems, Technion, 2018.
See also: Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu. "On the unusual effectiveness of logic in computer science", 2001. https://doi.org/10.2307/2687775
A play on: Wigner. "The unreasonable effectiveness of mathematics in the natural sciences", 1960. https://doi.org/10.1142/9789814503488_0018

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.2307/2687775
https://doi.org/10.1142/9789814503488_0018

5Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Why has Logic turned out to be so powerful?

• Basic Question: What on earth does an obscure, old intellectual
discipline have to do with the youngest intellectual discipline?

• Cosma R. Shalizi, CMU:
- “If, in 1901, a talented and sympathetic outsider had been called upon

(say, by a granting-giving agency) to survey the sciences and name the
branch that would be least fruitful in century ahead, his choice might well
have settled upon mathematical logic, an exceedingly recondite field
whose practitioners could all have fit into a small auditorium. It had no
practical applications, and not even that much mathematics to show for
itself: its crown was an exceedingly obscure definition of cardinal
numbers.”

Source: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

6Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logics as the start of everything ["Mephistopheles" 1806]

Source: Johan Wolfgang von Goethe. Faust Part I: Scene IV: The Study. ~1806. https://www.deutschestextarchiv.de/book/view/goethe_faust01_1808?p=124 ,
English Translation: https://www.poetryintranslation.com/PITBR/German/FaustIScenesIVtoVI.php

MEPHISTOPHELES
Gebraucht der Zeit, sie geht so schnell von hinnen,
Doch Ordnung lehrt Euch Zeit gewinnen.
Mein teurer Freund, ich rat Euch drum
Zuerst Collegium Logicum.
Da wird der Geist Euch wohl dressiert,
In spanische Stiefeln eingeschnürt,
Daß er bedächtiger so fortan
Hinschleiche die Gedankenbahn,
Und nicht etwa, die Kreuz und Quer,
Irrlichteliere hin und her.
...

MEPHISTOPHELES
Use your time well: it slips away so fast, yet
Discipline will teach you how to win it.
My dear friend, I’d advise, in sum,
First, the Collegium Logicum.
There your mind will be trained,
As if in Spanish boots, constrained,
So that painfully, as it ought,
It creeps along the way of thought,
Not flitting about all over,
Wandering here and there.
...

https://northeastern-datalab.github.io/cs7240/
https://www.deutschestextarchiv.de/book/view/goethe_faust01_1808?p=124
https://www.poetryintranslation.com/PITBR/German/FaustIScenesIVtoVI.php

7Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Back to The Future

• M. Davis (1988): Influences of Mathematical Logic on Computer
Science:
- “When I was a student, even the topologists regarded mathematical

logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer
organization.”

• Question: Why on earth?

Source: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

8Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Birth of Computer Science: 1930s

• Church, Gödel, Kleene, Post, Turing: Mathematical proofs have to
be “machine checkable” - computation lies at the heart of
mathematics!
- Fundamental Question: What is “machine checkable”?

• Fundamental Concepts:
- algorithm: a procedure for solving a problem by carrying out a precisely

determined sequence of simpler, unambiguous steps
- distinction between hardware and software
- a universal machine: a machine that can execute arbitrary programs
- a programming language: notation to describe algorithms

Source: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

9Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Leibniz’s Dream

An Amazing Dream: a universal mathematical language, lingua
characteristica universalis, in which all human knowledge can be
expressed, and calculational rules, calculus ratiocinator, carried out by
machines, to derive all logical relationships
• “If controversies were to arise, there would be no more need of

disputation between two philosophers than between two
accountants. For it would suffice to take their pencils in their hands,
and say to each other: Calculemus–Let us calculate.”

Source: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

10Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All men are mortal”

?

Based on: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

11Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All men are mortal”

• “For all x, if x is a man, then x is mortal”

?

Based on: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

12Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All men are mortal”

• “For all x, if x is a man, then x is mortal”

• ∀x [Man(x) → Mortal(x)]

Based on: Moshe Vardi: Database Queries - Logic and Complexity

Do you see the connection to
referential integrity constraints ?

PName Price Category cid
Gizmo $19.99 Gadgets 1
Powergizmo $29.99 Gadgets 1
SingleTouch $14.99 Photography 2
MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country
1 GizmoWorks 25 USA
2 Canon 65 Japan
3 Hitachi 15 Japan

316

https://northeastern-datalab.github.io/cs7240/

13Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Example: Aristotle’ Syllogisms

• “All men are mortal”

• “For all x, if x is a man, then x is mortal”

• ∀x [Man(x) → Mortal(x)]

Based on: Moshe Vardi: Database Queries - Logic and Complexity

Do you see the connection to
referential integrity constraints

PName Price Category cid
Gizmo $19.99 Gadgets 1
Powergizmo $29.99 Gadgets 1
SingleTouch $14.99 Photography 2
MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country
1 GizmoWorks 25 USA
2 Canon 65 Japan
3 Hitachi 15 Japan

316

∀x [Product(_,_,_,x) → Company(x,_,_,_)]

https://northeastern-datalab.github.io/cs7240/

14Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logic and Databases

Two main uses of logic in databases:
• Logic used as a database query language to express questions asked

against databases (our main focus)
• Logic used as a specification language to express integrity

constraints in databases (product/company example from previous
slide)

Why Logic?
• Logic provides both a unifying framework and a set of tools for

formalizing and studying data management tasks.

Source: Phokion Kolaitis

https://northeastern-datalab.github.io/cs7240/

15Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Logic in Computer Science

• During the past fifty years there has been extensive, continuous, and growing
interaction between logic and computer science. In many respects, logic
provides computer science with both a unifying foundational framework and
a tool for modeling computational systems. In fact, logic has been called “the
calculus of computer science”.

• The argument is that logic plays a fundamental role in computer science,
similar to that played by calculus in the physical sciences and traditional
engineering disciplines.
- Indeed, logic plays an important role in areas of computer science as disparate as

machine architecture, computer-aided design, programming languages, databases,
artificial intelligence, algorithms, and computability and complexity.

Source: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

17

Queries and the connection to logic

•Why logic?
• A crash course in FOL
• Relational Calculus

– Syntax and Semantics
– Domain Independence and Safety

18Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

First-Order Logic

• A formalism for specifying properties of mathematical structures,
such as graphs, partial orders, groups, rings, fields, . . .

• Mathematical Structure:
- 𝐴 = 𝐷, 𝑅!, … , 𝑅" , 𝑓!, … , 𝑓#
- 𝐷 is a non-empty set: universe, or domain
- 𝑅$ is an 𝑚-ary relation on 𝐷, for some 𝑚 (i.e., 𝑅$ ⊆ 𝐷%)
- 𝑓& is an 𝑛-ary function on 𝐷, for some 𝑛 (i.e., 𝑓$: 𝐷' → 𝐷)

Source: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

20Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

First-Order Logic on Graphs

Syntax:
• First-order variables: x, y, z, . . . (range over nodes)
• Atomic formulas: E(x, y), x = y
• Formulas:
- Atomic Formulas, and
- Boolean Connectives (∨, ∧, ¬), and
- First-Order Quantifiers (∃x, ∀x)

Source: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

21Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples

• “node x has at least two distinct neighbors”

• “each node has at least two distinct neighbors”

?

?

Assume schema is E(source, target), yet
undirected. Thus for every edge E(x,y),
we also have E(y,x). As convention, we
use A(x,y) for directed edges = arcs

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

22Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples

• “node x has at least two distinct neighbors”
- ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- Notice: x is free in the above formula, which expresses a property of a node 'x'.
- You can also think about this as a query (find nodes x that have ...)

• “each node has at least two distinct neighbors”

?

Assume schema is E(source, target), yet
undirected. Thus for every edge E(x,y),
we also have E(y,x). As convention, we
use A(x,y) for directed edges = arcs

AliceAlice

Alice

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

23Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Examples

• “node x has at least two distinct neighbors”
- ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- Notice: x is free in the above formula, which expresses a property of a node 'x'.
- You can also think about this as a query (find nodes x that have ...)

• “each node has at least two distinct neighbors”
- ∀x ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- The above is a sentence, that is, a formula with no free variables; it expresses a

property of graphs.

We will sometimes use ∃x,y,z as short form for ∃x∃y∃z

Assume schema is E(source, target), yet
undirected. Thus for every edge E(x,y),
we also have E(y,x). As convention, we
use A(x,y) for directed edges = arcs

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

24Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors”
- {x | ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]}

• “each node has at least two distinct neighbors”
- ∀x ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501

P.price < 20

C

P1

P2 P.price > 25

E(S,T)

?

?

https://northeastern-datalab.github.io/cs7240/

25Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors”
- {x | ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]}

• “each node has at least two distinct neighbors”
- ∀x ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- ¬(∃x ¬(∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]))

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501

P.price < 20

C

P1

P2 P.price > 25

SELECT
S

E

T
S

E

T
S

<>

?

E(S,T)

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.T

https://northeastern-datalab.github.io/cs7240/

26Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors”
- {x | ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]}

• “each node has at least two distinct neighbors”
- ∀x ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- ¬(∃x ¬(∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]))

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501

SELECT
S

E

T
S

E

T
S

<>

E

T
S

E

T
S

<>

E(S,T)

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.T

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists

(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

https://northeastern-datalab.github.io/cs7240/

27Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors”
- {x | ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]}

• “each node has at least two distinct neighbors”
- ∀x ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- ¬(∃x ¬(∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]))

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501
SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.TSELECT

S
E

T
S

E

T
S

<>

E

T
S

E

T
S

<>

5

3

4

2

1

5

3

4

2

1

E(S,T)

?
SELECT not exists

(SELECT *
FROM E E1
WHERE not exists

(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))?

What do the queries return over the
shown "graph database" instance

https://northeastern-datalab.github.io/cs7240/

28Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors”
- {x | ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]}

• “each node has at least two distinct neighbors”
- ∀x ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- ¬(∃x ¬(∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]))

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501
SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.TSELECT

S
E

T
S

E

T
S

<>

E

T
S

E

T
S

<>

5

3

4

2

1

5

3

4

2

1

E(S,T)

{1, 2, 3, 4}

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists

(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

FALSE

?What is a minimal change to the two queries
to evaluate them only over nodes 1-4

https://northeastern-datalab.github.io/cs7240/

29Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL

• “Find nodes that have at least two distinct neighbors”
- {x | ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]}

• “each node has at least two distinct neighbors”
- ∀x ∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]
- ¬(∃x ¬(∃y ∃z [E(x, y) ∧ E(x, z) ∧ y≠z]))

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501

SELECT
S

E

T
S

E

T
S

<>

SELECT not exists
(SELECT *
FROM E E1
WHERE E1.S<5
AND not exists

(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

E

T
S<5

E

T
S

<>

5

3

4

2

1

5

3

4

2

1

E(S,T)

TRUE

SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.T
AND E1.S<5

{1, 2, 3, 4}

A minimal change to the two queries
to evaluate them only over nodes 1-4:

https://northeastern-datalab.github.io/cs7240/

30Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL with grouping

• “Find nodes that have at least two distinct neighbors”

• “each node has at least two distinct neighbors”

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501
SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.T

5

3

4

2

1

5

3

4

2

1

E(S,T)

{1, 2, 3, 4}

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists

(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

FALSE

?

?

https://northeastern-datalab.github.io/cs7240/

31Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL with grouping

• “Find nodes that have at least two distinct neighbors”

• “each node has at least two distinct neighbors”

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501
SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.T

5

3

4

2

1

5

3

4

2

1

E(S,T)

{1, 2, 3, 4}

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists

(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

FALSE

SELECT DISTINCT S
FROM E
GROUP BY S
HAVING COUNT(T)>=2

?

https://northeastern-datalab.github.io/cs7240/

32Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Now in SQL with grouping

• “Find nodes that have at least two distinct neighbors”

• “each node has at least two distinct neighbors”

Example adopted from: Moshe Vardi: Database Queries - Logic and Complexity

501
SELECT DISTINCT E1.S
FROM E E1, E E2
WHERE E1.S = E2.S
AND E1.T != E2.T

5

3

4

2

1

5

3

4

2

1

E(S,T)

{1, 2, 3, 4}

SELECT not exists
(SELECT *
FROM E E1
WHERE not exists

(SELECT *
FROM E E2
WHERE E1.S = E2.S
AND E1.T <> E2.T))

FALSE

SELECT not exists
(SELECT S
FROM E
GROUP BY S
HAVING COUNT(T)=1)

SELECT DISTINCT S
FROM E
GROUP BY S
HAVING COUNT(T)>=2

https://northeastern-datalab.github.io/cs7240/

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"

• "Every small dog that is at home is happy."

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

?
?
?
?

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."

?
?
?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"

• "Jiahui owns every small, happy dog."
?
?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Owns('Jiahui', x)]

• "Jiahui owns every small, happy dog."

notice that we deviate
here from the usual
notation in logics of
constants like 'Jiahui'
written w/o quotation
marks ?

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

More practice

• "A small, happy dog is at home"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Home(x)]

• "Every small dog that is at home is happy."
- ∀x [(Small(x) ∧ Dog (x) ∧ Home(x)) → Happy (x)]

• "Jiahui owns a small, happy dog"
- ∃x [(Small(x) ∧ Happy (x) ∧ Dog (x)) ∧ Owns('Jiahui', x)]

• "Jiahui owns every small, happy dog."
- ∀x [(Small(x) ∧ Happy (x) ∧ Dog (x)) → Owns('Jiahui', x)]

notice that we deviate
here from the usual
notation in logics of
constants like 'Jiahui'
written w/o quotation
marks

Example adopted from Barker-Plummer, Barwise, Etchemendy - Language, Proof, And Logic (book, 2nd ed), 2011. https://www.gradegrinder.net/

associativity of conjunction: no need of
evaluation to follow blue parentheses

here evaluation needs to follow blue
parentheses

https://northeastern-datalab.github.io/cs7240/
https://www.gradegrinder.net/

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

One more example

• "There are infinitely many prime numbers"

?

Source: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

41Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

One more example

• "There are infinitely many prime numbers"
- ∀x ∃y [y > x ∧ Prime(y)]

Source: Vasco Brattka. Logic and computation (lecture notes), 2007. http://cca-net.de/vasco/lc/

https://northeastern-datalab.github.io/cs7240/
http://cca-net.de/vasco/lc/

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Semantics of First-Order Logic on Graphs

Semantics:
• First-order variables range over (can be " bound to") elements of

the universe of structures
• To evaluate a formula 𝜑, we need a graph 𝐺 and a binding 𝛼 that

maps the free variables of 𝜑 to nodes of 𝐺

Notation: 𝐺 ⊨𝛼 𝜑 𝑥!, … , 𝑥"

Source: Moshe Vardi. Database Queries - Logic and Complexity

E(x,y)
A(x,y)
Parent('Alice','Bob')

https://northeastern-datalab.github.io/cs7240/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Relational Databases

Codd’s Two Fundamental Ideas:

• Tables are relations: a row in a table is just a tuple in a relation;
order of rows/tuples does not matter!

• Formulas are queries: they specify the What rather then the How!
That's declarative programming

Source: Moshe Vardi. Database Queries - Logic and Complexity

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Source: Ray Dalio. "Principles", 2017. https://www.principles.com/

Separation of
concerns: WHAT
from HOW

https://northeastern-datalab.github.io/cs7240/
https://www.principles.com/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

PRELIMINARY

https://northeastern-datalab.github.io/cs7240/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?
- For DB's: schema, constraints, query language

2. Interpretation
- Mapping symbols to an actual world
- For DB's : database

3. Semantics
- When is a statement “true” under some interpretation?
- For DB's : meaning of integrity constraints and query results

Based on material by Benny Kimelfeld for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

• Alphabet: symbols in use
- Variables, constants, function symbols, predicate symbols, connectives, quantifiers, punctuation symbols

• Term: expression that stands for an element or object
- Variable, constant
- Inductively f(t1,…,tn)	where ti are terms, f a function symbol

• (Well-formed) formula: parameterized statement
- Atom p(t1,…,tn) where p is a predicate symbol, ti terms (atomic formula, together with predicates t1=t2)
- Inductively, for formulas F, G, variable x:

F⋀G F⋁G ¬F F⟶G F⟷G ∀x	F ∃x	F

• A first-order language refers to the set of all formulas over an alphabet

Components of FOL: (1) Syntax = First-order language

relation b/w objects

MotherOf(MotherOf(x))

terms

vocabulary

x = 'Alice'

Based on material by Benny Kimelfeld for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

53Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Components of FOL: (2) Interpretation

• How to assign meaning to the symbols of a formal language
• An interpretation INT for an alphabet consists of:
- A non-empty set Dom, called domain

• {Alice, Bob, Charly}
- An assignment of an element in Dom to each constant symbol

• Alice (recall we commonly write constants with quotation marks 'Alice')
- An assignment of a function Domn⟶Dom to each n-ary function symbol

• Alice = MotherOf(Bob)
- An assignment of a function Domn⟶{true, false} (i.e., a relation) to each n-ary

predicate symbol
• Friends(Bob, Charly) = TRUE

Based on material by Benny Kimelfeld for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

54Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Components of FOL: (3) Semantics
• A variable assignment to a formula in an interpretation INT assigns to each free variable X a

value from Dom
- Recall, a free variable is one that is not quantified

• Truth value for formula F under interpretation INT and variable assignment V:
- Atom p(t1,…,tn): q(s1,…,sn) where q is the interpretation of the predicate p and si the interpretation of ti
- F⋀G F⋁G ¬F F⟶G F⟷G: according to truth table

- ∃𝑋𝐹: true iff there exists d∈Dom such that if V assigns d to X then the truth value of F is true; otherwise
false

- ∀𝑋𝐹: true iff for all d∈Dom, if V assigns d to X then the truth value of F is true; otherwise false

• If a formula has no free vars (closed formula or sentence), we can simply refer to its truth
value under INT

Person(X) ∃Y Married(X,Y)

∀X: Person(X) ⟶	Mortal(X)
Based on material by Benny Kimelfeld for 236363 Database Management Systems, Technion, 2018.

https://northeastern-datalab.github.io/cs7240/

55Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Operator precedence

Source: http://intrologic.stanford.edu/glossary/operator_precedence.html

https://northeastern-datalab.github.io/cs7240/
http://intrologic.stanford.edu/glossary/operator_precedence.html

