
31

Topic 1: Data models and query languages
Unit 1: SQL
Lecture 2

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)
https://northeastern-datalab.github.io/cs7240/sp22/
1/21/2022

Updated 1/21/2022

https://northeastern-datalab.github.io/cs7240/sp22/

32Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Pre-class conversations

• Last class recapitulation
• Any questions on class procedures?
- Piazza vs Canvas announcements?
- Hybrid for next Tuesday
- "Class scribes": You will continue to see some "minimum examples" today

in class; a note about slide quality
- Already installed Postgres?
- The downsides of no regular homeworks

• Today:
- SQL continued

https://northeastern-datalab.github.io/cs7240/

33Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

The "Surfer Analogy" for time management

Source: http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg

https://northeastern-datalab.github.io/cs7240/
http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg

34

Outline: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k

35Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Table Alias (Tuple Variables)

Person (pName, address, works_for)
University (uName, address)

312

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName ?What will this

query return

https://northeastern-datalab.github.io/cs7240/

36Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Table Alias (Tuple Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

SELECT DISTINCT pName, University.address
FROM Person, University
WHERE Person.works_for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

which address?
Error!

Notice that the use of "as" is not necessary, it is optional !!

Person (pName, address, works_for)
University (uName, address)

312

https://northeastern-datalab.github.io/cs7240/

37Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

T
a

2

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

?

?
Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

38Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T
a

2

a

1

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

?
Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

39Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T
a

2

a

1

a

1

2

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

40Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T2
a

2

a

1

a

1

2

305

R
a

1

2

S
a

1

R(a), S(a), T2(a)

?

?

Next, we are
removing the
input tuple "(2)"

SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

41Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T2
a

2

a

1

a

1

2

305

R
a

1

2

S
a

1

R(a), S(a), T2(a)

?

Next, we are
removing the
input tuple "(2)"

SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

42Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T2
a

2

a

1

305

R
a

1

2

S
a

1

R(a), S(a), T2(a)

Next, we are
removing the
input tuple "(2)"

Returns ∅
if S = ∅ or T = ∅

Can seem counterintuitive! But remember conceptual evaluation strategy:
Nested loops. If one table is empty -> no looping

a
SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

43Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Illustration with Python

The comparison gets never evaluated

306

"Premature optimization
is the root of all evil."
Donald Knuth (1974)

"When you are diagnosing
problems, don’t think about
how you will solve them—just
diagnose them. Blurring the
steps leads to suboptimal
outcomes because it
interferes with uncovering
the true problems."
Ray Dalio (Principles, 2017)

Python file

https://northeastern-datalab.github.io/cs7240/

44Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

302Our colorful hands represent "team exercises"
If we are online, please make a screenshot!

https://northeastern-datalab.github.io/cs7240/

45Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and P.price < 20
and P.price > 25
and P.manufacturer = cName

Quiz: Answer 1

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

What about this query?

302

?

Our colorful hands represent "team exercises"
If we are online, please make a screenshot!

https://northeastern-datalab.github.io/cs7240/

46Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and P.price < 20
and P.price > 25
and P.manufacturer = cName

Wrong! Gives empty
result: There is no
product with price
<20 and >25

302

https://northeastern-datalab.github.io/cs7240/

47Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

P.price < 20 and
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P

not possible!
→ Empty result

302

country='USA'

?
What do we actually want?

https://northeastern-datalab.github.io/cs7240/

48Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1 vs. what we actually want

P.price < 20 and
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P

not possible!
→ Empty result

P.price < 20

C

P1

P2 P.price > 25

302

country='USA' country='USA'

https://northeastern-datalab.github.io/cs7240/

49Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and (P.price < 20
or P.price > 25)
and P.manufacturer = cName

Quiz: Answer 2

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

What about this query?

?

https://northeastern-datalab.github.io/cs7240/

50Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 2

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and (P.price < 20
or P.price > 25)
and P.manufacturer = cName

Returns companies
with single product
w/price (<20 or >25)

P.price<20 or
P.price>25

C

P

302

https://northeastern-datalab.github.io/cs7240/

51Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: correct answer: we need "self-joins"!

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

302

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

P.price < 20

C

P1

P2 P.price > 25

country='USA'

https://northeastern-datalab.github.io/cs7240/

52Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Quiz response: we need "self-joins"!
P1

Company

P2

302

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

https://northeastern-datalab.github.io/cs7240/

53Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Quiz response: we need "self-joins"!
P1

Company

P2

302

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

CName
GizmoWorks

https://northeastern-datalab.github.io/cs7240/

54

Outline: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k

55Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Purchase
308

?

https://northeastern-datalab.github.io/cs7240/

56Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Product TQ
Bagel ?
Banana ?

https://northeastern-datalab.github.io/cs7240/

57Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Product TQ
Bagel 40
Banana 20

https://northeastern-datalab.github.io/cs7240/

58Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Product TQ
Bagel 40
Banana 20

From ® Where ® Group By ® Select

SELECT product, sum(quantity) as TQ
FROM Purchase
WHERE price > 1
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1
2
3

4

Select contains
• grouped attributes
• and aggregates

Purchase
308

https://northeastern-datalab.github.io/cs7240/

59Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

SELECT numc
FROM Shapes
GROUP BY numc

? ?

group by numc (# of corners)

https://northeastern-datalab.github.io/cs7240/

60Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

SELECT numc
FROM Shapes
GROUP BY numc

??

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

https://northeastern-datalab.github.io/cs7240/

61Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

?

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

https://northeastern-datalab.github.io/cs7240/

62Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

group by numc (# of corners)
color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

Without group by?

https://northeastern-datalab.github.io/cs7240/

63Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes

SELECT DISTINCT numc
FROM Shapes

Same as:

color numc
blue 3
blue 4
blue 5
orange 4
orange 5
orange 6

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group by color group by numc (# of corners)

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

Without group by!

https://northeastern-datalab.github.io/cs7240/

64

Outline: SQL

• SQL
– Schema, keys, referential integrity
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Nulls & Outer joins
– Top-k

65Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries = Nested queries

• We can nest queries because SQL is compositional:
- Input & Output are represented as relations (multisets)
- Subqueries also return relations; thus the output of one query can thus be

used as the input to another (nesting)
• This is extremely powerful, yet can also quickly get complicated

• We focus mainly on nestings in the WHERE
clause, which is the most expressive type of
nesting.

• But we start with nesting in FROM clause
which are also called "derived tables"

SELECT ...
FROM ...
WHERE ... (SELECT ...

FROM ...
WHERE ...)

Outer block Inner block

https://northeastern-datalab.github.io/cs7240/

66Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Product TQ
Bagel 40
Banana 70

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

MTQ
70

Q2: Find the maximal total quantities
purchased across all products.

?

https://northeastern-datalab.github.io/cs7240/

67Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

?

X
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

Product TQ
Bagel 40
Banana 70

https://northeastern-datalab.github.io/cs7240/

68Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

Purchase X
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

Product TQ
Bagel 40
Banana 70

https://northeastern-datalab.github.io/cs7240/

69Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT MAX(TQ) as MTQ
FROM (SELECT product, SUM(quantity) as TQ

FROM Purchase
GROUP BY product) X

Subqueries in FROM clause = Derived tables

SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product

Purchase
308

Q1: For each product, find total
quantities (sum of quantities) purchased.

Q2: Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

Purchase
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

https://northeastern-datalab.github.io/cs7240/

70Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Common Table Expressions (CTE): WITH clause
Purchase

308

SELECT MAX(TQ) as MTQ
FROM (SELECT product, SUM(quantity) as TQ

FROM Purchase
GROUP BY product) X

Purchase
Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

MTQ
70

CTE (Common
Table Expression)

Query using CTE

WITH X as
(SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product)

SELECT MAX(TQ) as MTQ
FROM X

The WITH clause defines a temporary
relation that is available only to the
query in which it occurs. Sometimes
easier to read. Very useful for queries
that need to access the same
intermediate result multiple times

https://northeastern-datalab.github.io/cs7240/

71Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause
What do these queries return?

SELECT a
FROM R
WHERE a IN

(SELECT a from W)
?

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

W
a b
2 0
3 0
4 0

?

?

https://northeastern-datalab.github.io/cs7240/

72Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

a
2

R 305

?

?

SELECT a
FROM R
WHERE a IN

(SELECT a from W)

a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

a b
2 0
3 0
4 0

W

What do these queries return?

https://northeastern-datalab.github.io/cs7240/

73Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1
2

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

305

?

SELECT a
FROM R
WHERE a IN

(SELECT a from W)

a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

a b
2 0
3 0
4 0

W

a
2

What do these queries return?

https://northeastern-datalab.github.io/cs7240/

74Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT a
FROM R
WHERE a IN

(SELECT a from W)

a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

a b
2 0
3 0
4 0

Subqueries in WHERE clause

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

305W

a
1
2

a
2

What do these queries return?

https://northeastern-datalab.github.io/cs7240/

75Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subqueries

• In all previous cases, the nested subquery in the inner select block
could be entirely evaluated before processing the outer select block.
- Recall the "compositional" nature of relational queries
- This is no longer the case for correlated nested queries.

• Whenever a condition in the WHERE clause of a nested query
references some column of a table declared in the outer query, the
two queries are said to be correlated.
- The nested query is then evaluated once for each tuple (or combination of

tuples) in the outer query (that's the conceptual evaluation strategy)

https://northeastern-datalab.github.io/cs7240/

76Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

Using IN: Set / Bag membership

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 25)

316

Q1: Find all companies that make some product(s) with price < 25

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

slightly
different
product
database!

Is this a correlated
nested query ?

https://northeastern-datalab.github.io/cs7240/

77Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

Using IN: Set / Bag membership

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 25)

316

Q1: Find all companies that make some product(s) with price < 25

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (1, 2)

slightly
different
product
database!

Not a correlated nested query!

Inner query does not reference
outer query! You could first
evaluate the inner query by itself.

https://northeastern-datalab.github.io/cs7240/

78Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid
and P.price < 25)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

Using EXISTS: TRUE if the subquery's result is NOT empty

Is this a correlated
nested query ?

https://northeastern-datalab.github.io/cs7240/

79Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE P.cid = C.cid
and P.price < 25)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

Using EXISTS: TRUE if the subquery's result is NOT empty

This is a correlated nested query!
Notice the additional join condition
referencing a relation from the
outer query.

Recall our conceptual evaluation
strategy!

https://northeastern-datalab.github.io/cs7240/

80Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

Using ANY (also SOME): again set / bag comparison

But do we really need
to write this query as
nested query ?

https://northeastern-datalab.github.io/cs7240/

81Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential $)

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid
and P.price < 25

We did not need to write nested queries;
we can "unnest" it!

Existential quantifiers are easy J

316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q1: Find all companies that make some product(s) with price < 25

https://northeastern-datalab.github.io/cs7240/

82Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal ") 316

PName Price Category cid

Gizmo $19.99 Gadgets 1

Powergizmo $29.99 Gadgets 1

SingleTouch $14.99 Photography 2

MultiTouch $203.99 Household 3

Product Company
cid CName StockPrice Country

1 GizmoWorks 25 USA

2 Canon 65 Japan

3 Hitachi 15 Japan

Q2: Find all companies that make only products with price < 25
≡ Q2: Find all companies for which all products have price < 25

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

≡ Q2: Find all companies that do not have any product with price >= 25

Q1: Find all companies that make some product(s) with price < 25

All three formulations are equivalent: a company with no product will be returned!

https://northeastern-datalab.github.io/cs7240/

83Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

Step 2: Q2: Find all companies that make no products with price ≥ 25

First think about the
companies that should
not be returned!

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

Q2: Find all companies that make only products with price < 25

https://northeastern-datalab.github.io/cs7240/

84Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid
and P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid
and P.price >= 25)

Step 2: Q2: Find all companies that make no products with price ≥ 25

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25
Q2: Find all companies that make only products with price < 25

First think about the
companies that should
not be returned!

https://northeastern-datalab.github.io/cs7240/

85Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal " = not exists ∄) 316

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ALL (SELECT P.price

FROM Product P
WHERE C.cid = P.cid)

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 <= ANY (SELECT P.price

FROM Product P
WHERE C.cid = P.cid)

Step 2: Q2: Find all companies that make no products with price ≥ 25

Step 1: Q2': Find the other companies that make some product(s) with price ≥ 25
Q2: Find all companies that make only products with price < 25

First think about the
companies that should
not be returned!

https://northeastern-datalab.github.io/cs7240/

86Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

A natural question

• How can we unnest (no GROUP BY) the universal quantifier query ?

?

Source: Dan Suciu

SELECT ...
FROM ...
WHERE ...

Q2: Find all companies that make only products with price < 25

https://northeastern-datalab.github.io/cs7240/

87Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Queries that must be nested

• Definition: A query Q is monotone if:
- Whenever we add tuples to one or more of the tables…
- … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
- Proof: using the "nested for loops" semantics

• Fact: Query with universal quantifier is not monotone
- Add one tuple violating the condition. Then "all" returns fewer tuples

• Consequence: we cannot unnest a query with a universal quantifier

Source: Dan Suciu

https://northeastern-datalab.github.io/cs7240/

88

Understanding
nested queries
with QueryVis

89Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/
Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

The sailors database
340

Sailor Reserves Boat

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

90Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q:

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

91Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

92Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

340

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.color='red'
AND B.bid=R.bid))

This is an alternative way to write the
previous query with EXISTS and
correlated nested queries that
matches the Relational Calculus below.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

93Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 2

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Dashed lines represent
not exists ∄

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

94Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 2

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Dashed lines represent
not exists ∄

They must have reserved at least one boat
in another color. They can also have reserved
a red boat in addition.

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

95Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 3

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

96Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 3

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

They can have reserved 0 or more
boats in another color, but must
not have reserved any red boat.

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: Find the names of sailors who have not reserved a red boat.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

97Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q3: Find the names of sailors who have not reserved a red boat.
Q2: Find the names of sailors who have reserved a boat that is not red.

Should Dustin be in the output
of each of the two queries?

?

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/
https://northeastern-datalab.github.io/cs7240/

98Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Q3: Find the names of sailors who have not reserved a red boat.
Q2: Find the names of sailors who have reserved a boat that is not red.

Should Dustin be in the output
of each of the two queries?

Yes!
No!

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/
https://northeastern-datalab.github.io/cs7240/

99Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

100Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

101Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4 (another variant)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color<>'red'))

340

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color<>'red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color<>'red'

They can have reserved 0 or more
boats in red, just no other color.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

102Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 4 (universal)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Double lines represent
for all ∀

{S.sname | ∃S∈Sailor.(∀R∈Reserves.(R.sid=S.sid → ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

103Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Nested query 5
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: ?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

104Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Nested query 5

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

I don't know of a way to write that query
with IN instead of EXISTS and without an
explicit cross product between sailors and
red boats. (More on that in a moment and
also later when we discuss this query in
relational algebra.)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

105Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Nested query 5 (universal)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

{S.sname | ∃S∈Sailor.(∀B∈Boat.(B.color='red' → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid))))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

106Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Nested query 5 (w/o correlation)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not in

(SELECT S2.sid
FROM Sailor S2, Boat B
WHERE B.color = 'red'
AND (S2.sid, B.bid) not in

(SELECT R.sid, R.bid
FROM Reserves R))

Sailor

sid
sname

Sailor

sid

Boat
bid

color = 'red'

Reserves

sid
bid

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

{S.sname | ∃S∈Sailor.(∀S2∈Sailor ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid → ∃R∈Reserves.(B.bid=R.bid ⋀ S2.sid=R.sid))))}

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

107Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT
sname

Nested query 5 (w/o correlation)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

{S.sname | ∃S∈Sailor.(∀S2∈Sailor ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid → ∃R∈Reserves.(B.bid=R.bid ⋀ S2.sid=R.sid))))}

Sailor

sid
sname

Sailor

sid

Boat
bid

color = 'red'

Reserves

sid
bid

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT *
FROM Sailor S2, Boat B
WHERE B.color = 'red'
AND S.sid = S2.sid
AND not exists

(SELECT *
FROM Reserves R
WHERE B.bid=R.bid
AND S2.sid = R.sid))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

108Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND R.bid = B.bid))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

https://northeastern-datalab.github.io/cs7240/

109Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

QV
SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND R.bid = B.bid))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs7240/

110Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

have not reserved
a red boat

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

reserved only
red boats

reserved all
red boats

took no art
class

took only art
classes

took all art
classes

did not play in a
Hitchcock movie

played only
Hitchcock movies

played in all
Hitchcock movies

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

111Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT DISTINCT S.sname
FROM Sailor S
WHERENOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERENOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND B.bid = R.bid))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

SELECT DISTINCT S.sname
FROM Student S
WHERENOT EXISTS(

SELECT *
FROM Takes T, Class C
WHERE T.sid = S.sid
AND C.cid = T.cid
AND C.department ='art')

SELECT DISTINCT S.sname
FROM Student S
WHERENOT EXISTS(

SELECT *
FROM Takes T
WHERE T.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Class C
WHERE C.department = 'art'
AND C.cid= T.cid))

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(

SELECT *
FROM Class C
WHERE C.department= 'art'
AND NOT EXISTS(

SELECT *
FROM Takes T
WHERE T.cid= C.cid
AND T.sid= S.sid))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(

SELECT *
FROM Movie M
WHERE M.director = 'Hitchcock'
AND NOT EXISTS(

SELECT *
FROM Plays P
WHERE P.mid = M.mid
AND P.aid = A.aid))

SELECT DISTINCT A.aname
FROM Actor A
WHERENOT EXISTS(

SELECT *
FROM Plays P
WHERE P.aid = A.aid
AND NOT EXISTS(

SELECT *
FROM Movie M
WHERE M.director = 'Hitchcock'
AND M.mid = P.mid))

SELECT DISTINCT A.aname
FROM Actor A
WHERENOT EXISTS(

SELECT *
FROM Plays P, Movie M
WHERE P.aid = A.aid
AND M.mid = P.mid
AND M.director = 'Hitchcock')

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

112Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Student

sid

sname

Takes

sid

cid

Class

cid

department = 'art'

SELECT

sname

Student

sid

sname

Takes

sid

cid

Class

cid

department = 'art'

SELECT

sname

Student

sid

sname

Takes

sid

bid

Class

cid

department = 'art'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs7240/

113

Logical SQL Patterns
Logical patterns are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:
• Find sailors who reserved all red boats
• Find students who took all art classes
• Find actors who played in all movies by Hitchcock

114Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)What does this query return ?

https://northeastern-datalab.github.io/cs7240/

115Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

What does this query return ?

https://northeastern-datalab.github.io/cs7240/

116Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Q: Finder drinkers with a unique beer taste

https://northeastern-datalab.github.io/cs7240/

117Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

https://northeastern-datalab.github.io/cs7240/

118Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

https://northeastern-datalab.github.io/cs7240/

119Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

https://northeastern-datalab.github.io/cs7240/

120Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

https://northeastern-datalab.github.io/cs7240/

121Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

https://demo.queryvis.com

http://www.youtube.com/watch?v=kVFnQRGAQls

Danaparamita, G. [EDBT'11]
https://queryvis.com/

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805

122Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Amazon Turk user study with SQL users
Each bar below corresponds to one participant (42 bars/participants in total)

Mean Δ = -17.3 s
Median Δ = -19.7 s

71% of users
faster with QV

29% of users
faster with SQL

QV - SQL Time Differences (seconds)

QV faster SQL faster

Mean Δ = -0.08
Median Δ =0

36% of users
with less
errors using
QV

26% of users
with more
errors using
QV

38% of users
with same
errors using
QV

QV - SQL Error Rate Differences

QV fewer errors SQL fewer errors

Leventidis+ [SIGMOD'20]

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3318464.3389767

123Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

https://queryvis.com

https://northeastern-datalab.github.io/cs7240/
https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

