Updated 1/21/2022

Topic 1: Data models and query languages
Unit 1: SQL
Lecture 2

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp22)

https://northeastern-datalab.github.io/cs7240/sp22/
1/21/2022

31

https://northeastern-datalab.github.io/cs7240/sp22/

Pre-class conversations

e Last class recapitulation
e Any questions on class procedures?

— Piazza vs Canvas announcements?

— Hybrid for next Tuesday

— "Class scribes": You will continue to see some "minimum examples" today
in class; a note about slide quality

— Already installed Postgres?
— The downsides of no regular homeworks

e Today:
— SQL continued

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

32

https://northeastern-datalab.github.io/cs7240/

The "Surfer Analogy" for time management

Source: http://stwww.surfermag.com/files/2013/10/Yak Charlie-970x646.ipg

https://northeastern-datalab.github.io/cs7240/
http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg

Outline: SQL
e SQL

— Schema, keys, referential integrity
— Joins

— Aggregates and grouping

— Nested queries (Subqgueries)

— Theta Joins

— Nulls & Outer joins
— Top-k

34

Table Alias (Tuple Variables)

Person (pbName, address, works_for)
University (uNamé, address)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works for = uName

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

What will this
query return

?

35

https://northeastern-datalab.github.io/cs7240/

Table Alias (Tuple Variables)

Person (pbName, address, works_for)
University (uNamé, address)

which address?

Error!
SELECT DISTINCT pName, address

FROM Person, University
WHERE works for = uName

SELECT DISTINCT pName, University.address
> FROM Person, University
WHERE Person.works for = University.uName

SELECT DISTINCT X.pName, Y.address
> FROM Person as X, University Y
WHERE X.works_for = Y.uName \

Notice that +he use of "as” is not necessary, it is optional |

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

36

https://northeastern-datalab.github.io/cs7240/

Using the Formal Semantics

R(a), S(a), T(a)

R

What do these queries computel ?

=)

e

< =

2

SELECT R.a
FROM R,S
WHERE R.a=S.a

SELECT R.a

FROM R,S, T

WHERE R.a=S.a
or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

o9

9

-~

S

AVW'
/]

/‘-__‘

T

37

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

Using the Formal Semantics R(a), S(a), T(a)

What do these queries compute?

S T
a
2

I\J—\mm
)]

?IEI(_)IIE\/ICT E-as =] ReturnsRN S
) ::> ' | (intersection)
WHERE R.a=S.a

SELECT R.a

FROM R,S,T j> f?
WHERE R.a=S.a A

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 38

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

Using the Formal Semantics

What do these queries compute?

SELECT R.a
FROM R,S
WHERE R.a=S.a

SELECT R.a

FROM R,S, T

WHERE R.a=S.a
or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html

-

R(a), S(a), T(a)

a

S T
a
2

I\J—\mm

Returns R S
(intersection)

Returns RN (S U T)
fS#@0and T#0Q

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

39

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

Using the Formal Semantics R(a), S(a), T2(a)

S T2

a a

~ y 4
y

>4

N
L 4 N

What do these queries compute?

I\J—\mx

SELECT R.a E f? \ Next, we are

FROM R, S removing the
WHERE R.a=S.a - mput tuple "(2)"

SELECT R.a

FROM R,S, T2asT j> f?
WHERE R.a=S.a

or R.a=T.a

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 40

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

Using the Formal Semantics R(a), S(a), T2(a)

What do these queries compute?

SELECT R.a
FROM R,S
WHERE R.a=S.a

SELECT R.a
FROM R,S,T2asT
WHERE R.a=S.a

or R.a=T.a

S T2

a a

~ y 4
y

>4

N
L 4 N

Returns R n S\ Next, we are

jl> ' | (intersection) removing the

mput tuple "(2)"

I\J—\mm

=NaR

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 41

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

Using the Formal Semantics

What do these queries compute?

SELECT R.a
FROM R,S
WHERE R.a=S.a

SELECT R.a
FROM R,S,T2asT
WHERE R.a=S.a

or R.a=T.a

-

R(a), S(a), T2(a)

R S T2
a a R a P
1 |
2 L 4 N

Returns R n S\ Next, we are

(intersection) removing W},@ "
input tuple "(2)

Returns @
fS=QorT=0

|

Can seem counterintuitivel But remember conceptual evaluation strategy:
Nested loops. If one table is empty -> vo looping

Example originally proposed in Garcia-Molina, Ullman, Widom. Database Systems. 2001. Ch. 6.2.4 Interpreting Multirelation Queries. http://infolab.stanford.edu/~ullman/dscb.html
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 42

https://northeastern-datalab.github.io/cs7240/
http://infolab.stanford.edu/~ullman/dscb.html

lustration with Python

éprint "e—= 1st nested loop ---"

for i in xrange(2):

for j in xrange(3)
for k in xrande(2): |
print "i=9%d
ifi=jor i=k:
print "TRUE",
print

print "\n--- 2nd nested loop —--"

for i in xrange(2):

for j in xrange(3)
for k in xrande(1): |
print "i=%
ifi=jor i=k:
print “TRUE",
print

éprint "\n--- 3rd nested loop ---"
for i in xrange(2):

for j in xrange(3)2
for k in xran
print "i=%
ifi=jori=%k:
print "TRUE",
print

-]=6d, k=%d:

- /Library/Frameworks/Python. framework/Versio
. === 1st nested loop ——-

- i=0, j=0, k=0: TRUE

™Y=%d, k=%d:

yond, k=%d:

- 1=0, j)=0, k=1: TRUE
- 1=0,)=1, k=0: TRUE
 i=0, j=1, k=1:
- 1=0,)=2, k=0: TRUE
. i=0, j=2, k=1:
 i=1, j=0, k=0:
=% (1 35K, (i=1, j=0, k=1: TRUE
-1=1, j=1, k=0: TRUE
- 1=1, j)=1, k=1: TRUE
i=1, j=2, k=0:
;i=1, j=2, k=1: TRUE
—> 2nd nested loop ——-
- 1=0, j=0, k=0: TRUE
- 1=0, j=1, k=0: TRUE
" . i=0, j=2, k=0: TRUE
% (1, 3, K, i=1, j=0, k=0:
- i=1, j=1, k=0: TRUE
=1, =2, k=0
—> 3rd nested loop ——-
Proces
"% (1, j, k),

| The comparison gets never evaluated

inished with exit code 0

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Python file

"Premature optimization
is the root of all evil."
Donald Knuth (1974)

"When you are diagnosing
problems, don’t think about
how you will solve them—just
diagnose them. Blurring the
steps leads to suboptimal
outcomes because it
interferes with uncovering
the true problems."

Ray Dalio (Principles, 2017)

43

https://northeastern-datalab.github.io/cs7240/

QU |/ Our colorful hawnds represent "team CXGVGlSGS/‘ 7 =

It we are ovlive, please make a screenshot!

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

SELECT DISTINCT cName
FROM
WHERE

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

44

https://northeastern-datalab.github.io/cs7240/

QU iZ: Aﬂ SWer 1 our colorful hawds represent "team exercises”

It we are ovlive, please make a screenshot!

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

SELECT DISTINCT cName
FROM Product as P, Companz/what about this query?
WHERE country = 'USA

and P.price < 20

and P.price > 25

and P.manufacturer = cName

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

45

https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

DISTINCT cName
Wrowg! Gives empty
result: There 1s vio
product with price
<20 avd >25

P.manufacturer = cNa

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 46

https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

~country="USA'

C
what do we actually want?
P P.price < 20 and ?
P.price > 25 o
not possiblel

— Empty result
47

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 1 vs. what we actually want

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

country="USA'

C C
P.price < 20 and o <

P P.price > 25 P1 P.price < 20
not possiblel P9 P.orice > 25

— Empty result

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

48

https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 2

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

SELECT DISTINCT cName / What about this query’?
FROM Product as P, Compa
WHERE country = "USA’ ’?

and (P.price < 20 o

or P.price > 25)

and P.manufacturer = cName

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 49

https://northeastern-datalab.github.io/cs7240/

Quiz: Answer 2

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product

below $20 and a product above $25. _
Returns companies

with single product
" wiprice (<20 or >25)

CT DISTINCT cName

or
nd P.manufacturer = cN

P.price<20 or
P.price>25

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

50

https://northeastern-datalab.github.io/cs7240/

Quiz: correct answer: we need "self-joins" !

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

C % country="USA'
SELECT DISTINCT cName P price < 20
FROM Product as P1, Product as P2, Company |
WHERE country = 'USA P.price > 25

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 51

https://northeastern-datalab.github.io/cs7240/

Quiz response: we need "self-joins"!

P1
PName Price Category Manufacturer
‘ Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon Company -
MultiTouch | $203.99 | Household | Hitachi CINETmE SIDEATEs | Uiy
‘ GizmoWorks 25 USA
P2 C_anon. 65 Japan
Hitachi 15 Japan
PName Price Category Manufacturer
‘ Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA

and P1.price < 20

and P2.price > 25

and P1.manufacturer = cName

and P2.manufacturer = cName

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

52

https://northeastern-datalab.github.io/cs7240/

Quiz response: we need "self-joins"!

P1
PName | Price Category Manufacturer
‘ Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon Company -
MultiTouch | $203.99 | Household | Hitachi CINETmE SDEATEs | Gy
‘ | GizmoWorks 25 USA
P2 C_anon. 65 Japan
Hitachi 15 Japan
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
‘ Powergizmo | $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA' @ e
and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 53

https://northeastern-datalab.github.io/cs7240/

Outline: SQL

— Aggregates and grouping

Grouping and Aggregation

Purchase

Product |Price |Quantity

Bagel 3 20 j> f?
Bagel 20

2 .
Banana |1 50
Banana |2 10
Banana |4 10

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 55

https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Product

TQ

Bagel

Banana | ?

Purchase

Product |Price |Quantity
Bagel 3 20
Bagel 2 20
Banana |1 50
Banana |2 10
Banana |4 10

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

56

https://northeastern-datalab.github.io/cs7240/

Grouping and Aggregation

Purchase

Product |Price |Quantity Product | TQ

Bagel 3 20 j> Bagel |40

Bagel 2 20 Banana | 20
—Banana—1 50

Banana |2 10

Banana (4 10

Q: For each product, find Total Quantities (TQ = sum of quantities) purchased,
for all products with price >1.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 57

https://northeastern-datalab.github.io/cs7240/

From — Where — Group By — Select

Purchase
Product |Price |Quantity Product | TQ
Bagel 3 20 j>l Bagel |40
Bagel 2 20 Banana | 20
—Banana—1 50
Banana (2 10
IBanana |4 10 Select contains
| e grouped attributes
/- and aggregates
4 SELECT product, sum(quantity) as TQ
1 FROM Purchase
2 WHERE price > 1
3 GROUP BY product

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

58

https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes
group by color group by numc (# of corners)

AlNg
..' ..'

SELECT color, SELECT numc

avg(numc) anc FROM Shapes
FROM Shapes GROUP BY numc
GROUP BY color

S S,

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 59

https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes
group by color group by numc (# of corners)

AW

e

SELECT color, SELECT numc
avg(numc) anc FROM Shapes
FROM Shapes GROUP BY numc

GROUP BY color

S S,

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

color

numec

blue

blue

blue

orange

orange

orange

O~ | P |W®

60

https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes
group by color group by numc (# of corners)

AW

e

@g® @op®
SELECT color, SELECT numc
avg(numc) anc FROM Shapes
FROM Shapes GROUP BY numc
GROUP BY color
color anc
j> blue 4 j\> ?
orange |95 "

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

color

numec

blue

blue

blue

orange

orange

orange

O~ | |W®

61

https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes [color [nume
group by color group by numc (# of corners) E:“e j
ue
. j . blue 5
A . A . orange |4
- { . orange |5
. . . orange |6
SELECT color, SELECT numc
avg(numc) anc FROM Shapes
FROM Shapes GROUP BY numc
GROUP BY color
numc Without group by ?
color anc 3 / ¥
> | blue 4 > 4
orange |9 5
6

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 62

https://northeastern-datalab.github.io/cs7240/

Groupings illustrated with colored shapes [color [nume
group by color group by numc (# of corners) E:“e j
ue
. . blue 5
;A ./ A . orange |4
. . orange |5
&n O
Same as:
SELECT color, SELECT numc SELECT DISTINCT numc
avg(numc) anc FROM Shapes FROM Shapes
FROM Shapes GROUP BY numc
GROUP BY color
numc Without group by!
color anc 3
j> blue |4 j> 2
orange |9 5

6

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 63

https://northeastern-datalab.github.io/cs7240/

Outline: SQL

— Nested queries (Subqgueries)

Subqgueries = Nested queries

Outer block Inner block
SElE)ECT v * We focus mainly on nestings in the WHERE
FROM . — " claunse, which is the most expressive type of
WHERE ... - [BELECT . nesting,
FROM ... * But we start with nesting in FROWM claunse
WHERE ...) which are also called "derived tables”

« We can nest queries because SQL is compositional:
dare represented ds

— Subqueries also return relations; thus the output of one query can thus be
used as the input to another (nesting)

e This is extremely powerful, yet can also quickly get complicated

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

65

https://northeastern-datalab.github.io/cs7240/

Subqgueries in FROM clause = Derived tables

Purchase

Product | Price | Quantity
Bagel |3 20
Bagel |2 20
Banana | 1 50
Banana | 2 10
Banana | 4 10

—

Q1: For each product, find total

quantities (sum of dquantities) purchased.

SELECT product, SUM(quantity) as TQ

FROM Purchase

GROUP BY product

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Product

TQ

Bagel

40

Banana

70

Q2: Find the maximal total quantities
purchased across all products.

—

?

66

https://northeastern-datalab.github.io/cs7240/

Subqgueries in FROM clause = Derived tables

Purchase

Product | Price | Quantity
Bagel |3 20
Bagel |2 20
Banana | 1 50
Banana | 2 10
Banana | 4 10

—

Q1: For each product, find total

quantities (sum of dquantities) purchased.

SELECT product, SUM(quantity) as TQ

FROM Purchase

GROUP BY product

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

) X

X

Product

TQ

Bagel

40

Banana

70

Q2: Find the maximal total quantities
purchased across all products.

—

?

67

https://northeastern-datalab.github.io/cs7240/

Subqgueries in FROM clause = Derived tables

Purchase

Product | Price | Quantity
Bagel |3 20
Bagel |2 20
Banana | 1 50
Banana | 2 10
Banana | 4 10

—

Q1: For each product, find total

quantities (sum of dquantities) purchased.

SELECT product, SUM(quantity) as TQ

FROM Purchase

GROUP BY product

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

) X

X

Product

TQ

Bagel

40

Banana

70

Q2: Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

—

68

https://northeastern-datalab.github.io/cs7240/

Subqgueries in FROM clause = Derived tables

Purchase

Product | Price | Quantity
Bagel |3 20
Bagel |2 20
Banana | 1 50
Banana | 2 10
Banana | 4 10 4///
M: Fore

SELECT product, SUM(quantity) as TQ

product, find total
quantities (sum of quantities) purchased.

FROM Purchase
GROUP BY product

MTQ
SELECT MAX(TQ) as MTQ j> 70
FROM (SELECT product, SUM(quantity) as TQ
FROM Purchase
GROUP BY product) X

Q2. Find the maximal total quantities
purchased across all products.

SELECT MAX(TQ) as MTQ
FROM X

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

69

https://northeastern-datalab.github.io/cs7240/

Common Table Expressions (CTE): WITH clause
Purchase

Product | Price | Quantity > MTQ
Bagel |3 20 SELECT MAX(TQ) as MTQ | 70
Ba FROM (SELECT product, SUM(quantity) as TQ

gel |2 20
Banana | 1 50 FROM Purchase

GROUP BY product) X
Banana | 2 10
Banana | 4 10
WITH X as
CTE (Common (SELECT product, SUM(quantity) as TQ
Table Expression) FROM Purchase The WITH clause defines a temporary

GROUP BY product) | ciation +hat is available ouly +o +the
SELECT MAX(TQ) as MTQ |auery in which i+ occurs. Sometimes

FROM X easier to read. Very useful for queries
that veed to access the same
ntermediate result multiple times

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 70

Query using CTE

https://northeastern-datalab.github.io/cs7240/

Subqgueries in WHERE clause R

)
What do these queries return? "—’7> 1 >

hw@\mE

Ot

SELECT a

FROM R j> ?

WHERE a N 5
(SELECT a from W)

SELECT a

FROM R j> ?

WHERE a <ANY 5
(SELECT a from W)

SELECT a

FROM R j> ?

WHERE a<ALL 5

(SELECT a from W)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

71

https://northeastern-datalab.github.io/cs7240/

Subqgueries in WHERE clause

What do these queries return?

SELECT a

FROM R j> a

WHERE a N 2
(SELECT a from W)

SELECT a

FROM R j> ?

WHERE a <ANY 5
(SELECT a from W)

SELECT a

FROM R j> ?

WHERE a<ALL 5

(SELECT a from W)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

N (= o | A
hwmmé

©O|OC|O|T

Since 2 is in the set (bag)
(2, 3,4)

72

https://northeastern-datalab.github.io/cs7240/

Subqgueries in WHERE clause

What do these queries return?

SELECT a
FROM R j> a
WHERE a N 2
(SELECT a from W)
SELECT a
FROM R j> 1
WHERE a <ANY
(SELECT a from W)
SELECT a
FROM R j> ?
WHERE a<ALL 5

(SELECT a from W)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

N (= o | A
-hool\)mé

©O|OC|O|T

Since 2 is in the set (bag)
(2, 3,4)

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

73

https://northeastern-datalab.github.io/cs7240/

Subqgueries in WHERE clause

What do these queries return?

SELECT a
FROM R
WHERE a N
(SELECT a from W)

SELECT a
FROM R
WHERE a <ANY
(SELECT a from W)

SELECT a
FROM R
WHERE a<ALL
(SELECT a from W)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

U

-

-

N (= o | A
-hool\)mé

©O|OC|O|T

Since 2 is in the set (bag)
(2, 3,4)

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

74

https://northeastern-datalab.github.io/cs7240/

Correlated subqueries

e |In all previous cases, the nested subquery in the inner select block

could be entirely evaluated before processing the outer select block.

— Recall the "compositional” nature of relational queries
— This is no longer the case for

« Whenever a condition in the WHERE clause of a nested query
references some column of a table declared in the outer query, the
two queries are said to be correlated.

— The nested query is then evaluated once for each tuple (or combination of
tuples) in the outer query (that's the)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

75

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential 3)
Product Company /‘
PName Price Category cid cid [CName StockPrice | Country 5[|6[/]-H\,{
Gizmo $19.99 Gadgets 1 1 GizmoWorks | 25 USA di‘F'FCY' ent
Powergizmo | $29.99 Gadgets 1 2 | Canon 65 Japan
SingleTouch | $14.99 Photography | 2 3 Hitachi 15 Japan PI"OdMO"'
MultiTouch | $203.99 | Household | 3 database!
Q4: Find all companies that make some product(s) with price < 25
Using IN:
SELECT DISTINCT C.cname
FROM — Company C | Ts this a correlated f?
WHERE C.cid IN (SELECT P.cid wested query
FROM ProductP -

WHERE P.price < 25)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 76

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential 3)
Product Company /‘
PName Price Category cid cid | CName StockPrice | Country 5[|6[/]-H\,{
Gizmo $19.99 Gadgets 1 1 GizmoWorks | 25 USA di‘F'F@Y' ent
s | i] produt
MultiTouch | $203.99 | Household | 3 database!

Q4: Find all companies that make some product(s) with price < 25

Using IN:
Not a correlated wested query!
SELECT DISTINCT C.cname SELECT DISTINCT C.cname
FROM Company C FROM Company C
WHERE C.cid IN (SELECT P.cid WHERE C.cidIN (1, 2)

FROM Product P

WHERE P.price < 25) Twver query does ot reference

outer query! You could first
evaluate the iwer query by itself.

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 77

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential 3)
Product Company
PName Price Category cid cid [CName StockPrice | Country
Gizmo $19.99 Gadgets 1 1 GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets 1 2 | Canon 65 Japan
SingleTouch | $14.99 Photography | 2 3 Hitachi 15 Japan
MultiTouch | $203.99 | Household 3

Q4: Find all companies that make some product(s) with price < 25

Using EXISTS: if the subquery's result is

SELECT DISTINCT C.cname

FROM Ts this a correlated ?
WHERE EXISTS (SELECT * nested query
FROM Product P -
WHERE P.cid = C.cid

and P.price < 25)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 78

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential 3)
Product Company
PName Price Category cid cid [CName StockPrice | Country
‘/ A Gizmo ¢/$£19£;§ Gadgets 1 - 1 | GizmoWorks | 25 USA
V%\: Powergizmo 9.99 Gadgets 1 2 Canon 65 Japan
3 SingleTouch | $14.99 Photography | 2 3 Hitachi 15 Japan
= MultiTouch | $203.99 | Household 3

Q4: Find all companies that make some product(s) with price < 25

Using EXISTS: if the subquery's result is
SELECT DISTINCT C.cname This is a correlated nested gquery!
FROM Notice the additional join condition
WHERE EXISTS (SELECT * /@f@ramcimg a relation from the
FROM Prod - outer duery.
WHERE Recall our conceptual evaluation
and .price < 25)
strateqy!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

79

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential 3)
Product Company
PName Price Category cid cid [CName StockPrice | Country
Gizmo $19.99 Gadgets 1 1 GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets 1 2 | Canon 65 Japan
SingleTouch | $14.99 Photography | 2 3 Hitachi 15 Japan
MultiTouch | $203.99 | Household 3

Q4: Find all companies that make some product(s) with price < 25

Using ANY (also SOME): again

SELECT DISTINCT C.cname

FROM

WHERE 25 > ANY (SELECT price But do we really need
FROM Product P to write this query as
WHERE P.cid = C.cid) wested auery -

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 80

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (existential 3)

Product Company
PName ' Category cid cid,l CName ___—StockPrice | Country

Price~
Gizmo @ 9.99 Gadgets 1 GizmoWorks XZS USA

Powergizmo | $29.99 Gadgets -2 || Canon ¢5 Japan
SingleTouch @.99} Photography 3 Hitachi 15 Japan

W

MultiTouch $203.99 Household

o

Q4: Find all companies that make some product(s) with price < 25

SELECT DISTINCT C.cname We did wot weed +o write nested gueries;
FROM Company C, Product P we can "nimest" it

WHERE C.cid = P.cid

and P.price < 25 Existential quavtifiers are easy ©

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 81

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal V)

Product Company

PName Price Category cid cid [CName StockPrice | Country
Gizmo $19.99 Gadgets 1 1 GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets 1 2 | Canon 65 Japan
SingleTouch | $14.99 Photography | 2 3 Hitachi 15 Japan
MultiTouch | $203.99 | Household 3

Qr—FEind-altcompanies that make-semeproduct(s)with price < 25—

Q,: Find all companies that make only products with price < 25
= Q,: Find all companies for which all products have price < 25
= Q,: Find all companies that do not have any product with price >= 25

Universal duantifiers are wore complicated | @
(Think about the companies that should ot be returvned)

All three formulations are equivalent: a company with wo product will be returned!

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 82

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal ¥V = not exists A)

Q,: Find all companies that make only products with price < 25
Step 1: Q,": Find the other companies that make some product(s) with price = 25

SELECT DISTINCT C.cname

FROM Company C First think about the
WHERE C.cid IN (SELECT P.cid companies that should
FROM Product P not be returved!

WHERE P.price >= 25)

Step 2: Q,: Find all companies that make no products with price = 25

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid NOT IN (SELECT P.cid
FROM Product P
WHERE P.price >= 25)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 83

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal ¥V = not exists A)

Q,: Find all companies that make only products with price < 25
Step 1: Q,": Find the other companies that make some product(s) with price = 25

SELECT DISTINCT C.cname

FROM First think about the
WHERE EXISTS (SELECT ~* companies that should
FROM Product P not be returved!

WHERE C.cid = P.cid
and P.price >= 25)

Step 2: Q,: Find all companies that make no products with price = 25

SELECT DISTINCT C.cname

FROM

WHERE NOT EXISTS (SELECT *
FROM Product P
WHERE C.cid = P.cid
and P.price >= 25)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 84

https://northeastern-datalab.github.io/cs7240/

Correlated subquery (universal ¥V = not exists A)

Q,: Find all companies that make only products with price < 25
Step 1: Q,": Find the other companies that make some product(s) with price = 25

SELECT DISTINCT C.cname

FROM First think about the
WHERE 25 <=ANY (SELECT P.price companies that should
FROM Product P not be returved!

WHERE C.cid = P.cid)

Step 2: Q,: Find all companies that make no products with price = 25

SELECT DISTINCT C.cname

FROM

WHERE 25 > ALL (SELECT P.price
FROM Product P
WHERE C.cid = P.cid)

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 85

https://northeastern-datalab.github.io/cs7240/

A natural guestion
Q,: Find all companies that make only products with price < 25

« How can we unnest (no GROUP BY) the universal quantifier query ?

SELECT ...
FROM .. ?
WHERE ... o

Source: Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 86

https://northeastern-datalab.github.io/cs7240/

Queries that must be nested

e Definition: A query Q is if:
— Whenever we add tuples to one or more of the tables...

— ... the answer to the query cannot contain fewer tuples ™
e Fact: all unnested queries are monotone
— Proof: using the "nested for loops" semantics

e Fact: Query with IS not monotone
— Add one tuple violating the condition. Then "all" returns fewer tuples

e Consequence: we cannot unnest a query with a universal quantifier

Source: Dan Suciu
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 87

https://northeastern-datalab.github.io/cs7240/

Understanding
nested queries
with QueryVis

The sailors database Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

V \eseWOat

sid | sname rating | age sid _bid_| bname color
22 | Dustin | 7 45.0 22 | 101 10/ 10/98 101 | Interlake | blue
29 | Brutus | 1 33.0 22 | 102 | 10/10/98 102 | Interlake | red
31 | Lubber | 8 55.5 22 | 103 | 10/8/98 103 | Clipper | green
32 | Andy 8 25.5 22 | 104 | 10/7/98 104 | Marine red
58 | Rusty 10 35.0 31 | 102 | 11/10/98
64 Horatio | 7 35.0 31 103 11/6/98 Figure 5.3 An Instance B1 of Boats
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art 3 25.5 64 | 102 | 9/8/98
95 | Bob 3 63.5 74 | 103 | 9/8/98

Figure 5.1 An Instance S3 of Sailors Figure 5.2 An Instance R2 of Reserves

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

39

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/

Nested query 1
?

Q: m

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

sSname

Reserves (sid, bid, day)
Boat (bid, bname, color)

bid bid

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

sSname

sid sid color = 'red'

Sailor (sid, sname, rating, age) | ®¥cu

90

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

sSname

Reserves (sid, bid, day)
Boat (bid, bname, color)

bid bid

sSname

sid sid color = 'red'

{S.sname | 3S€ESailor.(IREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age) | §ao)

91

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

NeSted query 1 Sailor (sid, sname, rating, age) | ®leuy

Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find the names of sailors who have reserved a red boat.

SELECT DISTINCT S.sname

FROM Sailor S

WHERE EXISTS sname sname bid bid
(SELECT R.sid sid
FROM Reserves R

WHERE R.sid=S.sid - | |
AND EXISTS This is awn alternative way o write the

. previous duery with BXISTS and
(SELECT B.bid correlated vested aueries that
FROM Boat B matches the Relational Calculus below.

WHERE B.color='red'
AND B.bid=R.bid))

{S.sname | 3S€ESailor.(IREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red')))}

sid color = 'red'

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 92

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

NeSted query 2 Sailor (sid, sname, rating, age) | a0

Reserves (sid, bid, day)
Boat (bid, bname, color)

?

Q: m

SELECT DISTINCT S.sname ...

FROM Sailor S i Boat

WHERE S.sid IN sname sname bid —® bid
(SELECT R.sid sid sid E color = 'red'
FROM Reserves R ///‘ ----------

WHERE R.bid not IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

Dashed lines represent
not exists A

{S.sname | 3S€ESailor.(3REReserves.(R.sid=S.sid /A ZBEBoat.(B.bid=R.bid A B.color="red")))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

~

- o o - - —

-

93

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

N eSted q u e ry 2 Sailor (sid, sname, rating, age) | %%

Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT DISTINCT S.sname jrmmm \
FROM Sailor S A soat §
WHERE S.sid IN sname sname bid [—™ bid :
(SELECT R.sid sid sid i color = "red' i
FROM Reserves R ///‘ ----------- ’

WHERE R.bid not IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

Dashed lives represent
not exists A

They must have reserved at least ove boat
im another color. They can also have reserved
a red boat in additiow.

{S.sname | 3S€ESailor.(3REReserves.(R.sid=S.sid /A ZBEBoat.(B.bid=R.bid A B.color="red")))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 94

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 3
?

Q: m
SELECT DISTINCT S.sname

FROM Sailor S

WHERE S.sid not IN sname

Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor (sid, sname, rating, age) | §ao)

o o - o e e o = oy

Sailor

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

shame
sid

—— o ——— —

bid

@
Q
Q
o
o
=
I
—
®
Q

P

{S.sname | 3S€ESailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red")))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

- - - -

——————————————————————

95

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

NeSted query 3 Sailor (sid, sname, rating, age) | ¥

Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find the names of sailors who have not reserved a red boat.

SELECT DISTINCT S.sname .

FROM Sailor S :‘ A
WHERE S.sid not IN sname sname| ! | bid bid |
(SELECT R.sid sid —:r> sid color = 'red'| |
FROM Reserves R LR e e R |
WHERE R.bid IN
(SELECT B.bid They can have reserved D or wore
FROM Boat B boats in another color, but must
WHERE B.color='red')) not have reserved any red boat.

{S.sname | 3S€ESailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red")))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 96

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?

Sailor \Rese%s/—\%oat
sid | sname rating | age sid | bid | day _bid_| bname color
22 [Dustin | 7 45.0 22 [101 | 10/10/98 101 | Interlake | blue
29 | Brutus | 1 33.0 22 | 102 | 10/10/98 102 | Interlake | red
31 | Lubber | 8 55.5 22 | 103 | 10/8/98 103 | Clipper | green
32 | Andy 8 25.5 22 | 104 | 10/7/98 104 | Marine red
58 | Rusty 10 35.0 31 | 102 | 11/10/98
64 | Horatio | 7 35.0 31 103 11/6/98 Figure 5.3 An Instance B1 of Boats
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98
85 | Art % 255 64 | 102 | 9/8/98
95 | Bob : 63.5 74 | 103 | 9/8/98

Figure 5.1 An Instance S3 of Sailors

Figure 5.2 An Instance R2 of Reserves

Should Pustin be in the ontput
of each of the two dueries?

Q2: Find the names of sailors who have reserved a boat that is not red.

Q3: Find the names of sailors who have not reserved a red boat.

?

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Wolfgang Gatterbauer. Principles of scalable data management: https:

northeastern-datalab.

ithub.io/cs7240

97

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/
https://northeastern-datalab.github.io/cs7240/

Quiz: Dustin?

Sailor \Rese%s/—\?oat
sid | sname | rating | age sid | bid | day id | bname

22 [Dustmn | 7 45.0 22 10T ([PIue
29 | Brutus | 1 33.0 22 | 10\¢10710/98 | || 102 | Interlake

31 | Lubber | 8 55.5 22 103" 10/8/98 ‘ 103 || Clipper ||green
32 | Andy 8 25.5 22 | 104 ' 10/7/98 104 || Marine red
58 | Rusty 10 35.0 31 11/10/98

64 | Horatio | 7 35.0 31 103 11/6/98 Figure 5.3 An Instance B1 of
71 | Zorba 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 35.0 64 | 101 | 9/5/98

85 | Art 3 25.5 64 | 102 | 9/8/98

95 | Bob 3 63.5 74 | 103 | 9/8/98

Figure 5.1 An Instance S3 of Sailors

Figure 5.2 An Instance R2 of Reserves

S

Should Pustin be in the ontput
of each of the two dueries?

Q2: Find the names of sailors who have reserved a boat that is not red.

Q3: Find the names of sailors who have not reserved a red boat.

Yes!
Nol

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Wolfgang Gatterbauer. Principles of scalable data management: https:

northeastern-datalab.

ithub.io/cs7240

98

https://northeastern-datalab.github.io/cs7240/
http://pages.cs.wisc.edu/~dbbook/
https://northeastern-datalab.github.io/cs7240/

Nested query 4
?

Q: m

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN
(SELECT B.bid
FROM Boat B

WHERE B.color='red'))

sSname

Reserves (sid, bid, day)
Boat (bid, bname, color)

o m — ———————

f
I
resove: B oo
sname| ! | bid B bid
I I
sid —®» sid i: color = red'
\ \

——————————

——————————

{S.sname | IS€ESailor.(AREReserves.(R.sid=S.sid A\ ZBEBoat.(B.bid=R.bid A B.color="red")))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age) | ®¥cu

~

-

99

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

NeSted query 4 Sailor (sid, sname, rating, age) | §.a0

Reserves (sid, bid, day)
Boat (bid, bname, color)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname P — s |
FROM Sailor S l Reserves Ml Boat |
WHERE S.sid not IN sname sname| | bid —E—:P bid !
(SELECT R.sid sid —E-P sid ii color = "red' i
FROM Reserves R e A ’
WHERE R.bid not IN
(SELECT B.bid They can have reserved D or wore
FROM Boat B boats in red, just vo other color.

WHERE B.color='red')) 6>‘XL3yg oS M

{S.sname | IS€ESailor.(AREReserves.(R.sid=S.sid A\ ZBEBoat.(B.bid=R.bid A B.color="red")))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 100

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 4 (another variant) Sailor (sid, sname, rating, age) | %y

Reserves (sid, bid, day)
Boat (bid, bname, color)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname P — .
FROM Sailor S l Reserves Ml Boat
WHERE S.sid not IN sname sname| | bid —E—P bid
(SELECT R.sid sid —E-P sid i color<>'red'
FROM Reserves R REEEEEEE ’
WHERE R.bid IN
(SELECT B.bid They can have reserved D or wore
FROM Boat B boats i red, just vo other color.

WHERE B.color<>'red'))

{S.sname | 3S€ESailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color<>'red')))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 101

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 4 (universal)

= Find the names of sailors who have reserved only red boats

Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

sSname

Sailor

sSname

fr

Reserves

a\

Sailor (sid, sname, rating, age) | ®¥e0y
Reserves (sid, bid, day)
Boat (bid, bname, color)

bid

sid

sid

L

\

>

bid

color = 'red'

Double lines represent
for all V

{S.sname | 3S€ESailor.(VYREReserves.(R.sid=S.sid > IBEBoat.(B.bid=R.bid A B.color="red")))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

102

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5
?

Q: m

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists
(SELECT B.bid

FROM
WHERE B.color

AND not exists
(SELECT R.bid

FROM Reserves |\R

WHERE R.bid =\|B.bid

AND R.sid = S.sid))

sSname

Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor (sid, sname, rating, age) | ®a)

———————————

[
Brcscros B eco |
sname| ' | bid [¢H bid |
| 1 |
sid [+ sid i: color ='red'| |
\ \ 1

——————————

———————————

{S.sname | 3S€ESailor.(ABEBoat.(B.color="red' A\ ZREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

103

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5

= Find the names of sailors who have reserved all red boats

Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname

FROM Sailor S l Reserves Ml Boat

WHERE not exists sname sname| 1| bid 45—: bid
(SELECT B.bid sid 4—5— sid i i color = 'red’
FROM R R
WHERE B.color ed’ T dov't kvow of a way +o write that query

AND not exists
(SELECT R.bid
FROM Reserves |R

o - -

Sailor (sid, sname, rating, age) | ®¥e0y
Reserves (sid, bid, day)
Boat (bid, bname, color)

———————————

- o o - - —

with IN instead of BEXISTS and without av
explicit cross product between sailors and
red boats. (More on that in a moment and

WHERE R.bid =I|B.bid also later when we discuss this query v

AND R.sid = S.sid))

relatioval algebra.)

-

{S.sname | 3S€ESailor.(ABEBoat.(B.color="red' A\ ZREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

104

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5 (universal)

= Find the names of sailors who have reserved all red boats

Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname

FROM Sailor S

WHERE not exists

sSname

Sailor Reserves

(SELECT B.bid
FROM
WHERE B.color
AND not exists
(SELECT R.bid
FROM Reserves|\R
WHERE R.bid =|B.bid
AND R.sid = S.sid))

Sailor (sid, sname, rating, age) | §&.au

fr

shame bid <
sid [&— sid

(f

bid

=4

color = 'red'

\S

{S.sname | 3S€ESailor.(VYBEBoat.(B.color="red' > IREReserves.(B.bid=R.bid A R.sid=S.sid))))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

105

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5 (w/o correlation)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not 1in
(SELECT S2.sid
FROM Sailor S2,
WHERE B.color = 'red'
AND (S2.sid, B.bid) not in
(SELECT R.sid, R.bid
FROM Reserves R))

sSname

Sailor

fr

sid

sid

Reserves

sSname

,

bid

color = 'red'

sid

Sailor (sid, sname, rating, age) | ®¥e0y
Reserves (sid, bid, day)
Boat (bid, bname, color)

/A bid

—t—

S.sname | 3S€Sailor.(VS2€Sailor VBEBoat.(B.color="'red' A S2.sid=S.sid - dR€Reserves.(B.bid=R.bid A S2.sid=R.sid))))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

106

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Nested query 5 (w/o correlation) Sailor (sid, sname, rating, age) | %y

Reserves (sid, bid, day)
Boat (bid, bname, color)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

SELECT DISTINCT S.sname

7 3\

FROM Sailor S Reserves
WHERE not exists sid sid sid
(SELECT W sname sname bid
FROM Sailor S2, /’{
WHERE B.color = 'red' oid !
AND S.sid = S2.sid color = 'red’
AND not exists L)
(SELECT =

FROM Reserves R
WHERE B.bid=R.bid
AND S2.sid = R.sid))

{S.sname | 3S€Sailor.(VS2€Sailor VBEBoat.(B.color="'red' A S2.sid=S.sid - IREReserves.(B.bid=R.bid A S2.sid=R.sid))))}

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 107

https://northeastern-datalab.github.io/cs7240/
https://northeastern-datalab.github.io/cs7240/

Towards SQL patterns

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailors who have not reserved a red boat

Sailors who reserved only red boats

Sailors who reserved all red boats

sSQL

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color ='red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(
SELECT *
FROM Boat B
WHERE B.color = "red'
AND R.bid = B.bid))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Boat B
WHERE B.color ="red'
AND NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

108

https://northeastern-datalab.github.io/cs7240/

Towards SQL patterns

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailors who have not reserved a red boat

Sailors who reserved only red boats

Sailors who reserved all red boats

SELECT DISTINCT S.sname

SELECT DISTINCT S.sname

SELECT DISTINCT S.sname

FROM Sailor S FROM Sailor S FROM Sailor S
WHERE NOT EXISTS(WHERE NOT EXISTS(WHERE NOT EXISTS(
SELECT * SELECT * SELECT *
FROM Reserves R, Boat B FROM Reserves R FROM Boat B
SQL WHERE R.sid = S.sid WHERE R.sid = S.sid WHERE B.color = 'red'
AND R.bid = B.bid AND NOT EXISTS(AND NOT EXISTS(
AND B.color = 'red’) SELECT * SELECT *
FROM Boat B FROM Reserves R
WHERE B.color ="red’ WHERE R.bid = B.bid
AND R.bid = B.bid)) AND R.sid = S.sid))
Y 2 \
o | — , ~
sname sname | 1 bid bid 1| sELECT sid H> sid sname sname bid < bid
: color = ‘red : sname sname bid HH bid color = 'red'
sETTsTsTEEEE - \ “ color = 'red' N 7
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 109

https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age) | | Student (sid, sname) Actor (aid, aname)
Reserves (sid, bid, day) Takes (sid, cid, semester) Plays (aid, mid, role)
Boat (bid, bname, color) Course (cid, cname, department) | | Movie (mid, mname, director)
not only all
Sailors
. have not reserved reserved only reserved all
renting
a red boat red boats red boats
boats
Students
, took no art took only art took all art
taking
class classes classes
classes
Actors . . :
iaving in did not play in a played only played in all
imx\//iei Hitchcock movie Hitchcock movies Hitchcock movies

https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

WHERE M.director = 'Hitchcock'
AND M.mid = P.mid))

not only all
SELECT DISTINCT S.sname SELECT DISTINCT S.sname SELECT DISTINCT S.sname
FROM Sailor S FROM Sailor S FROM Sailor S
WHERENOT EXISTS(WHERENOT EXISTS(WHERE NOT EXISTS(
" SELECT * SELECT * SELECT *
e FROM Reserves R, Boat B FROM Reserves R FROM Boat B
g WHERE R.sid = S.sid WHERE R.sid = S.sid WHERE B.color = 'red'
g AND R.bid = B.bid AND NOT EXISTS(AND NOT EXISTS(
AND B.color ="red') SELECT * SELECT *
FROM Boat B FROM Reserves R
WHERE B.color = 'red' WHERE R.bid = B.bid
AND B.bid = R.bid)) AND R.sid = S.sid))
SELECT DISTINCT S.sname SELECT DISTINCT S.sname SELECT DISTINCT S.sname
FROM Student S FROM StudentS FROM Student S
WHERENOT EXISTS(WHERENOT EXISTS(WHERE NOT EXISTS(
4(3 SELECT * SELECT * SELECT *
c FROM Takes T, Class C FROM Takes T FROM Class C
% WHERE T.sid = S.sid WHERE T.sid = S.sid WHERE C.department= ‘art'
S AND C.cid =T.cid AND NOT EXISTS(AND NOT EXISTS(
A AND C.department ='art') SELECT * SELECT *
FROM Class C FROM Takes T
WHERE C.department = 'art’ WHERE T.cid= C.cid
AND C.cid=T.cid)) AND T.sid=S.sid))
SELECT DISTINCT A.aname SELECT DISTINCT A.aname SELECT DISTINCT A.aname
FROM Actor A FROM Actor A FROM Actor A
WHERENOT EXISTS(WHERENOT EXISTS(WHERE NOT EXISTS(
n SELECT * SELECT * SELECT *
— FROM Plays P, Movie M FROM Plays P FROM Movie M
49 WHERE P.aid = A.aid WHERE P.aid = A.aid WHERE M.director = 'Hitchcock'
é(" AND M.mid = P.mid AND NOT EXISTS(AND NOT EXISTS(
AND M.director = 'Hitchcock') SELECT * SELECT *
FROM Movie M FROM Plays P

WHERE P.mid = M.mid
AND P.aid = A.aid))

https://northeastern-datalab.github.io/cs7240/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)

Course (cid, cname, department)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

not only all
y 2 \
- : , —
2 || sELecT sid —:> sid | SELECT sid |€d sid
'&,_U shame sname | bid bid || sELECT sid H> sid shame shame bid < bid
: color = 'red' : sname sname bid iy bid color = "red'
ST TsTssTss=== - \ color = 'red' . =
y 2 N
m - : — , ~
€ ||seLect sid —:> sid | setcT| [sia e sia
_g sname sname | | cid cid || sELECT sid HH»l sid sname [=] snhame bid [|[€HH cid
& : department = "art' : sname b= sname id H cid department = "art'
ST TTssTsTss=== - \"———/ |department = "art| S -
(o 1 e
<] SELECT aid 'Jl" aid : seLecT| | aid HBP| aid SELECT| | aid [€q aid
g aname [—| aname | mid = mid [aname b aname ia Hip mid aname [~ aname mid |€H- mid
I\ director = 'Hitchcock' ’I R director = 'Hitchcock'

https://northeastern-datalab.github.io/cs7240/

Logical SQL Patterns

are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:

e Find sailors who reserved all red boats

e Find students who took all art classes

e Find actors who played in all movies by Hitchcock

113

What does this query return ? Likes(drinker,beer)

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =
FROM Likes L4
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

114

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

What does this query return ? Likes(drinker,beer)

SELECT Ll1.drinker
FROM Likes L1

f \ !

W Likes P Likes
(SELECT x* ; L

1

|

|

I

I

FROM Likes L2 drinker | | beer |

WHERE Ll.drinker <> L2.drinker ‘4//%/ :

AND not exists drinker :

(SELECT * . N T y
FROM Likes L3 e m e

WHERE L3.drinker = L2.drinker

AND not exists
(SELECT =)
FROM Likes L4 drinker
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT =

drinker

I

: I

FROM Likes L5 N grink o drink :
WHERE L5. drinker = L1. drinker || annxer |y | annxer |
AND not exists I beer Ly, beer I
(SELECT * \ ;] |
FROM Likes L6 S - | /

WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 115

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a uvique beer taste Likes(drinker, beer)

SELECT Ll1.drinker
FROM Likes L1

f \ !

W Likes P Likes
(SELECT x* ; L

1

|

|
|
|
FROM Likes L2 drinker | | beer |
WHERE L1l.drinker <> L2.drinker ‘4//%/ : :
AND not exists drinker | |

(SELECT = N
FROM Likes L3 e e
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =)
FROM Likes L4 drinker
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT =

drinker

I

: I

FROM Likes L5 N grink o drink :
WHERE L5. drinker = L1. drinker || annxer |y | annxer |
AND not exists I beer Ly, beer I
(SELECT * \ ;] |

N o - - N o e e - = 7/

FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/ 116

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a uvique beer taste Likes(drinker, beer)

SELECT Ll1.drinker
s A\

FROM Likes L1

(SELECT x*
FROM Likes L2 drinker L1 beer

WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3 e
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT = . .
FROM Likes L4 drinker drinker
WHERE L4.drinker = L1.drinker — \ M e mm——
AND L4.beer = L3.beer))

AND not exists)

Zﬂ drinker

FROM Likes L5 drink ink
WHERE L5. drinker = L1. drinker rinker drinker
AND not exists beer > Dbeer

(SELECT =

FROM Likes L6

WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

117

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a unigue beer taste

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =
FROM Likes L4
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

drinker

— e o o o o =,

Likes(drinker,beer)

——
- = e =,
i
=
)
w
—_———
i
=
)
w

drinker | | beer i
beer /A//// drinker |

drinker

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

— Em o o o o o

drinker

drinker drinker

beer beer

118

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a unigue beer taste

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =
FROM Likes L4
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

drinker

— e = = o = o = = E—,

Likes(drinker,beer)

_—— - - e ——
e Sam—a
> ~
x~ K¢
O O

=
\X___z

o N

O B3

DO K¢

- (0]

beer I drinker

drinker

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

drinker

|

/ \
y 1
] 1!
: I |::
, drinker : :,.
| 11
, beer = beer | [y
| N e e e e e /ll
N o e o —— ——— 7z |
| U U OO U U U —— -

119

https://northeastern-datalab.github.io/cs7240/

Q: Finder drinkers with a unigue beer taste

SELECT Ll1.drinker
FROM Likes L1
WHERE not exists
(SELECT =
FROM Likes L2
WHERE Ll.drinker <> L2.drinker
AND not exists
(SELECT =
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT =
FROM Likes L4
WHERE L4.drinker = Ll.drinker
AND L4.beer = L3.beer))
AND not exists
(SELECT =
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT =
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

drinker

<>

Likes(drinker,beer)

drinker

beer

beer

v

drinker

drinker

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

drinker

drinker

drinker

beer

beer

https://northeastern-datalab.github.io/cs7240/

https://demo.queryvis.com QueryViz

Your Input|

IV]PM+: SOM GVV\Q Specify or choose a pre-defined schema

IWPM+ QM@}’\,{ Specify or choose an SQL Query

help
' Employee and Department 3]
EMP (eid,name,sal,did)
DEPT(did,dname,mgr)

help
 Query 8 B

SELECT el.name

FROM EMP el, EMP e2, DEPT d
WHERE el.did = d.did

AND d.mgr = e2.eid

AND el.sal > e2.sal

. . . Submit
Output: Visualization

QueryViz Result |

DEPT

Danaparamita, G. [EDBT'11] — — ma | — |

did — did

eid

sal

https://queryvis.com/ sal \

http://www.youtube.com/watch?v=kVFnQRGAQIs

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805
Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs/24u/

121

https://northeastern-datalab.github.io/cs7240/
https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805

Amazon Turk user study with SQL users Leventidis+ [SIGMOD'20)

Each bar below corresponds te one participant (42 bars/participants in total)

<+«— (QV faster SQL|faster =——> <+— (QV fewer errors SQL fewer errors =——»

36% of users

with less
errors using
Qv
71% of users 38% of users
stef with QV with same
— errors using
[Qv
|
1
[
MeanA=-17.3s | Mean A = -0.08
I —
29% of users 26% of users =
faster with SQL with more =
errors using —
Qv ——
-120 -100 -80 -60 -40 -20 20 40 60 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 06 0.8
QV - SQL Time Differences (seconds) QV - SQL Error Rate Differences

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

122

https://northeastern-datalab.github.io/cs7240/
https://doi.org/10.1145/3318464.3389767

C ® l © @& https://db.khoury.northeastern.edu l 120% ooe w Y INn @O ¢

Northeastern University

DATA Lab @ Northeastern
Scalable Management and Analysis of Big Data] /

Home People Research Opportunities Recent Publications Activities [YouTube Channel

DATA LAB @ NORTHEASTERN

The Data Lab @ Northeastern University is one of the leading research groups in data management and data
systems. Our work spans the breadth of data management, from the foundations of data integration and curation,
to large-scale and parallel data-centric computing. Recent research projects include query visualization, data
provenance, data discovery, data lake management, and scalable approaches to perform inference over uncertain

THE STORY OF QUERYVYIS, NOT JUST
ANOTHER VISUAL PROGRAMMING

https://queryvis.com LANGUAGE

TUE 06.30.20 / YSABELLE KEMPE

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

Wolfgang Gatterbauer. Principles of scalable data management: https://northeastern-datalab.github.io/cs7240/

123

https://northeastern-datalab.github.io/cs7240/
https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

