Updated 1/23/2021

Topic 1: Data models and query languages
Unit 1: SQL (continued)
Lecture 2

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp21)

https://northeastern-datalab.github.io/cs7240/sp21/
1/22/2021

61

https://northeastern-datalab.github.io/cs7240/sp21/

Pre-class conversations

e Last class recapitulation

e Any questions on class procedures?
— You will see some "minimum examples" today in class

e today:
— SQL continued (with connection to table integration)

— perhaps start of calculus

62

Outline: SQL (a refresher)

— Nested queries (Subqgueries)

Subqgueries = Nested queries

Outer block

Inner block

/

SELECT
T J FRoM
WHERE
_ -
(SELECT
v) FROM
WHERE

—

We mostly focus on
nestings in the WHERE
clause, which is the most
expressive type of nesting

)

« We can nest queries because SQL is compositional:

— Everything (inputs / outputs) is represented as multisets
— the output of one query can thus be used as the input to another (nesting)

— Subqueries return relations

e This is extremely powerful!
e It gets more complicated with correlated nested queries .

3. Subqueries in WHERE R W
a al|b
What do these queries compute? 1 210
2 3]0
410

SELECT

FROM
WHERE

SELECT

FROM
WHERE

SELECT
FROM
WHERE

a

aRIN j> ?

(SELECT a from W)

a

R
a < ANY j|> ?

(SELECT a from W)

a

R
a <ALL j|> ?

(SELECT a from W)

65

3. Subqueries in WHERE R W
a alb
What do these queries compute? 1 2|0
2 30
410
SELECT a
FROM R j> a| Since 2is in the set (bag)
WHERE a N 2| (2,3,4)
(SELECT a from W)
SELECT a
FROM R j> ?
WHERE a <ANY -
(SELECT a from W)
SELECT a
FROM R j> ?
WHERE a<ALL 5

(SELECT a from W)
66

3. Subqueries in WHERE

What do these queries compute?

SELECT

FROM
WHERE

SELECT

FROM
WHERE

SELECT
FROM
WHERE

a

R

a IN

(SELECT a from W)

a

R

a < ANY

(SELECT a from W)

a

R

a <ALL

(SELECT a from W)

N | = |
-hool\)mé

©O|OC|O|T

Since 2 is in the set (bag)
(2, 3,4)

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

67

3. Subqueries in WHERE

What do these queries compute?

SELECT
FROM
WHERE

SELECT
FROM
WHERE

SELECT
FROM
WHERE

a

R

a IN

(SELECT a from W)

a

R

a < ANY

(SELECT a from W)

a

R

a <ALL

(SELECT a from W)

U

U

U

R W
alb
ayar
2 3 (0
4 Jo

Since 2 is in the set (bag)

eaa Ll)

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

68

Correlated subqueries

e |In all previous cases, the nested subquery in the inner select block
could be entirely evaluated before processing the outer select block.

— This is no longer the case for

« Whenever a condition in the WHERE clause of a nested query
references some column of a table declared in the outer query, the
two queries are said to be correlated.

— The nested query is then evaluated once for each tuple (or combination of
tuples) in the outer query.

Correlated subquery (existential)

Product (W_id) Existential quantifiers 4
Company (cid;-cname, city)

Q: Find all companies that make some products with price < 25!

Using IN:
SELECT DISTINCT C.cname T owor Jowa
FROM Company C 3 |Hitachi Kyoto
WHERE C.cidIN(1,2) PName__|Price _cig
Gizmo $19.99 |1
SingleTouch|$14.99 |2
MultiTouch [$203.99 |3

76

Correlated subquery (existential)

Product (pname, price, cid)
Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make some products with price < 25!

Using IN: _

"Set memberShlp" cid |CName Cit
SELECT DISTINCT C.cname oo Toms
FROM Company C 3 |Hitachi Kyoto

WHERE <.cid IN (SELECT P.cid>

FROM PrOd ~ ™ Gizmo $19.99 |1
WH E RE P 5) SingleTouch|$14.99 |2
MultiTouch [$203.99 |3

77

Correlated subquery (existential)

Product (pname, price, cid)
Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make some products with price < 25!

EXISTS is true iff the subquery's result is not empty

Using EXISTS:

"Test for empty relations” i o]

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P Gizmo [$19.99 |1
WH E RE C c Cld - P Cld SingleTouch|$14.99 |2
an d P p rl ce < 2 5) MultiTouch |$203.99 |3

Correlated subquery

w 1 GizmoWorks |Oslo

2 |Canon Osaka

% 3 [Hitachi Kyoto

PName Price cid

79

Correlated subquery (existential)

Product (pname, price, cid)
Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make some products with price < 25!

Using ANY (also some): _

"Set comparison” [calcname o
SELECT DISTINCT C.cname 2 |canon _|osaka
FROM Company C - e
WHERE 25> ANY (SELECT price PName _Price Joi

FROM Product P oo

WHERE P.cid = C.Cid) SingleTouch|$14.99 |2

MultiTouch [$203.99 |3

Correlated subquery SQLlite does not support "ANY" ®

30

Correlated subquery (existential)

Product (pname, price, cid)
Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make some products with price < 25!

Now, let's unnest:

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid

and P.price < 25

cid |CName Cit
1 GizmoWorks |Oslo

2 |Canon Osaka

3 |Hitachi Kyoto

PName Price cid

SingleTouch|$14.99

2
MultiTouch [$203.99 |3

Existential quantifiers are easy ! ©

31

Correlated subquery (universal)

Product (pname, price, cid)
Company (cid, cname, city)

Universal quantifiers Vv

Q: Find all companies that make only products with price < 25!

Same as.

Q: Find all companies for which all products have price < 25!

Universal quantifiers are more complicated ! ®
(Think about the companies that should not be returned)

32

Correlated subquery (exist not -> universal)

Q: Find all companies that make only products with price < 25!
1. Find the other companies: i.e. they have some product > 25!

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid
FROM Product P
WHERE P.price >= 25)

2. Find all companies s.t. all their products have price < 25!

SELECT DISTINCT C.chname

FROM Company C

WHERE C.cid NOT IN (SELECT P.cid
FROM Product P
WHERE P.price >= 25)

33

Correlated subquery (exist not -> universal)

Product (pname, price, cid)
Company (cid, cname, city)

Universal quantifiers Vv

Q: Find all companies that make only products with price < 25!

Using NOT EXISTS:

SELECT DISTINCT C.cname

FROM Company C

WHERE NOT EXISTS (SELECT *
FROM Product P
WHERE C.cid = P.cid
and P.price >= 25)

34

Correlated subquery (exist not -> universal)

Product (pname, price, cid)
Company (cid, cname, city)

Universal quantifiers Vv

Q: Find all companies that make only products with price < 25!

Using ALL:

SELECT DISTINCT C.cname

FROM Company C

WHERE 25>ALL(SELECT price
FROM Product P
WHERE P.cid = C.cid)

SQLlite does not support "ALL" ®

85

A natural guestion

« How can we unnest the universal quantifier query ?

?

36

Queries that must be nested

e Definition: A query Q is if:
— Whenever we add tuples to one or more of the tables...
— ... the answer to the query cannot contain fewer tuples

e Fact: all unnested queries are monotone
— Proof: using the "nested for loops" semantics

e Fact: Query with IS not monotone
— Add one tuple violating the condition. Then "all" returns fewer tuples

e Consequence: we cannot unnest a query with a universal quantifier

87

Understanding
nested queries

The sailors database

Sailor
-

81 sname rating | age

22 | Dustin | 7 45.0
29 | Brutus | 1 33.0
31 | Lubber | 8 55.5
32 | Andy 8 25.5
58 | Rusty 10 35.0
64 | Horatio | 7 35.0
71 | Zorba 10 16.0
74 | Horatio | 9 35.0
85 | Art 3 25.5
95 | Bob 3 63.5

Figure 5.1 An Instance S3 of Sailors

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Reserves Boat
sid | bid | day bid— bname color
22 | 101 | 10/10/98 101 | Interlake | blue
22 | 102 | 10/10/98 102 | Interlake | red
22 | 103 | 10/8/98 103 | Clipper | green
22 | 104 | 10/7/98 104 | Marine red
31 | 102 | 11/10/98
31 | 103 | 11/6/98 Figure 5.3 An Instance B1 of Boats
31 | 104 | 11/12/98
64 | 101 | 9/5/98
64 | 102 | 9/8/98
74 | 103 | 9/8/98

Figure 5.2 An Instance R2 of Reserves

¢

tilome f()] 1g

22 |02

Ry YL

Schema from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). hitp://pages.cs.wisc.edu/~dbbook/

95

http://pages.cs.wisc.edu/~dbbook/

Nested query 1
?

Q: m

SELECT S.sname
FROM Sailor S
WHERE S.sid IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

sSname

Sailor (sid, sname, rating, age) | ¥«
Reserves (sid, bid, day)
Boat (bid, bname, color)

bid bid

sSname

sid sid color = 'red'

96

http://pages.cs.wisc.edu/~dbbook/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailor S

Reserves (sid, bid, day)
Boat (bid, bname, color)

WHERE S.sid IN sname
(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

snhame
sid sid

bid bid

color = 'red'

{S.sname | 3S€ESailor.(IREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red')))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Sailor (sid, sname, rating, age) | e

97

http://pages.cs.wisc.edu/~dbbook/

N eSted q ue ry 1 Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find the names of sailors who have reserved a red boat.

SELECT S.sname

FROM Sailor S

WHERE EXISTS sname sname bid bid
(SELECT R.sid sid
FROM Reserves R

WHERE R.sid=S.sid - | |
AND EXISTS This is awn alternative way o write the

. previous duery with BXISTS and
(SELECT B.bid correlated vested aueries that
FROM Boat B matches the Relational Calculus below.

WHERE B.color='red'
AND B.bid=R.bid))

{S.sname | 3S€ESailor.(IREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red')))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/ 98

sid color = 'red'

http://pages.cs.wisc.edu/~dbbook/

N eSted q ue ry 2 Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)

Boat (bid, bname, color)

Q: 0

SELECT S.sname jmmm

FROM Sailor S i Boat

WHERE S.sid IN sname sname bid [—» bid
(SELECT R.sid sid sid i color = 'red'
FROM Reserves R ///‘ ----------

WHERE R.bid not IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

Dashed lines represent
not exists A

{S.sname | 3S€ESailor.(3REReserves.(R.sid=S.sid /A ZBEBoat.(B.bid=R.bid A B.color="red")))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

~

- o o - - —

-

99

http://pages.cs.wisc.edu/~dbbook/

Nested query 2 Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT S.sname jrmmm \

FROM Sailor S A soat §

WHERE S.sid IN sname sname bid —®» bid :
(SELECT R.sid sid sid i color = "red' i
FROM Reserves R ///‘ ----------- ’
WHERE R.bid not IN

Dashed lines represent

(SELECT B.bid ot exicts 3

FROM Boat B
WHERE B.color='red'))

They must have reserved at least ove boat
im another color. They can also have reserved
a red boat in additiow.

{S.sname | 3S€ESailor.(3REReserves.(R.sid=S.sid /A ZBEBoat.(B.bid=R.bid A B.color="red")))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/ 100

http://pages.cs.wisc.edu/~dbbook/

Nested query 3 Sailor (sid, sname, rating, age) | ®.auJ
Reserves (sid, bid, day) Y

Boat (bid, bname, color)

Q: D

SELECT S.sname o mmmm e e \

RO Saitor S =

WHERE S.sid not IN sname sname| ! | bid bid |
(SELECT R.sid sid —:r> sid color ='red'| ,
FROM Reserves R R |

WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

{S.sname | 3S€ESailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red")))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/ 101

http://pages.cs.wisc.edu/~dbbook/

Nested query 3

Q: Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

sSname

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

shame bid

—— o ——— —

- - - -

sid [sid color = 'red'

——————————————————————

They cav have reserved D or wore
boats in another color, but must
not have reserved awy red boat.

{S.sname | 3S€ESailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color="red")))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

102

http://pages.cs.wisc.edu/~dbbook/

N eSted q ue ry 4 Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)

Boat (bid, bname, color)

Q: 0

SELECT S.sname R R |

FROM Sailor S l Reserves Ml Boat |

WHERE S.sid not IN sname sname| | bid —E—:P bid :
(SELECT R.sid sid —E-P sid EE color = "red' E
FROM Reserves R oo R ey ’

WHERE R.bid not IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

{S.sname | IS€ESailor.(AREReserves.(R.sid=S.sid A\ ZBEBoat.(B.bid=R.bid A B.color="red")))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/ 103

http://pages.cs.wisc.edu/~dbbook/

N eSted q ue ry 4 Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname R s |
FROM Sailor S l Reserves Ml Boat |
WHERE S.sid not IN sname sname| | bid —E—:P bid !
(SELECT R.sid sid —E-P sid ii color = "red' i
FROM Reserves R e A ’
WHERE R.bid not IN
(SELECT B.bid They can have reserved D or wore
FROM Boat B boats in red, just vo other color.

WHERE B.color='red'))

{S.sname | IS€ESailor.(AREReserves.(R.sid=S.sid A\ ZBEBoat.(B.bid=R.bid A B.color="red")))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/ 104

http://pages.cs.wisc.edu/~dbbook/

Nested query 4 (another variant) Sailor (sid, sname, rating, age)

Reserves (sid, bid, day)
Boat (bid, bname, color)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname .

FROM Sailor S o)
WHERE S.sid not IN sname sname| | bid —E—P bid
(SELECT R.sid sid —E-P sid i color<>'red'
FROM Reserves R REEEEEEb ’
WHERE R.bid IN
(SELECT B.bid They cav have reserved D or wore
FROM Boat B boats in red, Just vo other color.

WHERE B.color<>'red'))

{S.sname | 3S€ESailor.(AREReserves.(R.sid=S.sid /A IBEBoat.(B.bid=R.bid A B.color<>'red')))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/ 105

http://pages.cs.wisc.edu/~dbbook/

Nested query 4 (universal)

= Find the names of sailors who have reserved only red boats

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN
(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN
(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

sSname

Sailor

sSname

fr

Reserves

a\

bid

sid

sid

L

\

>

bid

color = 'red'

Double lines represent
for all V

{S.sname | 3S€ESailor.(VYREReserves.(R.sid=S.sid > IBEBoat.(B.bid=R.bid A B.color="red")))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

106

http://pages.cs.wisc.edu/~dbbook/

N eSted q ue ry 5 Sailor (sid, sname, rating, age) | ®%
Reserves (sid, bid, day) :

Boat (bid, bname, color)

Q: m

SELECT S.sname R oo |

FROM Sailor S B Reserves Bl Boat [

WHERE not exists sname sname| ! | bid [¢H bid :
(SELECT B.bid sid 4—5— sid i: color = red’ i

—————————————————————

FROM
WHERE B.color
AND not exists
(SELECT R.bid
FROM Reserves|\R
WHERE R.bid =|B.bid
AND R.sid = S.sid))

{S.sname | 3S€ESailor.(ABEBoat.(B.color="red' A\ ZREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/ 107

http://pages.cs.wisc.edu/~dbbook/

Nested query 5

= Find the names of sailors who have reserved all red boats

Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

Sailor

SELECT S.sname
FROM Sailor S
WHERE not exists
(SELECT B.bid

FROM
WHERE B.color

AND not exists
(SELECT R.bid

FROM Reserves |\R

WHERE R.bid =\|B.bid

AND R.sid = S.sid))

sSname

sSname

sid

|
Reserves |

bid

—— o ———

1

sid

e e -

Sailor (sid, sname, rating, age) | ®¥.u07"
Reserves (sid, bid, day)
Boat (bid, bname, color)

———————————

- o o - - —

———————————

T don't know of a way to write that query
with IN instead of BXISTS and without an
explicit cross product between sailors and
red boats. More on that later when we
discuss this duery in relational algebra.

{S.sname | 3S€ESailor.(ABEBoat.(B.color="red' A\ ZREReserves.(B.bid=R.bid A R.sid=S.sid)))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

108

http://pages.cs.wisc.edu/~dbbook/

Nested query 5 (universal)

= Find the names of sailors who have reserved all red boats

Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

SELECT S.sname
FROM Sailor S
WHERE not exists
(SELECT B.bid

FROM
WHERE B.color

AND not exists
(SELECT R.bid

FROM Reserves |\R

WHERE R.bid =\|B.bid

AND R.sid = S.sid))

sSname

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor

sSname

Reserves

sid

bid

fr

<

—

sid

(f

bid

=4

color = 'red'

\S

{S.sname | 3S€ESailor.(VYBEBoat.(B.color="red' > IREReserves.(B.bid=R.bid A R.sid=S.sid))))}

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

109

http://pages.cs.wisc.edu/~dbbook/

Towards SQL patterns

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailors who have not reserved a red boat

Sailors who reserved only red boats

Sailors who reserved all red boats

sSQL

SELECT S.shame
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color ='red')

SELECT S.shame
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(
SELECT *
FROM Boat B
WHERE B.color = "red'
AND R.bid = B.bid))

SELECT S.shame
FROM Sailor S
WHERE NOT EXISTS(
SELECT *
FROM Boat B
WHERE B.color ="red'
AND NOT EXISTS(
SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

110

Towards SQL patterns

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailors who have not reserved a red boat

Sailors who reserved only red boats

Sailors who reserved all red boats

SELECT S.sname

SELECT S.sname

SELECT S.sname

FROM Sailor S FROM Sailor S FROM Sailor S
WHERE NOT EXISTS(WHERE NOT EXISTS(WHERE NOT EXISTS(
SELECT * SELECT * SELECT *
FROM Reserves R, Boat B FROM Reserves R FROM Boat B
SQL WHERE R.sid = S.sid WHERE R.sid = S.sid WHERE B.color = 'red'
AND R.bid = B.bid AND NOT EXISTS(AND NOT EXISTS(
AND B.color = 'red’) SELECT * SELECT *
FROM Boat B FROM Reserves R
WHERE B.color = "red' WHERE R.bid = B.bid
AND R.bid = B.bid)) AND R.sid = S.sid))
Y 2 \
! ! " \ ; X
qu |[sEEeT sid | sid | SELECT sid € sid
sname sname | 1 bid bid 1| sELECT sid H> sid sname sname bid < bid
: color = ‘red : sname sname bid HH bid color = 'red'
sETTsTsTEEEE - \ 2/ color = 'red' N 7

111

Sailor (sid, sname, rating, age) | | Student (sid, sname) Actor (aid, aname)
Reserves (sid, bid, day) Takes (sid, cid, semester) Plays (aid, mid, role)
Boat (bid, bname, color) Course (cid, cname, department) | | Movie (mid, mname, director)
not only all
Sailors
. have not reserved reserved only reserved all
renting
a red boat red boats red boats
boats
Students
, took no art took only art took all art
taking
class classes classes
classes
Actors . . :
iaving in did not play in a played only played in all
imx\//iei Hitchcock movie Hitchcock movies Hitchcock movies

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

WHERE M.director = 'Hitchcock'
AND M.mid = P.mid))

not only all
SELECT S.sname SELECT S.sname SELECT S.sname
FROM Sailor S FROM Sailor S FROM Sailor S
WHERENOT EXISTS(WHERENOT EXISTS(WHERE NOT EXISTS(
" SELECT * SELECT * SELECT *
e FROM Reserves R, Boat B FROM Reserves R FROM Boat B
g WHERE R.sid = S.sid WHERE R.sid = S.sid WHERE B.color = 'red'
g AND R.bid = B.bid AND NOT EXISTS(AND NOT EXISTS(
AND B.color ="red') SELECT * SELECT *
FROM Boat B FROM Reserves R
WHERE B.color = 'red' WHERE R.bid = B.bid
AND B.bid = R.bid)) AND R.sid = S.sid))
SELECT S.sname SELECT S.sname SELECT S.sname
FROM Student S FROM StudentS FROM Student S
WHERENOT EXISTS(WHERENOT EXISTS(WHERE NOT EXISTS(
4(3 SELECT * SELECT * SELECT *
c FROM Takes T, Class C FROM Takes T FROM Class C
% WHERE T.sid = S.sid WHERE T.sid = S.sid WHERE C.department= ‘art'
S AND C.cid =T.cid AND NOT EXISTS(AND NOT EXISTS(
A AND C.department ='art') SELECT * SELECT *
FROM Class C FROM Takes T
WHERE C.department = 'art’ WHERE T.cid= C.cid
AND C.cid=T.cid)) AND T.sid=S.sid))
SELECT A.aname SELECT A.aname SELECT A.aname
FROM Actor A FROM Actor A FROM Actor A
WHERENOT EXISTS(WHERENOT EXISTS(WHERE NOT EXISTS(
n SELECT * SELECT * SELECT *
— FROM Plays P, Movie M FROM Plays P FROM Movie M
49 WHERE P.aid = A.aid WHERE P.aid = A.aid WHERE M.director = 'Hitchcock'
é(" AND M.mid = P.mid AND NOT EXISTS(AND NOT EXISTS(
AND M.director = 'Hitchcock') SELECT * SELECT *
FROM Movie M FROM Plays P

WHERE P.mid = M.mid
AND P.aid = A.aid))

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)

Course (cid, cname, department)

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

not only all
y 2 \
- : , —
2 || sELecT sid —:> sid | SELECT sid |€d sid
'&,_U shame sname | bid bid || sELECT sid H> sid shame shame bid < bid
: color = 'red' : sname sname bid iy bid color = "red'
ST TsTssTss=== - \ color = 'red' . =
y 2 N
m - : — , ~
€ ||seLect sid —:> sid | setcT| [sia e sia
_g sname sname | | cid cid || sELECT sid HH»l sid sname [=] snhame bid [|[€HH cid
& : department = "art' : sname b= sname id H cid department = "art'
ST TTssTsTss=== - \"———/ |department = "art| S -
(o 1 e
<] SELECT aid 'Jl" aid : seLecT| | aid HBP| aid SELECT| | aid [€q aid
g aname [—| aname | mid = mid [aname b aname ia Hip mid aname [~ aname mid |€H- mid
I\ director = 'Hitchcock' ’I R director = 'Hitchcock'

Logical SQL Patterns

are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:

e Find sailors who reserved all red boats

e Find students who took all art classes

e Find actors who played in all movies by Hitchcock

115

SELECT L1.drinker Likes (drinker, beer)
FROM Likes L1
WHERE NOT EXISTS(
SELECT *]
1 [FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND NOT EXISTS(
SELECT *]
) [FROM Likes L3
_ WHERE L3.drinker = L2.drinker
Nesting AND NOT EXISTS(
Depth [SELECT *]
FROM Likes L4
3 WHERE L4.drinker = L1.drinker
. AND L4.beer = L3.beer)) _
AND NOT EXISTS(_
SELECT *
2 [FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS(
SELECT *
FROM Likes L6
3 WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

116

Q: Finder drinkers with a unique beer taste Likes (drinker, beer)

drinker 7
7 AN
=N
' beer
_________ drinker

Y,

drinker drinker

—-— e o e e = .

7 ﬁ\ drinker
drinker
beer P
\. Y,

117

https://demo.queryvis.com

Your Input|

Iwvput: Schema

QueryViz

(
. Employee and Department
EMP (eid,name,sal,did)
DEPT(did,dname,mgr)

Tuput Query

Specify or choose a pre-defined schema help

)
Specify or choose an SQL Query help
. Query 8)

SELECT el.name
FROM EMP el,
WHERE el.did = d.did
AND d.mgr = e2.eid

AND el.sal > e2.sal

EMP e2,

DEPT d

Submit

Output: Visualization

QueryViz Result |

/

Danaparamita, G. [EDBT'11] name

DEPT

did

https://queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQIs

name

—_|

gal

e did
mgr

eid

sal

\

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805

118

https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805

Amazon Turk user study with SQL users Leventidis+ [SIGMOD'20)

Each bar below corresponds te one participant (42 bars/participants in total)

<+«— (QV faster SQL|/faster —> <+— QV fewer errors SQL fewer errors —»

36% of users
with less
errors using

Qv
38% of users
with same

errors using
Qv

ot ITIIITIANINNINND

71% of users
stef with QV

Mean A =-17.3s Mean A = -0.08

29% of users 26% of users

]
—
]
]
faster with SQL with more =
errors using =

Qv —

I

-120 -100 -80 -60 -40 -20 0 20 40 60 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 06 0.8
QV - SQL Time Differences (seconds) QV - SQL Error Rate Differences

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767 1 19

https://doi.org/10.1145/3318464.3389767

The person/bar/drinks example (formerly
drinkers/bars/beers, courtesy Jeff Ullman)

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Challenge: write these in SQL.
Solutions: https://demo.queryvis.com

Find persons that frequent some bar that serves some drink they like.

Find persons that frequent only bars that serve some drink they like.

Find persons that frequent some bar that serves only drinks they like.

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

120

https://demo.queryvis.com/

The person/bar/drinks example (formerly

drinkers/bars/beers, courtesy Jeff Ullman)

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Challenge: write these in SQL.
Solutions: https://demo.queryvis.com

Find persons that frequent some bar that serves some drink they like.

X.

dy. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z)

Find persons that frequent only bars that serve some drink they like.

X.

Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x,z))

Find persons that frequent some bar that serves only drinks they like.

X.

dy. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z))

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)

(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

X.
X.

Vy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))
Ay. Frequents(x, y) A (3z.Serves(y,z) A 4z2. Likes(x,2z))

121

https://demo.queryvis.com/

C ® l © @& https://db.khoury.northeastern.edu l 120% oo w ¥ IN @O ¢

Northeastern University

DATA Lab @ Northeastern
Scalable Management and Analysis of Big Data] /

Home People Research Opportunities Recent Publications Activities [YouTube Channel

DATA LAB @ NORTHEASTERN

The Data Lab @ Northeastern University is one of the leading research groups in data management and data
systems. Our work spans the breadth of data management, from the foundations of data integration and curation,
to large-scale and parallel data-centric computing. Recent research projects include query visualization, data
provenance, data discovery, data lake management, and scalable approaches to perform inference over uncertain

THE STORY OF QUERYVIS, NOT JUST
https://queryvis.com ANOTHER VISUAL PROGRAMMING

LANGUAGE

TUE 06.30.20 / YSABELLE KEMPE

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/ 1 2 2

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

Outline: SQL (a refresher)

* SQL
— Schema and keys
— Joins
— Aggregates and grouping
— Nested gueries (Subgueries)
— Theta Joins
— Quter joins
— Top-k

123

Theta joins R U
a a

What do these queries compute? 1~¥ 2

20 N3

~

SELECT R.a,U.aasb

FROM R, U j> ?
WHERE R.a<U.a n

SELECT R.a,U.aasb

FROM R, U j> ?
WHERE R.a>=U.a .

A Theta-join allows for arbitrary comparison relationships (such as >).
An equijoin is a theta join using the equality operator.

124

Theta joins

What do these queries compute?

N(-|o [T

SELECT R.a,U.aasb

N[N
Alwld|lw|N|o

FROM R, U j>
WHERE R.a<U.a

SELECT R.a,U.aasb

FROM R, U j> ?
WHERE R.a>=U.a o

A Theta-join allows for arbitrary comparison relationships (such as >).
An equijoin is a theta join using the equality operator.

125

Theta joins

What do these queries compute?

SELECT R.a,U.aasb

FROM R, U

WHERE R.a<U.a

NN~]Q

A IO |WIN|T

SELECT R.a, U.a@sb)

FROM R, U

Q

O

WHERE R.a>=U.a &«

X\{}C {}

A Theta-join allows for arbitrary comparison relationships (such
An equijoin is a theta join using the equality operator.

R U
a a
1 2
2 3
4
Think about +hese +wo

queries as a partition of
the Cartesian product

126

Outline: SQL (a refresher)

* SQL
— Schema and keys
— Joins
— Aggregates and grouping
— Nested gueries (Subgueries)
— Theta Joins
— Quter joins
— Top-k

131

lllustration English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept
8 Huit
An "inner join":
SELECT * etext | eid fid ftext
FROM English, French %?rze ; ; ;’rf;is
WHERE eid = fid Four |4 4 Quatre
Same as: Five 3 5 Cing
' Six 6 6 Siz
SELECT *
FROM E.nglls.h JOIN(ErenCh "OIN"
ON eid = fid — came as
"INNER JOIN"

132

lllustration English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
"FULL JOIN" Three |3 4 | Quatre
same as Four 4 5 | Cing
"FULL OUTER JOIN" [LEive ! 6 |[Siz
Six 6 7 Sept
8 Huit
SELECT * etext | eid fid ftext
FROM English FULL JOIN F h One |1 1 Un
JIs renc Two 2 NULL [NULL
ON English.eid = French.fid Three |3 3 Trois
Four |4 4 Quatre
Five 5 5 Cing
Six 6 6 Siz
IN French NULL |NULL |7 Sept
NULL | NULL |8 Huit

133

Illustration

SELECT *

English French
eText eid fid | fText
One 1 1 [Un |
Two 2 3 |Trois |
Three |3 4 | Quatre |
Four 4 5 [Cing |
Five 5 6 |Siz |
Six 6 | — 4+ Sept
8—Huit
etext | eid fid ftext
FROM English LEFT JOIN French (T)”s ; :\IULL EBLL
. L . w
ON English.eid = French.fid Thres 13 3 Trois
Four |4 4 Quatre
Five 5 5 Cing
Six 6 6 Siz

134

Illustration

Darker area is result returned.

Natural Join

= (INNER) JOIN

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4) Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit

All records returned from outer table.

Matching records returned
from joined table.

Left Outer Join

= LEFT (OUTER) JOIN

All records are returned.

UnionJoin = FULL (OUTER) JOIN

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.

135

Detailed Illustration with Examples (follow the link

SELECT <sclect list>
FROM TablcA A
LEFT JOIN TableB B

SQL JOINS

SELECT <sclect list>
FROM TableA A

also called

"antijoin” TN

RIGHT JOIN TableB B
ON A.Key = B.Key

ON A.Key = B.Key

SELECT <sclect_list>
FROM TablcA A
INNER JOIN TableB B
ON A Key = B Key

SELECT <sclect_list> SELECT <sclect_list>
FROM TableA A

LEFT JOIN TableB B
ON A.Key = B.Key
WHERE B.Key IS NULL

FROM TablcA A
RIGHT JOIN TablcB B
ON A.Key = B.Key
WHERE A.Key IS NULL

SELECT <sclect_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
©CL MoTast, 2008 OR B.Key ISNULL

/ Check this web page for illustrating examples

SELECT <sclect_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

136

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Let's practice anti-joins

SELECT <select _list>
FROM A

LEFT JOIN B

ON A.key = B.key
WHERE B.key IS NULL

Results

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

9

137

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Let's practice anti-joins

Results
eText eid
Two 2

English French

eText eid fid | fText

One 1 1 uUn

Two 2 3 Trois

Three 3 4 Quatre

Four 4 5 Cing
SELECT <select_list> Five 15 6 |Siz
FROM A Six 6 7__| Sept

8 Huit

LEFT JOIN B

ON A.key = B.key
WHERE B.key IS NULL

How +o write in SQL7

?

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

138

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Let's practice anti-joins

SELECT <select _list>
FROM A

LEFT JOIN B

ON A.key = B.key
WHERE B.key IS NULL

English French
eText eid fid | fText
One 1 1 Un
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
Five 5 6 Siz
Six 6 7 Sept

8 Huit

How +o write in SQL7
SELECT eText, eid

FROM English

LEFT JOIN French

ON eid = fid

WHERE fid IS NULL

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

-

Results
eText eid
Two 2

Awy altervative?

139

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Let's practice anti-joins

English French Results
eText | eid fid |fText ::i> eText | eid
One 1 1 Un Two 2
Two 2 3 Trois
Three 3 4 Quatre
Four 4 5 Cing
SELECT <select_list> five |9 S |Siz
FROM A Six 6 7 Sept
8 Huit
LEFT JOIN B

ON A.key = B.key
WHERE B.key IS NULL

How +o write in SQL7

SELECT eText, eid
FROM English

LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Awy altervative?

SELECT *

FROM English
WHERE eid NOT IN
(SELECT fid

FROM French)

140

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Semi-joins: kind of the anti-anti-joins...

what do we have to
change +o these queries
to get the tuples in
English that have a
partver n French?

?

English French Results
eText | eid fid |fText ::i> eText | eid
One 1 1 Un One 1
Two 2 3 Trois Three 3
Three 3 4 Quatre Four 4
Four 4 5 Cing Five)
Five 5 6 Siz Six 6
Six 6 7 Sept

8 Huit
SELECT eText, eid SELECT x

FROM English

LEFT JOIN French

ON eid = fid

WHERE fid IS NULL

FROM English
WHERE eid NOT IN
(SELECT fid

FROM French)

141

Semi-joins: kind of the anti-anti-joins...

what do we have to
change +o these queries
to get the tuples in
English that have a
partver n French?

What if fid is vot a key?

?

English French Results
eText | eid fid |fText j> eText | eid
One 1 1 Un One 1
Two 2 3 Trois Three 3
Three 3 4 Quatre Four 4
Four 4 5 Cing Five)
Five 5 6 Siz Six 6
Six 6 7 Sept

8 Huit
SELECT eText, eid SELECT x

FROM English

LEFT JOIN French

ON eid = fid
WHERE fid IS NOT NULL

FROM English
WHERE eid NOF IN
(SELECT fid

FROM French)

142

Semi-joins: kind of the anti-anti-joins...

what do we have to
change +o these queries
to get the tuples in
English that have a
partver n French?

What if fid is vot a key?

English French Results
eText eid fid | fText eText eid
One 1 1 Un One 1
Two 2 3 Trois Three 3
Three 3 4 Quatre Four 4
Four 4 5 Cing Five 5
Five 5 6 Siz Six 6
Six 6 7 Sept

8 Huit
DISTINCT
SELECT [eText, eid SELECT =

FROM English

LEFT JOIN French

ON eid = fid
WHERE fid IS NOT NULL

FROM English
WHERE eid NOF IN
(SELECT fid

FROM French)

143

Empty Group Problem

ltem(name, category)
Purchase(iNm, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

SELECT name, count(™)
FROM Item, Purchase
WHERE name = iName what is wrong?

and month =9
GROUP BY name

ltem T~ Purchase Result
Name “ Category IName Store | Month

Gizmo Gadget Gizmo Wiz |8

Camera | Photo Camera |Ritz |8 :> ?
OneClick | Photo Camera |Wiz |9 .

145

Empty Group Problem

ltem(name, category)
Purchase(iNm, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

SELECT name, count(™)

FROM Item, Purchase

WHERE name = iName We don't get the info
and month =9 for each product ®

GROUP BY name

Item Purchase Result
Name Category iName Store | Month Name Store
Gizmo Gadget Gizmo Wiz |8 Camera 1
Camera | Photo Camera |Ritz |8 :>
OneClick | Photo Camera |Wiz |9

146

E m pty G rou p P O b | em ltem(name, category)
Purchase(iNm, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

SELECT name, count(™)

FROM ltem, Purchase How do you need +o
WHERE name = iName change the queryto P
and month =9 get what we want?

GROUP BY name

Item Purchase Result
Name Category iName Store | Month Name Store
Gizmo Gadget Gizmo Wiz |8 Camera 1
Camera | Photo Camera |[Ritz |8 6% GCamera |0
OneClick | Photo Camera |Wiz |9 OneClick |0

147

Empty Group Problem

ltem(name, category)
Purchase(iNm, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

SELECT name, count(store)
FROM ltem LEFT JOIN Purchase ON

name = iName Will +his query work ?
WHERE month =9 '

GROUP BY name

Item Purchase Result
Name Category iName Store | Month Name Store
Gizmo Gadget Gizmo Wiz |8 Camera 1
Camera | Photo Camera |Ritz |8 :> Camera |0
OneClick | Photo Camera |Wiz |9 OneClick |0

148

Empty Group Problem

ltem(name, category)

Purchase(iNm, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

SELECT i name, count(store No ® Still same result

FROM ltem Purchase ON Name |Category |iName |[Store |Month
name = iName Gizmo |Gadget |Gizmo |Wiz |8

WH RE month =9 Camera |[Photo Camera |Ritz |8

GROUP BY name Camera |[Photo Camera (Wiz |9

OneClick |Photo [NULL [NULL [NULL

Item Purchase Result

Name Category iName Store | Month Name Store

Gizmo Gadget Gizmo Wiz |8 Camera 1

Camera | Photo Camera |Ritz |8 :>

OneClick | Photo Camera |Wiz |9

149

Empty Group Problem

ltem(name, category)
Purchase(iNm, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

SELECT name, count(store)
FROM ltem LEFT JOIN Purchase ON
 name = iName
and month = 9)
GROUP BY name

Now i+ works ©

Item Purchase Result
Name Category iName Store | Month Name Store
Gizmo Gadget Gizmo Wiz |8 Camera 1
Camera | Photo Camera |Ritz |8 :> Camera |0
OneClick | Photo Camera |Wiz |9 OneClick |0

150

E m pty G rou p P O b | em ltem(name, category)
Purchase(iNm, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

Qv
SELECT name, count(store) {otle sy

FROM ltem LEFT JOIN
(SELECT * FROM Purchase Previous page is a shor+
WHERE month = 9) X form of this query here ©
ON name = iIName

GROUP BY name

Item Purchase Result

Name Category iName Store | Month Name Store

Gizmo Gadget Gizmo iz 8— Camera 1

Camera | Photo Camera [Ritz—98 :> Camera |0

OneClick | Photo Camera |Wiz |9 OneClick |0

151

