
61

Topic 1: Data models and query languages
Unit 1: SQL (continued)
Lecture 2

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp21)
https://northeastern-datalab.github.io/cs7240/sp21/
1/22/2021

Updated 1/23/2021

https://northeastern-datalab.github.io/cs7240/sp21/

62

Pre-class conversations

• Last class recapitulation
• Any questions on class procedures?
- You will see some "minimum examples" today in class

• today:
- SQL continued (with connection to table integration)
- perhaps start of calculus

63

Outline: SQL (a refresher)

• SQL
– Schema and keys
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Outer joins
– Top-k

64

Subqueries = Nested queries

• We can nest queries because SQL is compositional:
- Everything (inputs / outputs) is represented as multisets
- the output of one query can thus be used as the input to another (nesting)
- Subqueries return relations

• This is extremely powerful!
• It gets more complicated with correlated nested queries

SELECT ...
FROM ...
WHERE ...

(SELECT ...
FROM ...
WHERE ...)

Outer block

Inner block

We mostly focus on
nestings in the WHERE
clause, which is the most
expressive type of nesting

65

3. Subqueries in WHERE
What do these queries compute?

SELECT a
FROM R
WHERE a IN

(SELECT a from W)
?

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

W
a b
2 0
3 0
4 0

?

?

66

3. Subqueries in WHERE
What do these queries compute?

Since 2 is in the set (bag)
(2, 3, 4)

a
2

R 305

?

?

SELECT a
FROM R
WHERE a IN

(SELECT a from W)

a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

a b
2 0
3 0
4 0

W

67

3. Subqueries in WHERE
What do these queries compute?

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1
2

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

305

?

SELECT a
FROM R
WHERE a IN

(SELECT a from W)

a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

a b
2 0
3 0
4 0

W

a
2

68

SELECT a
FROM R
WHERE a IN

(SELECT a from W)

a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from W)

SELECT a
FROM R
WHERE a < ALL

(SELECT a from W)

a b
2 0
3 0
4 0

3. Subqueries in WHERE
What do these queries compute?

Since 2 is in the set (bag)
(2, 3, 4)

R

a
1

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

305W

a
1
2

a
2

69

Correlated subqueries

• In all previous cases, the nested subquery in the inner select block
could be entirely evaluated before processing the outer select block.
- This is no longer the case for correlated nested queries.

• Whenever a condition in the WHERE clause of a nested query
references some column of a table declared in the outer query, the
two queries are said to be correlated.
- The nested query is then evaluated once for each tuple (or combination of

tuples) in the outer query.

76

Correlated subquery (existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (1, 2)

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

77

Correlated subquery (existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 25)

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Set membership"

315

79

Correlated subquery (existential)

Existential quantifiers $

Using EXISTS:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid
and P.price < 25)

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Test for empty relations"

Correlated subquery

EXISTS is true iff the subquery's result is not empty

315

80

Correlated subquery (existential)

Existential quantifiers $

Using ANY (also some):

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Product (pname, price, cid)
Company (cid, cname, city)

SQLlite does not support "ANY" L

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Set comparison"

Correlated subquery

315

81

Correlated subquery (existential)

Existential quantifiers $

Now, let's unnest:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid
and P.price < 25

Existential quantifiers are easy ! J

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

82

Correlated subquery (universal)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Q: Find all companies for which all products have price < 25!

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

same as:

Product (pname, price, cid)
Company (cid, cname, city)

315

83

Correlated subquery (exist not -> universal)

2. Find all companies s.t. all their products have price < 25!

1. Find the other companies: i.e. they have some product ³ 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

Q: Find all companies that make only products with price < 25!
315

84

Correlated subquery (exist not -> universal)

Using NOT EXISTS:

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid
and P.price >= 25)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Product (pname, price, cid)
Company (cid, cname, city)

315

85

Correlated subquery (exist not -> universal)

Using ALL:

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Product (pname, price, cid)
Company (cid, cname, city)

SQLlite does not support "ALL" L

315

86

A natural question

• How can we unnest the universal quantifier query ?

?

87

Queries that must be nested

• Definition: A query Q is monotone if:
- Whenever we add tuples to one or more of the tables…
- … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
- Proof: using the "nested for loops" semantics

• Fact: Query with universal quantifier is not monotone
- Add one tuple violating the condition. Then "all" returns fewer tuples

• Consequence: we cannot unnest a query with a universal quantifier

94

Understanding
nested queries

95

The sailors database
340

Schema from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Sailor Reserves Boat

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

http://pages.cs.wisc.edu/~dbbook/

96

Nested query 1

Q:

SELECT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

http://pages.cs.wisc.edu/~dbbook/

97

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

http://pages.cs.wisc.edu/~dbbook/

98

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT S.sname
FROM Sailor S
WHERE EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.color='red'
AND B.bid=R.bid))

This is an alternative way to write the
previous query with EXISTS and
correlated nested queries that
matches the Relational Calculus below.

http://pages.cs.wisc.edu/~dbbook/

99

Nested query 2

SELECT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Dashed lines represent
not exists ∄

http://pages.cs.wisc.edu/~dbbook/

100

Nested query 2

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Dashed lines represent
not exists ∄

They must have reserved at least one boat
in another color. They can also have reserved
a red boat in addition.

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

http://pages.cs.wisc.edu/~dbbook/

101

Nested query 3

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

http://pages.cs.wisc.edu/~dbbook/

102

Nested query 3

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

They can have reserved 0 or more
boats in another color, but must
not have reserved any red boat.

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: Find the names of sailors who have not reserved a red boat.

http://pages.cs.wisc.edu/~dbbook/

103

Nested query 4

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

http://pages.cs.wisc.edu/~dbbook/

104

Nested query 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

They can have reserved 0 or more
boats in red, just no other color.

http://pages.cs.wisc.edu/~dbbook/

105

Nested query 4 (another variant)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color<>'red'))

340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color<>'red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color<>'red'

They can have reserved 0 or more
boats in red, just no other color.

http://pages.cs.wisc.edu/~dbbook/

106

Nested query 4 (universal)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Double lines represent
for all ∀

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

{S.sname | ∃S∈Sailor.(∀R∈Reserves.(R.sid=S.sid → ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

http://pages.cs.wisc.edu/~dbbook/

107

SELECT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Nested query 5
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Q: ?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

http://pages.cs.wisc.edu/~dbbook/

108

SELECT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Nested query 5

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

I don't know of a way to write that query
with IN instead of EXISTS and without an
explicit cross product between sailors and
red boats. More on that later when we
discuss this query in relational algebra.

http://pages.cs.wisc.edu/~dbbook/

109

Nested query 5 (universal)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

{S.sname | ∃S∈Sailor.(∀B∈Boat.(B.color='red' → ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid))))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

http://pages.cs.wisc.edu/~dbbook/

110

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND R.bid = B.bid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

111

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

QV
SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND R.bid = B.bid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

112

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

have not reserved
a red boat

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

reserved only
red boats

reserved all
red boats

took no art
class

took only art
classes

took all art
classes

did not play in a
Hitchcock movie

played only
Hitchcock movies

played in all
Hitchcock movies

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

113

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT S.sname
FROM Sailor S
WHERENOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT S.sname
FROM Sailor S
WHERENOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND B.bid = R.bid))

SELECT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

SELECT S.sname
FROM Student S
WHERENOT EXISTS(

SELECT *
FROM Takes T, Class C
WHERE T.sid = S.sid
AND C.cid = T.cid
AND C.department ='art')

SELECT S.sname
FROM Student S
WHERENOT EXISTS(

SELECT *
FROM Takes T
WHERE T.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Class C
WHERE C.department = 'art'
AND C.cid= T.cid))

SELECT S.sname
FROM Student S
WHERE NOT EXISTS(

SELECT *
FROM Class C
WHERE C.department= 'art'
AND NOT EXISTS(

SELECT *
FROM Takes T
WHERE T.cid= C.cid
AND T.sid= S.sid))

SELECT A.aname
FROM Actor A
WHERE NOT EXISTS(

SELECT *
FROM Movie M
WHERE M.director = 'Hitchcock'
AND NOT EXISTS(

SELECT *
FROM Plays P
WHERE P.mid = M.mid
AND P.aid = A.aid))

SELECT A.aname
FROM Actor A
WHERENOT EXISTS(

SELECT *
FROM Plays P
WHERE P.aid = A.aid
AND NOT EXISTS(

SELECT *
FROM Movie M
WHERE M.director = 'Hitchcock'
AND M.mid = P.mid))

SELECT A.aname
FROM Actor A
WHERENOT EXISTS(

SELECT *
FROM Plays P, Movie M
WHERE P.aid = A.aid
AND M.mid = P.mid
AND M.director = 'Hitchcock')

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

114

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Student

sid

sname

Takes

sid

cid

Class

cid

department = 'art'

SELECT

sname

Student

sid

sname

Takes

sid

cid

Class

cid

department = 'art'

SELECT

sname

Student

sid

sname

Takes

sid

bid

Class

cid

department = 'art'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

115

Logical SQL Patterns
Logical patterns are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:
• Find sailors who reserved all red boats
• Find students who took all art classes
• Find actors who played in all movies by Hitchcock

116

SELECT L1.drinker
FROM Likes L1
WHERE NOT EXISTS(

SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND NOT EXISTS(

SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND NOT EXISTS(

SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND NOT EXISTS(
SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS(

SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Nesting
Depth

0

1

2

3

2

3

Likes (drinker, beer)

117

Likes
drinker

Likes
drinker

SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer Likes

beer
drinker

<>

Likes (drinker, beer)Q: Finder drinkers with a unique beer taste

118

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

https://demo.queryvis.com

http://www.youtube.com/watch?v=kVFnQRGAQls

Danaparamita, G. [EDBT'11]
https://queryvis.com/

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805

https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805

119

Amazon Turk user study with SQL users
Each bar below corresponds to one participant (42 bars/participants in total)

Mean Δ = -17.3 s
Median Δ = -19.7 s

71% of users
faster with QV

29% of users
faster with SQL

QV - SQL Time Differences (seconds)

QV faster SQL faster

Mean Δ = -0.08
Median Δ =0

36% of users
with less
errors using
QV

26% of users
with more
errors using
QV

38% of users
with same
errors using
QV

QV - SQL Error Rate Differences

QV fewer errors SQL fewer errors

Leventidis+ [SIGMOD'20]

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767

https://doi.org/10.1145/3318464.3389767

120

The person/bar/drinks example (formerly
drinkers/bars/beers, courtesy Jeff Ullman)

Find persons that frequent some bar that serves some drink they like.

Find persons that frequent only bars that serve some drink they like.

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

Find persons that frequent some bar that serves only drinks they like.

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Challenge: write these in SQL.
Solutions: https://demo.queryvis.com

331

https://demo.queryvis.com/

121

The person/bar/drinks example (formerly
drinkers/bars/beers, courtesy Jeff Ullman)

Find persons that frequent some bar that serves some drink they like.

Find persons that frequent only bars that serve some drink they like.

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

x: $y. $z. Frequents(x, y)ÙServes(y,z)ÙLikes(x,z)

x: "y. Frequents(x, y)Þ ($z. Serves(y,z)ÙLikes(x,z))

x: "y. Frequents(x, y)Þ "z.(Serves(y,z) Þ Likes(x,z))
x: ∄y. Frequents(x, y) Ù ($z.Serves(y,z) Ù ∄z2. Likes(x,2z))

Find persons that frequent some bar that serves only drinks they like.
x: $y. Frequents(x, y)Ù"z.(Serves(y,z) Þ Likes(x,z))

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

331

Challenge: write these in SQL.
Solutions: https://demo.queryvis.com

https://demo.queryvis.com/

122https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

https://queryvis.com

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

123

Outline: SQL (a refresher)

• SQL
– Schema and keys
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Outer joins
– Top-k

124

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a ?
SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a ?

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

305R
a
1
2

U
a
2
3
4

125

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

a b
1 2
1 3
1 4
2 3
2 4

?

a
1
2

a
2
3
4

126

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

a b
1 2
1 3
1 4
2 3
2 4

a b
2 2

Think about these two
queries as a partition of
the Cartesian product

a
1
2

a
2
3
4

131

Outline: SQL (a refresher)

• SQL
– Schema and keys
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Theta Joins
– Outer joins
– Top-k

132

etext eid fid ftext
One 1 1 Un
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

SELECT *
FROM English JOIN French
ON eid = fid

Same as:

An "inner join":

"JOIN"
same as

"INNER JOIN"

133

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

SELECT *
FROM English JOIN French
ON eid = fid

"FULL JOIN"
same as

"FULL OUTER JOIN"

361

134

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English LEFT JOIN French
ON English.eid = French.fid

361

135

2 7,81,3,
4-6

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.

= FULL (OUTER) JOIN

= (INNER) JOIN

361

= LEFT (OUTER) JOIN

136Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Check this web page for illustrating examples

Detailed Illustration with Examples (follow the link)

also called
"anti-join"

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

137

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

?
Results

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

138

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

?

How to write in SQL?

eText eid
Two 2

Results

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

139

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

How to write in SQL? Any alternative?

?

eText eid
Two 2

Results

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

140

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

How to write in SQL?

eText eid
Two 2

Results

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

Any alternative?

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

141

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?

142

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?
What if fid is not a key?

143

Semi-joins: kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

What if fid is not a key?

DISTINCT

145

Empty Group Problem

SELECT name, count(*)
FROM Item, Purchase
WHERE name = iName

and month = 9
GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

334

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

?

What is wrong?

146

Empty Group Problem

SELECT name, count(*)
FROM Item, Purchase
WHERE name = iName

and month = 9
GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

334

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera 1

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

We don't get the info
for each product L

147

Empty Group Problem

How do you need to
change the query to
get what we want?

SELECT name, count(*)
FROM Item, Purchase
WHERE name = iName

and month = 9
GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

334

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera 1
Camera 0
OneClick 0

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

?

148

Empty Group Problem

Will this query work

SELECT name, count(store)
FROM Item LEFT JOIN Purchase ON

name = iName
WHERE month = 9
GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

334

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera 1
Camera 0
OneClick 0

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

?

149

Empty Group Problem

No L Still same resultSELECT name, count(store)
FROM Item LEFT JOIN Purchase ON

name = iName
WHERE month = 9
GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

334

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase
Name Store
Camera 1

Name Category iName Store Month

Gizmo Gadget Gizmo Wiz 8

Camera Photo Camera Ritz 8

Camera Photo Camera Wiz 9

OneClick Photo NULL NULL NULL

150

Empty Group Problem

SELECT name, count(store)
FROM Item LEFT JOIN Purchase ON

name = iName
and month = 9

GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

334

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera 1
Camera 0
OneClick 0

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

Now it works J

151

Empty Group Problem

SELECT name, count(store)
FROM Item LEFT JOIN
(SELECT * FROM Purchase
WHERE month = 9) X
ON name = iName
GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number of sales in Sept (= month 9)

334

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera 1
Camera 0
OneClick 0

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

Previous page is a short
form of this query here J

