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Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries
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Query Equivalence

Two queries q1, q2 are equivalent, denoted q1 ≡ q2, if 

Query q1 is contained in query q2 , denoted q1 ⊆ q2, if 

Corollary
q1 ≡ q2 is equivalent to (q1 ⊆ q2 and q1 ⊇ q2)

If queries are Boolean, then query containment = logical implication:
q1⇔ q2 is equivalent to (q1 ⇒ q2 and q1 ⇐ q2)

for every database instance D, we have q1(D) = q2(D).

for every database instance D, we have q1(D) ⊆ q2(D)
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Homomorphisms
A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1:

h: var(q2) → var(q1) ∪ const(q1) such that:

?
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Homomorphisms

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

(also: h2→1’: {s,u,v,w}→{y} )
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Homomorphisms

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: ?

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:
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Homomorphisms

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: {(x,s),(y,v),(z,w)} 

, R(v,v)

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:
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Homomorphisms

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: {(x,s),(y,v),(z,w)} 

q1 ⊆ q2

q1 ⊈ q2

A homomorphism h from Boolean q2 to q1 is a function 

for every atom R(x1,x2,...) in q2, there is an atom R(h(x1), h(x2), ...) in q1

h: var(q2) → var(q1) ∪ const(q1) such that:

$x.	P(x,x) $x.$y.	P(x,y)	⟹
Compare to our earlier example:
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Canonical database
Definition (Canonical database)
Given a conjunctive query q, the canonical database Dc[q] is the database 
instance where each atom in q becomes a fact in the instance.

Example
q1(x) :- R(x,y), R(y,y), R(y,z)

Dc[q] = ?



77

Canonical database
Definition (Canonical database)
Given a conjunctive query q, the canonical database Dc[q] is the database 
instance where each atom in q becomes a fact in the instance.

Example
q1(x) :- R(x,y), R(y,y), R(y,z)

Just treat each variable as different constant J

{R('x','y'), R('y','y'), R('y','z')}Dc[q] =

≡ {R(a,b), R(b,b), R(b,c)}
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[Chandra and Merlin 1977]

We will only look at 2) ⇒ 1) 

THEOREM (Query Containment)
Given two Boolean CQs q1, q2, the following statements are equivalent:

1) q1 ⊆ q2

2) There is a homomorphism h2→1 from q2 to q1

3) q2(DC[q1]) is true
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[Chandra and Merlin 1977]

g=v ∘ h
g(x)=v(h(x))

If there is a homomorphism h from q2 to q1 , then q1 ⊆ q2
1. Given h=h2→1, we will show that for any D: q1(D) ⇒ q2(D)
2. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D
3. We will show that the composition g = v ∘ h is a valuation for q2
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[Chandra and Merlin 1977]

g=v ∘ h
g(x)=v(h(x))

If there is a homomorphism h from q2 to q1 , then q1 ⊆ q2
1. Given h=h2→1, we will show that for any D: q1(D) ⇒ q2(D)
2. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D
3. We will show that the composition g = v ∘ h is a valuation for q2

3a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
3b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D
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[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

g=v ∘ h
g(x)=v(h(x))

If there is a homomorphism h from q2 to q1 , then q1 ⊆ q2
1. Given h=h2→1, we will show that for any D: q1(D) ⇒ q2(D)
2. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D
3. We will show that the composition g = v ∘ h is a valuation for q2

3a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
3b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D
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[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v)

g=v ∘ h
g(x)=v(h(x))

v={(x,a),(y,b),(z,c)} 

R A B
a b
b b
b c

If there is a homomorphism h from q2 to q1 , then q1 ⊆ q2
1. Given h=h2→1, we will show that for any D: q1(D) ⇒ q2(D)
2. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D
3. We will show that the composition g = v ∘ h is a valuation for q2

3a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
3b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D
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[Chandra and Merlin 1977]

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

v={(x,a),(y,b),(z,c)} 

Example
q1() :- R(x,y), R(y,y), R(y,z)
q2() :- R(s,u), R(u,w), R(s,v), R(v,w), R(u,v) R A B

a b
b b
b c

g=v ∘ h
g(x)=v(h(x))

g= {(s,a),(u,b),(v,b),(w,c)} 

1. Given h=h2→1, we will show that for any D: q1(D) ⇒ q2(D)
2. For q1(D) to hold, there is a valuation v s.t. v(q1) ∈ D
3. We will show that the composition g = v ∘ h is a valuation for q2

3a. By definition of h, for every R(x1,x2,...) in q2, R(h(x1),h(x2),...) in q1
3b. By definition of v, for every R(x1,x2,...) in q2, R(v(h(x1)),v(h(x2)),...) in D

If there is a homomorphism h from q2 to q1 , then q1 ⊆ q2
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Combined complexity of CQC and CQE
Corollary:
The following problems are NP-complete:

2) Given a Boolean conjunctive query Q and an instance D, does D ⊨ Q ?

(a) Membership in NP follows from the Homom. Theorem:

1) Given two (Boolean) conjunctive queries Q and Q’, is Q ⊆ Q’ ?

Proof:

(b) NP-hardness follows from 3-Colorability: 

Q ⊆ Q' if and only if there is a homomorphism h: Q' → Q

G is 3-colorable if and only if QK3 ⊆ QG.
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The Complexity of Database Query Languages

Relational 
Calculus

CQs

Query Eval.: 
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.: 
Combined Compl.

PSPACE-
complete

NP-complete

Query Equivalence 
& Containment

Undecidable NP-complete

Source: Phokion Kolaitis
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Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries
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Beyond Conjunctive Queries

• What can we say about query languages of intermediate expressive 
power between conjunctive queries and the full relational calculus?

• Conjunctive queries form the sublanguage of relational algebra 
obtained by using only cartesian product, projection, and selection
with equality conditions.

• The next step would be to consider relational algebra expressions 
that also involve union.
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Beyond Conjunctive Queries

• Definition:
- A union of conjunctive queries (UCQ) is a query expressible by an expression of the form 

q1 ∪ q2 ∪ … ∪ qm, where each qi is a conjunctive query.
- A monotone query is a query expressible by a relational algebra expression which uses 

only union, cartesian product, projection, and selection with equality condition.

• Fact:
- Every union of conjunctive queries is a monotone query.
- Every monotone query is equivalent to a union of conjunctive queries, but 

• the union may have exponentially many disjuncts.

• (normal form for monotone queries).
- Monotone queries are precisely the queries expressible by relational calculus 

expressions using ∧, ∨, and ∃ only.
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Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)

RA

RC

Given edge relation E(A,B), find paths of length 1 or 2

(unnamed RA)

?
?
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Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)

RA

RC

𝐸 ⋃ 𝜋_,`(𝜎bcd 𝐸×𝐸 )
Given edge relation E(A,B), find paths of length 1 or 2

(unnamed RA)

?
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Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)

RA

RC

𝐸 ⋃ 𝜋_,`(𝜎bcd 𝐸×𝐸 )
𝐸 𝑥_, 𝑥b ∨ ∃𝑧 𝐸 𝑧, 𝑥b ∧ 𝐸 𝑧, 𝑥b

Given edge relation E(A,B), find paths of length 1 or 2

(unnamed RA)
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Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)

RA

RC

𝐸 ⋃ 𝜋_,`(𝜎bcd 𝐸×𝐸 )
𝐸 𝑥_, 𝑥b ∨ ∃𝑧 𝐸 𝑧, 𝑥b ∧ 𝐸 𝑧, 𝑥b

Monotone Query

Assume schema R(A,B), S(A,B), T(B,C), V(B,C)

𝑅 ⋃ 𝑆 ⋈ 𝑇 ⋃ 𝑉Is following query monotone

Given edge relation E(A,B), find paths of length 1 or 2

(unnamed RA)

?
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Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)

RA

RC

𝐸 ⋃ 𝜋_,`(𝜎bcd 𝐸×𝐸 )
𝐸 𝑥_, 𝑥b ∨ ∃𝑧 𝐸 𝑧, 𝑥b ∧ 𝐸 𝑧, 𝑥b

Monotone Query

Assume schema R(A,B), S(A,B), T(B,C), V(B,C)

𝑅 ⋃ 𝑆 ⋈ 𝑇 ⋃ 𝑉Is following query monotone?

Equal to a UCQ? ?

Given edge relation E(A,B), find paths of length 1 or 2

(unnamed RA)
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Unions of CQs and Monotone Queries
Union of Conjunctive Queries (UCQ)

RA

RC

𝐸 ⋃ 𝜋_,`(𝜎bcd 𝐸×𝐸 )
𝐸 𝑥_, 𝑥b ∨ ∃𝑧 𝐸 𝑧, 𝑥b ∧ 𝐸 𝑧, 𝑥b

Monotone Query

Assume schema R(A,B), S(A,B), T(B,C), V(B,C)

𝑅 ⋃ 𝑆 ⋈ 𝑇 ⋃ 𝑉Is following query monotone?

Equal to a UCQ? 𝑅⋈𝑇 ⋃ 𝑅⋈𝑉 ⋃ 𝑆⋈𝑇 ⋃ 𝑆⋈𝑉

Given edge relation E(A,B), find paths of length 1 or 2

(unnamed RA)
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The Containment Problem for Unions of CQs

THEOREM [Sagiv and Yannakakis 1981]
Let 𝑞1∪𝑞2∪⋯∪𝑞m and 𝑞_p∪𝑞bp ∪⋯∪𝑞qp be two UCQs. Then the 
following are equivalent: 

1) 𝑞1∪𝑞2∪⋯∪𝑞m ⊆ 𝑞_p∪𝑞bp ∪⋯∪𝑞qp

2) For every i ≤ m, there is j ≤ n such that 𝑞r ⊆ 𝑞sp

Proof: Use the Homomorphism Theorem
1. ⇒ 2. Since DC[qi] ⊨ qi, we have that DC[qi] ⊨ q1 ∪ q2 ∪ … ∪ qm

hence DC[qi] ⊨ q’1∪ q’2∪ … ∪ q’n , hence there is some j ≤ n such that DC[qj] i ⊨ q’j, hence 
(by the Homomorphism Theorem) qi  ⊆ q’j.

2. ⇒ 1. This direction is obvious.
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The Complexity of Database Query Languages

Relational 
Calculus

CQs UCQs

Query Eval.: 
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.: 
Combined Compl.

PSPACE-
complete

NP-complete NP-complete

Query Equivalence
& Containment

Undecidable NP-complete NP-complete

Source: Phokion Kolaitis
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Monotone Queries

• Even though monotone queries have the same expressive 
power as unions of conjunctive queries, the containment
problem for monotone queries has higher complexity than the
containment problem for unions of conjunctive queries
(syntax/complexity tradeoff)

• Theorem: Sagiv and Yannakakis – 1982
The containment problem for monotone queries is Π 2p-
complete.

• Note: The prototypical Π 2p-complete problem is∀∃-SAT, i.e., 
the restriction of QBF to formulas of the form

∀x1…∀xm∃y1 …∃yn ϕ.

Source: Phokion Kolaitis
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The Complexity of Database Query Languages

Relational 
Calculus

CQs UCQs Monotone queries 

Query Eval.: 
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.: 
Combined Compl.

PSPACE-
complete

NP-complete NP-complete NP-complete

Query Equivalence
& Containment

Undecidable NP-complete NP-complete Π2p-complete

Source: Phokion Kolaitis
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Conjunctive Queries with Inequalities

• Definition: Conjunctive queries with inequalities form the
sublanguage of relational algebra obtained by using only 
cartesian product, projection, and selection with equality and
inequality (≠, <, ≤) conditions.

• Example: Q(x,y):-- E(x,z), E(z,w),E(w,y), z ≠ w, z < y.

• Theorem: (Klug – 1988, van der Meyden – 1992)
– The query containment problem for conjunctive queries 

with inequalities is Π 2p-complete.
– The query evaluation problem for conjunctive queries with 

inequalities in NP-complete.

Source: Phokion Kolaitis
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The Complexity of Database Query Languages

Relational 
Calculus

CQs UCQs Monotone queries /
CQs with inequalities

Query Eval.: 
Data Complexity

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

In LOGSPACE
(hence, in P)

Query Eval.: 
Combined Compl.

PSPACE-
complete

NP-complete NP-complete NP-complete

Query Equivalence
& Containment

Undecidable NP-complete NP-complete Π2p-complete

Source: Phokion Kolaitis
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Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries

Following slides are from Phokion Kolaitis's talk 
on "Logic and databases" at "Logical structures
in Computation Boot Camp", Berkeley 2016:
https://simons.berkeley.edu/talks/logic-and-databases

https://simons.berkeley.edu/talks/logic-and-databases
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Logic and Databases

Phokion G. Kolaitis

UC Santa Cruz & IBM Research – Almaden

Lecture 4 – Part 1

1

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Thematic Roadmap

! Logic and Database Query Languages

– Relational Algebra and Relational Calculus

– Conjunctive queries and their variants

– Datalog

! Query Evaluation, Query Containment, Query Equivalence

– Decidability and Complexity

! Other Aspects of Conjunctive Query Evaluation

• Alternative Semantics of Queries

– Bag Databases: Semantics and Conjunctive Query Containment

– Probabilistic Databases: Semantics and Dichotomy Theorems for 
Conjunctive Query Evaluation

– Inconsistent Databases: Semantics and Dichotomy Theorems

2

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Alternative Semantics

• So far, we have examined logic and databases under 
classical semantics:

– The database relations are sets.

– Tarskian semantics are used to interpret queries definable 
be first-order formulas.

• Over the years, several different alternative semantics of 
queries have been investigated. We will discuss three such 
scenarios:

– The database relations can be bags (multisets).

– The databases may be probabilistic.

– The databases may be inconsistent.

3

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Sets vs. Multisets

Relation EMPLOYEE(name, dept, salary)

• Relational Algebra Expression:      

πsalary (σdept = CS (EMPLOYEE))

• SQL query:

SELECT   salary

FROM      EMPLOYEE

WHERE    dpt = ‘CS’

• SQL returns a bag (multiset) of numbers in which a number may 
appear several times, provided different faculty had the same salary.    

• SQL does not eliminate duplicates, in general, because:
– Duplicates are important for aggregate queries (e.g., average)

– Duplicate elimination takes nlogn time.

4

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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5

Relational Algebra Under Bag Semantics

Operation Multiplicity

Union 

R1 ∪ R2

m1 + m2

Intersection 

R1 " R2

min(m1, m2)

Product 

R1 × R2

m1× m2

Projection and 
Selection

Duplicates are 
not eliminated

• R1 A   B
1   2
1   2 
2   3

• R2 B  C
2  4
2  5

• (R1⋈R2) A  B  C    
1   2  4
1   2  4
1   2  5
1   2  5

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Conjunctive Queries Under Bag Semantics

Chaudhuri & Vardi – 1993

Optimization of Real Conjunctive Queries

" Called for a re-examination of conjunctive-query optimization 
under bag semantics.

" In particular, they initiated the study of the 

containment problem for conjunctive queries 

under bag semantics.

" This problem has turned out to be much more challenging 
than originally perceived.

6

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01


124

PROBLEMS

Problems worthy

of attack

prove their worth

by hitting back.

in: Grooks by Piet Hein (1905-1996)

7

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01


125

8

Query Containment Under Set Semantics

Class of Queries Complexity of Query 
Containment

Conjunctive Queries NP-complete
Chandra & Merlin – 1977

Unions of Conjunctive 
Queries

NP-complete
Sagiv & Yannakakis - 1980

Conjunctive Queries with 

≠≠≠≠ , ≤, ≥
Π2

p-complete
Klug 1988, van der Meyden -1992

First-Order (SQL) queries Undecidable
Trakhtenbrot - 1949

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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9

Bag Semantics vs. Set Semantics

• For bags R1, R2:

R1 ⊆BAG R2 if m(a,R1) ≤ m(a,R2), for every tuple a.

• QBAG(D) : Result of evaluating Q on (bag) database D.

• Q1 ⊆BAG Q2 if for every (bag) database D, we have that 

Q1
BAG(D) ⊆BAG Q2

BAG(D).

Fact: 

" Q1 ⊆BAG Q2 implies Q1 ⊆ Q2.

" The converse does not always hold.

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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10

Bag Semantics vs. Set Semantics

Fact: Q1 ⊆ Q2 does not imply that Q1 ⊆BAG Q2 .

Example:

" Q1(x) :- P(x), T(x)

" Q2(x) :- P(x)

" Q1 ⊆ Q2 (obvious from the definitions)

" Q1 ⊈BAG Q2

" Consider the (bag) instance D = {P(a), T(a), T(a)}. Then:

" Q1(D) = {a,a}
" Q2(D) = {a}, so Q1(D) ⊈ Q2(D).

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Query Containment under Bag Semantics

• Chaudhuri & Vardi  - 1993 stated that:

Under bag semantics, the containment problem for 
conjunctive queries is Π2

p-hard.

• Problem:

– What is the exact complexity of the containment 
problem for conjunctive queries under bag 
semantics?

– Is this problem decidable?

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Query Containment Under Bag Semantics

• 23 years have passed since the containment problem for 
conjunctive queries under bag semantics was raised.

• Several attacks to solve this problem have failed.

• At least two technically flawed PhD theses on this problem 
have been produced.

• Chaudhuri and Vardi have withdrawn the claimed 

Π2
p-hardness of this problem; no one has provided a proof.

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Query Containment Under Bag Semantics

• The containment problem for conjunctive queries under bag 
semantics remains open to date.

• However, progress has been made towards the containment 
problem under bag semantics for the two main extensions of 
conjunctive queries:

– Unions of conjunctive queries

– Conjunctive queries with ≠ 

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Unions of Conjunctive Queries

Theorem (Ioannidis & Ramakrishnan – 1995):

Under bag semantics, the containment problem for

unions of conjunctive queries is undecidable. 

Hint of Proof:

Reduction from Hilbert’s 10th Problem.

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01


132

15

Hilbert’s 10th Problem

• Hilbert’s 10th Problem – 1900  

(10th in Hilbert’s list of 23 problems)

Given a Diophantine equation with any number of unknown 

quantities and with rational integral numerical coefficients: To devise

a process according to which it can be determined in a finite number

of operations whether the equation is solvable in rational integers. 

In effect, Hilbert’s 10th Problem is:

Find an algorithm for the following problem:

Given a polynomial P(x1,...,xn) with integer coefficients, does it have

an all-integer solution?

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Hilbert’s 10th Problem

• Hilbert’s 10th Problem – 1900  

(10th in Hilbert’s list of 23 problems)

Find an algorithm for the following problem:

Given a polynomial P(x1,...,xn) with integer coefficients, does it 
have an all-integer solution?

• Y. Matiyasevich – 1971

(building on M. Davis, H. Putnam, and J. Robinson)

– Hilbert’s 10th Problem is undecidable, hence no such 
algorithm exists. 

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Hilbert’s 10th Problem

• Fact: The following variant of Hilbert’s 10th Problem is 
undecidable:

– Given two polynomials p1(x1,…xn) and p2(x1,…xn) with 
positive integer coefficients and no constant terms, is 
it true that p1 ≤ p2? 

In other words, is it true that p1(a1,…,an) ≤
p2(a1,…an), for all positive integers a1,…,an?

• Thus, there is no algorithm for deciding questions like:

– Is  3x1
4x2x3 + 2x2x3 ≤ x1

6 + 5x2x3
?

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Unions of Conjunctive Queries

Theorem (Ioannidis & Ramakrishnan – 1995):

Under bag semantics, the containment problem for unions

of conjunctive queries is undecidable.

Hint of Proof:  

" Reduction from the previous variant of Hilbert’s 10th

Problem:

" Use joins of unary relations to encode monomials 
(products of variables).

" Use unions to encode sums of monomials. 

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Unions of Conjunctive Queries

Example: Consider the polynomial 3x1
4x2x3 + 2x2x3

" The monomial x1
4x2x3 is encoded by the conjunctive query

P1(w),P1(w),P
1
(w), P

1
(w), P2(w),P3(w).

" The monomial x2x3 is encoded by the conjunctive query 
P2(w),P3(w).

" The polynomial 3x1
4x2x3 + 2x2x3 is encoded by the union 

having:

" three copies of P1(w),P1(w),P1(w), P
1
(w), P2(w),P3(w)   

and 

" two copies of P2(w),P3(w).

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Complexity of Query Containment

Class of Queries Complexity –

Set Semantics

Complexity –

Bag Semantics

Conjunctive 
queries

NP-complete
CM – 1977

Unions of conj. 
queries 

NP-complete
SY - 1980

Undecidable
IR - 1995

Conj. queries with 

≠≠≠≠ , ≤, ≥
Π2

p-complete
vdM - 1992

First-order (SQL) 
queries

Undecidable
Trakhtenbrot - 1949

Undecidable

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Conjunctive Queries with ≠

Theorem  (Jayram, K …, Vee – 2006):

Under bag semantics, the containment problem for

conjunctive queries with ≠ is undecidable.

In fact, this problem is undecidable even if

" the queries use only a single relation of arity 2;

" the number of inequalities in the queries is at most some 
fixed (albeit huge) constant. 

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Complexity of Query Containment

Class of Queries Complexity –

Set Semantics

Complexity –

Bag Semantics

Conjunctive 
queries

NP-complete
CM – 1977

Open

Unions of conj. 
queries 

NP-complete
SY - 1980

Undecidable
IR - 1995

Conj. queries with 

≠≠≠≠ , ≤, ≥
Π2

p-complete
vdM - 1992

Undecidable
JKV - 2006

First-order (SQL) 
queries

Undecidable
Trakhtenbrot - 1949

Undecidable

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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Subsequent Developments

• Some progress has been made towards identifying special 
classes of conjunctive queries for which the containment 
problem under bag semantics is decidable.

– Afrati, Damigos, Gergatsoulis – 2010

• Projection-free conjunctive queries.

– Kopparty and Rossman – 2011

• A large class of boolean conjunctive queries on graphs.

Source: Phokion Kolaitis: https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01

https://simons.berkeley.edu/talks/phokion-kolaitis-2016-09-01
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• Kolaitis. Logic and Databases. Logical Structures in Computation Boot Camp, Berkeley 

2016. https://simons.berkeley.edu/talks/logic-and-databases
• Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995.

http://webdam.inria.fr/Alice/, Ch 2.1: Theoretical background, Ch 6.2: Conjunctive queries 
& homomorphisms & query containment, Ch 6.3: Undecidability of equivalence for 
calculus.

• Chandra, Merlin. Optimal implementation of conjunctive queries in relational data bases. 
STOC 1977. https://doi.org/10.1145/800105.803397
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