T2: Complexity of Query Evaluation L9: Query containment \& Homomorphisms

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Date: 2020/2/4

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- Beyond CQs
- CQ equivalence under bag semantics
- CQ minimization
- Nested queries
- Tree pattern queries

Query Equivalence

Two queries q_{1}, q_{2} are equivalent, denoted $q_{1} \equiv q_{2}$, if for every database instance D, we have $q_{1}(D)=q_{2}(D)$.

Query q_{1} is contained in query q_{2}, denoted q_{2}, if for every database instance D, we have $q_{1}(D) \subseteq q_{2}(D)$

Corollary
$q_{1} \equiv q_{2}$ is equivalent to ($q_{1} \subseteq q_{2}$ and $q_{1} \supseteq q_{2}$)
If queries are Boolean, then query containment $=$ logical implication:
$q_{1} \Leftrightarrow q_{2}$ is equivalent to $\left(q_{1} \Rightarrow q_{2}\right.$ and $\left.q_{1} \Leftarrow q_{2}\right)$

Homomorphisms

A homomorphism h from Boolean q_{2} to q_{1} is a function $h: \operatorname{var}\left(q_{2}\right) \rightarrow \operatorname{var}\left(q_{1}\right) \cup$ const $\left(q_{1}\right)$ such that: $S A M \Sigma$ for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{2}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}

Example

$q_{1}(x):-R(x, y), R(y, y), R(y, z)$
$q_{2}(s):-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$

Homomorphisms

A homomorphism h from Boolean q_{2} to q_{1} is a function $h: \operatorname{var}\left(q_{2}\right) \rightarrow \operatorname{var}\left(q_{1}\right) \mathrm{U}$ const $\left(q_{1}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{2}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}

Example

$$
\begin{aligned}
& q_{1}(x):-R(x, y), R(y, y), R(y, z) \\
& q_{2}(s):-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)
\end{aligned}
$$

(also: $h_{2 \rightarrow 1^{\prime}}:\{s, u, v, w\} \rightarrow\{4\}$)

$$
h_{2 \rightarrow 1}:\{(s, x),(u, y),(v, y),(w, z)\}
$$

Homomorphisms

A homomorphism h from Boolean q_{2} to q_{1} is a function $h: \operatorname{var}\left(q_{2}\right) \rightarrow \operatorname{var}\left(q_{1}\right) \mathrm{U}$ const $\left(q_{1}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{2}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}

Example

$$
\begin{aligned}
& q_{1}(x):-R(x, y), R(y, y), R(y, z) \\
& q_{2}(s):-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)
\end{aligned}
$$

$$
q_{1}(x)
$$

$$
\begin{aligned}
& h_{1 \rightarrow 2}: ? \\
& h_{2 \rightarrow 1}:\{(s, x),(u, y),(v, y),(w, z)\}
\end{aligned}
$$

Homomorphisms

A homomorphism h from Boolean q_{2} to q_{1} is a function $h: \operatorname{var}\left(q_{2}\right) \rightarrow \operatorname{var}\left(q_{1}\right) \mathrm{U}$ const $\left(q_{1}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{2}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}

Example

$q_{1}(x):-R(x, y), R(y, y), R(y, z)$
$q_{2}(s):-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v), R(v, v)$

$$
h_{2 \rightarrow 1}:\{(s, x),(u, y),(v, y),(w, z)\}
$$

Homomorphisms
A homomorphism h from Boolean q_{2} to q_{1} is a function
$h: \operatorname{var}\left(q_{2}\right) \rightarrow \operatorname{var}\left(q_{1}\right) \cup$ const $\left(q_{1}\right)$ such that:
for every atom $R\left(x_{1}, x_{2}, \ldots\right)$ in q_{2}, there is an atom $R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}

$$
P(2,2)
$$

Compare o our earlier example:

$$
\exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x}, \mathrm{x}) \quad \Rightarrow \quad \exists \mathrm{x} \cdot \exists \mathrm{y} \cdot \mathrm{P}(\mathrm{x}, \mathrm{y})
$$

$$
P(1,2)
$$

Example

$$
\begin{aligned}
& q_{1}(x):-R(x, y), R(y, y), R(y, z) \\
& q_{2}(s):-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)
\end{aligned}
$$

Canonical database

Definition (Canonical database)

Given a conjunctive query q, the canonical database $\sum_{{ }_{c}}[q]$ js the database instance where each atom in q becomes a fact in the instance.

Example
$q_{1}(x):-R(x, y), R(y, y), R(y, z)$
$D_{c}[q]=$?

Canonical database

Definition (Canonical database)

Given a conjunctive query q, the canonical database $D_{c}[q]$ is the database instance where each atom in q becomes a fact in the instance.

Example

$q_{1}(x):-R(x, y), R(y, y), R(y, z)$
$D_{c}[q]=\left\{R\left(x^{\prime} x^{\prime}, ' y^{\prime}\right), \widehat{,}\left(\right.\right.$ ' $\left.\left.^{\prime}, y^{\prime} y^{\prime}\right),, R\left('^{\prime} y^{\prime}, z^{\prime}\right)\right\}$
$\equiv\{R(\mathrm{a}, \mathrm{b}), R(\mathrm{~b}, \mathrm{~b}), R(\mathrm{~b}, \mathrm{c})\}$

Just treat each variable as different constant \odot
[Chandra and Merlin 1977]

Theorem (Query Containment)

Given two Boolean CQs q_{1}, q_{2}, the following statements are equivalent:

1) $q_{1} \subseteq q_{2}$

2) There is a homomorphism $h_{2 \rightarrow 1}$ from q_{2} to q_{1}
3) $q_{2}\left(D_{C}\left[q_{1}\right]\right)$ is true

We will only look at 2) $\Rightarrow 1$)
[Chandra and Merlin 1977]
If there is a homomorphism hfrom q_{2} to q_{1}, then $q_{1} \subseteq q_{2}$

1. Given $h=h_{2 \rightarrow 1}$, we will show that for any $\mathrm{D}: q_{1}(\mathrm{D}) \Rightarrow q_{2}(\mathrm{D})$
2. For $q_{1}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{1}\right) \in \mathrm{D}$

$$
g=v \circ h
$$

$$
g(x)=v(h(x))
$$

3. We will show that the composition $g=v \circ h$ is a valuation for q_{2}

[Chandra and Merlin 1977]

If there is a homomorphism hfrom q_{2} to q_{1}, then $q_{1} \subseteq q_{2}$

1. Given $h=h_{2 \rightarrow 1}$, we will show that for any $D: q_{1}(D) \Rightarrow q_{2}(D)$

$$
\begin{gathered}
g=v \circ h \\
g(x)=v(h(x))
\end{gathered}
$$

2. For $q_{1}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{1}\right) \in \mathrm{D}$
3. We will show that the composition $g=v \circ h$ is a valuation for q_{2} 3a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1} 3b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

[Chandra and Merlin 1977]

If there is a homomorphism h from q_{2} to q_{1}, then $q_{1} \subseteq q_{2}$

1. Given $h=h_{2 \rightarrow 1}$, we will show that for any $\mathrm{D}: q_{1}(\mathrm{D}) \Rightarrow q_{2}(\mathrm{D})$

$$
\begin{gathered}
g=v \circ h \\
g(x)=v(h(x))
\end{gathered}
$$

2. For $q_{1}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{1}\right) \in \mathrm{D}$
3. We will show that the composition $g=v \circ h$ is a valuation for q_{2}

3a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}
3b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D

Example

$q_{1}():-R(x, y), R(y, y), R(y, z)$
$q_{2}():-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$

$$
h_{2 \rightarrow 1}:\{(s, x),(u, y),(v, y),(w, z)\}
$$

[Chandra and Merlin 1977]

If there is a homomorphism h from q_{2} to q_{1}, then $q_{1} \subseteq q_{2}$

1. Given $h=h_{2 \rightarrow 1}$, we will show that for any $\mathrm{D}: q_{1}(\mathrm{D}) \Rightarrow q_{2}(\mathrm{D})$

$$
\begin{gathered}
g=v \circ h \\
g(x)=v(h(x))
\end{gathered}
$$

2. For $q_{1}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{1}\right) \in \mathrm{D}$
3. We will show that the composition $g=v \circ h$ is a valuation for q_{2}

3a. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}
3b. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D
Example
$q_{1}():-R(x, y), R(y, y), R(y, z)$
$q_{2}():-R(s, u), R(u, w), R(s, v), R(v, w), R(u, v)$

[Chandra and Merlin 1977]

If there is a homomorphism h from q_{2} to q_{1}, then $q_{1} \subseteq q_{2}$

1. Given $h=h_{2 \rightarrow 1}$, we will show that for any $\mathrm{D}: q_{1}(\mathrm{D}) \Rightarrow q_{2}(\mathrm{D})$

$$
\begin{gathered}
g=v \circ h \\
g(x)=v(h(x))
\end{gathered}
$$

2. For $q_{1}(\mathrm{D})$ to hold, there is a valuation v s.t. $v\left(q_{1}\right) \in \mathrm{D}$
3. We will show that the composition $g=v \circ h$ is a valuation for q_{2}

Ba. By definition of h, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(h\left(x_{1}\right), h\left(x_{2}\right), \ldots\right)$ in q_{1}
Bb. By definition of v, for every $R\left(x_{1}, x_{2}, \ldots\right)$ in $q_{2}, R\left(v\left(h\left(x_{1}\right)\right), v\left(h\left(x_{2}\right)\right), \ldots\right)$ in D
Example

Combined complexity of CQC and CQE

Corollary:
The following problems are NP-complete:

1) Given two (Boolean) conjunctive queries Q and Q^{\prime}, is $Q \subseteq Q^{\prime}$?
2) Given a Boolean conjunctive query Q and an instance D, does $D \vDash Q$?

Proof:

(a) Membership in NP follows from the Homom. Theorem:
$Q \subseteq Q^{\prime}$ if and only if there is a homomorphism $h: Q^{\prime} \rightarrow Q$
(b) NP-hardness follows from 3-Colit G is 3-colorable if and only if $\mathrm{Q}^{\mathrm{K}_{3}} \subseteq \mathrm{Q}^{\mathrm{G}}$.

The Complexity of Database Query Languages

	Relational Calculus	CQs
Query Eval.: Data Complexity	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)
Query Eval.: Combined Compl.	PSPACE- complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- Beyond CQs
- CQ equivalence under bag semantics
- CQ minimization
- Nested queries
- Tree pattern queries

Beyond Conjunctive Queries

- What can we say about query languages of intermediate expressive power between conjunctive queries and the full relational calculus?
- Conjunctive queries form the sublanguage of relational algebra obtained by using only cartesian product, projection, and selection with equality conditions.
- The next step would be to consider relational algebra expressions that also involve union.

Beyond Conjunctive Queries

- Definition:
- A union of conjunctive queries (UCQ) is a query expressible by an expression of the form $q_{1} \cup q_{2} \cup \ldots \cup q_{m}$, where each q_{i} is a conjunctive query.
- A monotone query is a query expressible by a relational algebra expression which uses onlyunion, yartesian product, projection, andselection with equality condition.
- Fact:
- Every union of conjunctive queries is a monotone query.
- Every monotone query is equivalent to a union of conjunctive queries, but
- the union may have exponentially many disjuncts.
- (normal form for monotone queries).
- Monotone queries are precisely the queries expressible by relational calculus expressions using Λ, K, and \exists only.

Given edge relation $E(A, B)$, find paths of length 1 or 2
RA ? E (unnamed RA)
RC ?

Unions of COs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $E \cup \pi_{1,4}\left(\sigma_{2=3}(E \times E)\right)$
$R C$?

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)

Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \bigcup \pi_{1,4}\left(\sigma_{2=3}(E \times E)\right.$ (unnamed RA)

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $E \cup \pi_{1,4} \sigma_{2=3}(E \times E)$ (unnamed RA)
RC $\quad E\left(x_{1}, x_{2}\right) \vee \exists z\left[E\left(z, x_{2}\right) \wedge E\left(z, x_{2}\right)\right]$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Is following query monotone ? $(R \cup S) \bowtie(T \cup V)$

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{1,4}\left(\sigma_{2=3}(E \times E)\right.$) (unnamed RA)
RC $\quad E\left(x_{1}, x_{2}\right) \vee \exists z\left[E\left(z, x_{2}\right) \wedge E\left(z, x_{2}\right)\right]$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Is following query monotone? $\quad(R \cup S) \bowtie(T \cup V)$
Equal to a $\cup C Q$?
?

Unions of CQs and Monotone Queries

Union of Conjunctive Queries (UCQ)
Given edge relation $E(A, B)$, find paths of length 1 or 2
RA $\quad E \cup \pi_{1,4}\left(\sigma_{2=3}(E \times E)\right.$) (unnamed RA)
RC $\quad E\left(x_{1}, x_{2}\right) \vee \exists z\left[E\left(z, x_{2}\right) \wedge E\left(z, x_{2}\right)\right]$

Monotone Query

Assume schema $R(A, B), S(A, B), T(B, C), V(B, C)$
Is following query monotone?
$(R \cup S) \bowtie(T \cup V)$
Equal to a $\cup C Q$?
$(R \bowtie T) \cup(R \bowtie V) \cup(S \bowtie T) \cup(S \bowtie V)$

The Containment Problem for Unions of CQs

Theorem [Sagiv and Yannakakis 1981]
Let $q_{1} \cup q_{2} \cup \cdots \cup q_{\mathrm{m}}$ and $q_{1}^{\prime} \cup q_{2}^{\prime} \cup \cdots \cup q_{n}^{\prime}$ be two $\cup C Q s$. Then the following are equivalent:

1) $q_{1} \cup q_{2} \cup \cdots \cup q_{\mathrm{m}} \subseteq q_{1}^{\prime} \cup q_{2}^{\prime} \cup \cdots \cup q_{n}^{\prime}$
2) For every $i \leq m$, there is $j \leq n$ such that $q_{i} \subseteq q_{j}^{\prime}$

Proof: Use the Homomorphism Theorem

1. $\Rightarrow 2$. Since $D_{C}\left[q_{i}\right] \vDash q_{i}$, we have that $D_{C}\left[q_{i}\right] \vDash q_{1} \cup q_{2} \cup \ldots \cup q_{m}$
hence $D_{c}\left[q_{i}\right] \vDash q^{\prime}{ }_{1} \cup q^{\prime}{ }_{2} \cup \ldots \cup q_{n}^{\prime}$, hence there is some $j \leq n$ such that $D_{C}\left[{ }^{\prime}{ }^{i}{ }^{i} q^{\prime}{ }_{j}\right.$, hence (by the Homomorphism Theorem) $q_{i} \subseteq q^{\prime}{ }_{j}$.
2. $\Rightarrow 1$. This direction is obvious.

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs
Query Eval.: Data Complexity	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)	In LOGSPACE (hence, in P)
Query Eval.: Combined Compl.	PSPACE- complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete

Monotone Queries

- Even though monotone queries have the same expressive power as unions of conjunctive queries, the containment problem for monotone queries has higher complexity than the containment problem for unions of conjunctive queries (syntax/complexity tradeoff)
- Theorem: Sagiv and Yannakakis - 1982

The containment problem for monotone queries is $\Pi_{2}{ }^{p-}$ complete.

- Note: The prototypical $\Pi_{2}{ }^{\mathrm{p}}$-complete problem is $\forall \exists$ SAT, i.e., the restriction of QBF to formulas of the form

$$
\forall \mathrm{x}_{1} \ldots \forall \mathrm{x}_{\mathrm{m}} \exists \mathrm{y}_{1} \ldots \exists \mathrm{y}_{\mathrm{n}} \phi .
$$

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs	Monotone queries
Query Eval.: Data Complexity	In LOGSPACE (hence, in P)			
Query Eval.: Combined Compl.	PSPACE- complete	NP-complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete	$\Pi_{2}^{\mathrm{p} \text {-complete }}$

Conjunctive Queries with Inequalities

- Definition: Conjunctive queries with inequalities form the sublanguage of relational algebra obtained by using only cartesian product, projection, and selection with equality and inequality $(\neq,<, \leq)$ conditions.
- Example: $\mathrm{Q}(\mathrm{x}, \mathrm{y}):-\mathrm{E}(\mathrm{x}, \mathrm{z}), \mathrm{E}(\mathrm{z}, \mathrm{w}), \mathrm{E}(\mathrm{w}, \mathrm{y}), \mathrm{z} \neq \mathrm{w}, \mathrm{z}<\mathrm{y}$.
- Theorem: (Klug - 1988, van der Meyden - 1992)
- The query containment problem for conjunctive queries with inequalities is $\Pi_{2}{ }^{\mathrm{p}}$-complete.
- The query evaluation problem for conjunctive queries with inequalities in NP-complete.

The Complexity of Database Query Languages

	Relational Calculus	CQs	UCQs	Monotone queries / CQs with inequalities
Query Eval.: Data Complexity	In LOGSPACE (hence, in P)			
Query Eval.: Combined Compl.	PSPACE- complete	NP-complete	NP-complete	NP-complete
Query Equivalence \& Containment	Undecidable	NP-complete	NP-complete	$\Pi_{2}^{\mathrm{p} \text {-complete }}$

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- Beyond CQs
- CQ equivalence under bag semantics
- CQ minimization
- Nested queries Following slides are from Phokion Kolaitis's talk
- Tree pattern queries on "Logic and databases" at "Logical structures in Computation Boot Camp", Berkeley 2016: https://simons.berkeley.edu/talks/logic-and-databases

Logic and Databases

Phokion G. Kolaitis
UC Santa Cruz \& IBM Research - Almaden

Lecture 4 - Part 1

Thematic Roadmap

\checkmark Logic and Database Query Languages

- Relational Algebra and Relational Calculus
- Conjunctive queries and their variants
- Datalog
\checkmark Query Evaluation, Query Containment, Query Equivalence
- Decidability and Complexity
\checkmark Other Aspects of Conjunctive Query Evaluation
- Alternative Semantics of Queries
- Bag Databases: Semantics and Conjunctive Query Containment
- Probabilistic Databases: Semantics and Dichotomy Theorems for Conjunctive Query Evaluation
- Inconsistent Databases: Semantics and Dichotomy Theorems

Alternative Semantics

- So far, we have examined logic and databases under classical semantics:
- The database relations are sets.
- Tarskian semantics are used to interpret queries definable be first-order formulas.
- Over the years, several different alternative semantics of queries have been investigated. We will discuss three such scenarios:
- The database relations can be bags (multisets).
- The databases may be probabilistic.
- The databases may be inconsistent.

Sets vs. Multisets

Relation EMPLOYEE(name, dept, salary)

- Relational Algebra Expression:

$$
\pi_{\text {salary }}\left(\sigma_{\text {dept }=\text { cs }}(\text { EMPLOYEE })\right)
$$

- SQL query:

$$
\begin{array}{ll}
\text { SELECT } & \text { salary } \\
\text { FROM } & \text { EMPLOYEE } \\
\text { WHERE } & \text { dpt = 'CS' }
\end{array}
$$

- SQL returns a bag (multiset) of numbers in which a number may appear several times, provided different faculty had the same salary.
- SQL does not eliminate duplicates, in general, because:
- Duplicates are important for aggregate queries (e.g., average)
- Duplicate elimination takes nlogn time.

Relational Algebra Under Bag Semantics

Operation	Multiplicity	- R_{1}	A B
Union $R_{1} \cup R_{2}$	$\mathrm{m}_{1}+\mathrm{m}_{2}$		$\begin{array}{ll} 1 & 2 \\ 1 & 2 \\ 2 & 3 \end{array}$
Intersection $\mathrm{R}_{1} \cap \mathrm{R}_{2}$	$\min \left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)$	- R_{2}	$\frac{B C}{24}$
Product $R_{1} \times R_{2}$	$\mathrm{m}_{1} \times \mathrm{m}_{2}$	- $\left(\mathrm{R}_{1} \bowtie \mathrm{R}_{2}\right)$	A B C
Projection and Selection	Duplicates are not eliminated		$\begin{array}{lll} 1 & 2 & 4 \\ 1 & 2 & 4 \\ 1 & 2 & 5 \\ 1 & 2 & 5 \end{array}$

Conjunctive Queries Under Bag Semantics

Chaudhuri \& Vardi - 1993
Optimization of Real Conjunctive Queries

- Called for a re-examination of conjunctive-query optimization under bag semantics.
- In particular, they initiated the study of the containment problem for conjunctive queries under bag semantics.
- This problem has turned out to be much more challenging than originally perceived.

PROBLEMS

Problems worthy of attack prove their worth
by hitting back.
in: Grooks by Piet Hein (1905-1996)

Query Containment Under Set Semantics

Class of Queries	Complexity of Query Containment
Conjunctive Queries	NP-complete Chandra \& Merlin - 1977
Unions of Conjunctive Queries	NP-complete Sagiv \& Yannakakis - 1980
Conjunctive Queries with \neq, \leq, \geq	$\Pi_{2}{ }^{\mathrm{p}}$-complete Klug 1988, van der Meyden -1992
First-Order (SQL) queries	Undecidable Trakhtenbrot - 1949

Bag Semantics vs. Set Semantics

- For bags $R_{1}, R_{2} \div \longrightarrow 4, T_{1}$ $R_{1} \subseteq_{B A G} R_{2}$ if $\left(\mathbf{m}\left(\mathbf{a}, R_{1}\right) \leq m\left(\mathbf{a}, R_{2}\right)\right.$, tor every tuple $\mathbf{a} . \in R$,
- $Q^{B A G}(\mathrm{D})$: Result of evaluating \mathbf{Q} on (bag) database D .
- $Q_{1} \subseteq_{\text {BAG }} Q_{2}$ if for every (bag) database D, we have that

$$
\mathrm{Q}_{1} \mathrm{BAG}(\mathrm{D}) \subseteq_{\mathrm{BAG}} \mathrm{Q}_{2}{ }^{\mathrm{BAG}}(\mathrm{D})
$$

Fact:

- $Q_{1} \subseteq_{\text {BAG }} \mathrm{Q}_{2}$ implies $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$.
- The converse does not always hold.

Bag Semantics vs. Set Semantics

Fact: $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ does not imply that $\mathrm{Q}_{1} \subseteq_{\mathrm{BAG}} \mathrm{Q}_{2}$.

Example:

- $Q_{1}(x)$:- $P(x), T(x)$
- $Q_{2}(x)$:- $P(x)$
- $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ (obvious from the definitions)
- $Q_{1} \ddagger_{\mathrm{BAG}} \mathrm{Q}_{2}$
- Consider the (bag) instance $\mathrm{D}=\{\mathrm{P}(\mathrm{a}), \mathrm{T}(\mathrm{a}), \mathrm{T}(\mathrm{a})\}$. Then:
- $Q_{1}(D)=\{a, a\}$
- $Q_{2}(D)=\{a\}$, so $Q_{1}(D) \nsubseteq Q_{2}(D)$.

Query Containment under Bag Semantics

- Chaudhuri \& Vardi - 1993 stated that: Under bag semantics, the containment problem for conjunctive queries is $\Pi_{2}{ }^{\mathrm{p}}$-hard.
- Problem:
- What is the exact complexity of the containment problem for conjunctive queries under bag semantics?
- Is this problem decidable?

Query Containment Under Bag Semantics

- 23 years have passed since the containment problem for conjunctive queries under bag semantics was raised.
- Several attacks to solve this problem have failed.
- At least two technically flawed PhD theses on this problem have been produced.
- Chaudhuri and Vardi have withdrawn the claimed $\Pi_{2}{ }^{\mathrm{p}}$-hardness of this problem; no one has provided a proof.

Query Containment Under Bag Semantics

- The containment problem for conjunctive queries under bag semantics remains open to date.
- However, progress has been made towards the containment problem under bag semantics for the two main extensions of conjunctive queries:
- Unions of conjunctive queries
- Conjunctive queries with \neq

Unions of Conjunctive Queries

Theorem (loannidis \& Ramakrishnan - 1995):
Under bag semantics, the containment problem for unions of conjunctive queries is undecidable.
Hint of Proof:
Reduction from Hilbert's $10^{\text {th }}$ Problem.

Hilbert's $10^{\text {th }}$ Problem

- Hilbert's $10^{\text {th }}$ Problem - 1900 ($10^{\text {th }}$ in Hilbert's list of 23 problems)

Find an algorithm for the following problem:
Given a polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients, does it have an all-integer solution?

- Y. Matiyasevich - 1971
(building on M. Davis, H. Putnam, and J. Robinson)
- Hilbert's $10^{\text {th }}$ Problem is undecidable, hence no such algorithm exists.

Hilbert's $10^{\text {th }}$ Problem

- Fact: The following variant of Hilbert's $10^{\text {th }}$ Problem is undecidable:
- Given two polynomials $p_{1}\left(x_{1}, \ldots x_{n}\right)$ and $p_{2}\left(x_{1}, \ldots x_{n}\right)$ with positive integer coefficients and no constant terms, is it true that $p_{1} \leq p_{2}$? In other words, is it true that $p_{1}\left(a_{1}, \ldots, a_{n}\right) \leq$ $p_{2}\left(a_{1}, \ldots a_{n}\right)$, for all positive integers a_{1}, \ldots, a_{n} ?
- Thus, there is no algorithm for deciding questions like:
- Is $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3} \leq x_{1} 6+5 x_{2} x_{3}$?

Unions of Conjunctive Queries

Theorem (loannidis \& Ramakrishnan - 1995):
Under bag semantics, the containment problem for unions of conjunctive queries is undecidable.

Hint of Proof:

- Reduction from the previous variant of Hilbert's $10^{\text {th }}$ Problem:
- Use joins of unary relations to encode monomials (products of variables).
- Use unions to encode sums of monomials.

Unions of Conjunctive Queries

Example: Consider the polynomial $3 x_{1}{ }^{4} x_{2} x_{3}+2 x_{2} x_{3}$

- The monomial $x_{1}{ }^{4} x_{2} x_{3}$ is encoded by the conjunctive query

$$
P_{1}(w), P_{1}(w), P_{1}(w), P_{1}(w), P_{2}(w), P_{3}(w) .
$$

- The monomial $x_{2} x_{3}$ is encoded by the conjunctive query $\mathrm{P}_{2}(\mathrm{w}), \mathrm{P}_{3}(\mathrm{w})$.
- The polynomia $\left(x_{1} x_{1} x_{2} x_{3}\right)+\left\{2 x_{2} x_{3} /\right.$ is encoded by the union having:
- three copies of $R_{1}(w), P_{1}(w), P_{1}(w), P_{1}(w), P_{2}(w), P_{3}(w)$ and
- two copies of $\mathrm{P}_{2}(\mathrm{w}), \mathrm{P}_{3}(\mathrm{y} / \mathrm{s})$.

Complexity of Query Containment

Class of Queries	Complexity - Set Semantics	Complexity - Bag Semantics
Conjunctive queries	NP -complete CM -1977	
Unions of conj. queries	NP -complete SY-1980	Undecidable IR - 1995
Conj. queries with \neq, \leq, \geq	Π_{2}^{p}-complete $\mathrm{vdM}-1992$	
First-order (SQL) queries	Undecidable Trakhtenbrot -1949	Undecidable

Conjunctive Queries with \neq

Theorem (Jayram, K ..., Vee - 2006):
Under bag semantics, the containment problem for conjunctive queries with \neq is undecidable.

In fact, this problem is undecidable even if

- the queries use only a single relation of arity 2 ;
- the number of inequalities in the queries is at most some fixed (albeit huge) constant.

Complexity of Query Containment

Class of Queries	Complexity - Set Semantics	Complexity - Bag Semantics
Conjunctive queries	NP-complete CM - 1977	Open
Unions of conj. queries	NP-complete SY - 1980	Undecidable IR - 1995
Conj. queries with \neq, \leq, \geq	$\Pi_{2}{ }^{\mathrm{P}}$-complete vdM -1992	Undecidable JKV - 2006
First-order (SQL) queries	Undecidable Trakhtenbrot -1949	Undecidable

Subsequent Developments

- Some progress has been made towards identifying special classes of conjunctive queries for which the containment problem under bag semantics is decidable.
- Afrati, Damigos, Gergatsoulis - 2010
- Projection-free conjunctive queries.
- Kopparty and Rossman - 2011
- A large class of boolean conjunctive queries on graphs.

Pointers to related work

- Kolaitis. Logic and Databases. Logical Structures in Computation Boot Camp, Berkeley 2016. https://simons.berkeley.edu/talks/logic-and-databases
- Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995. http://webdam.inria.fr/Alice/, Ch 2.1: Theoretical background, Ch 6.2: Conjunctive queries \& homomorphisms \& query containment, Ch 6.3: Undecidability of equivalence for calculus.
- Chandra, Merlin. Optimal implementation of conjunctive queries in relational data bases. STOC 1977. https://doi.org/10.1145/800105.803397

