T2: Complexity of Query Evaluation L8: Query containment \& Homomorphisms

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Date: 2020/1/31

Three Fundamental Algorithmic Problems about Queries
Let L be a database query language.

- The Query Evaluation Problem:
- Given a query q in L and a database instance D, evaluate $q(D)$
- That's the main problem in query processing.
- The Query Equivalence Problem:
- Given two queries q and q^{\prime} in L, is it the case that $q \equiv q^{\prime}$?
- i.e., is it the case that, for every database instance D, we have that $q(D)=q^{\prime}(D)$?
- This problem underlies query processing and optimization, as we often need to transform a given query to an equivalent one.
- The Query Containment Problem:
- Given two queries q and q^{\prime} in L, is it the case that $q \subseteq q^{\prime}$?

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- Beyond CQs
- CQ equivalence under bag semantics
- CQ minimization
- Nested queries
- Tree pattern queries

Why bother about Query Containment

- The Query Containment Problem and Query Equivalence Problem are closely related to each other:
- $q \equiv q^{\prime}$ if and only if
- $q \subseteq q^{\prime}$ and $q^{\prime} \subseteq q$
$-q \subseteq q^{\prime}$ if and only if
- $q \equiv\left(q \cap q^{\prime}\right)$

Complexity of Equivalence and Containment

- Theorem: The Query Equivalence Problem for relational calculus queries is...
... undecidable $:$
- Proof: Use Trakhtenbrot's Theorem (1949):
- The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is undecidable.
- Finite Validity Problem \preccurlyeq Query Equivalence Problem
- If Ψ^{*} is a fixed finitely valid relational calculus sentence, then for every relational calculus sentence φ, we have that: φ is finitely valid $\Leftrightarrow \varphi \equiv \psi^{*}$.
- Corollary: The Query Containment Problem for relational calculus queries in undecidable.
- Proof: Query Equivalence \preccurlyeq Query Containment, since

$$
\mathrm{q} \equiv \mathrm{q}^{\prime} \Leftrightarrow \mathrm{q} \subseteq \mathrm{q}^{\prime} \text { and } \mathrm{q}^{\prime} \subseteq \mathrm{q} .
$$

Complexity of the Query Evaluation Problem

- The Query Evaluation Problem for Relational Calculus:
- Given a RC formula φ and a database instance D, find $\varphi^{\text {adom }(D) . ~}$
- Theorem: The Query Evaluation Problem for Relational Calculus is PSPACE-complete.
- PSPACE: decision problems, can be solved using an amount of memory that is polynomial in the input length (\sim in polynomial amount of space).
- PSPACE-complete: PSPACE + every other PSPACE problem can be transformed to it in polynomial time (PSPACE-hard)
- Proof: We need to show both
- This problem is in PSPACE.
- This problem is PSPACE-hard. (We only focus on this task)

Complexity of the Query Evaluation Problem

- Theorem: The Query Evaluation Problem for Relational Calculus is PSPACE-hard.
- Reduction uses QBF - Quantified Boolean Formulas
- Given QBF $\forall x_{1} \exists x_{2} \ldots . . \forall x_{k} \Psi$,
- is it true or false (notice every variable is quantified = bound at beginning of sentence, there are no free variables)
- Proof
- Show that QBF $\preccurlyeq p$ Query Evaluation for Relational Calculus

Complexity of the Query Evaluation Problem

Proof: Show that QBF $\leqslant p$ Query Evaluation for Relational Calculus

- Given QBF $\forall x_{1} \exists x_{2} \ldots . . \forall x_{k} \psi$,
- Let V and P be two unary relation symbols
- Obtain ψ^{*} from ψ by replacing x_{i} by $P\left(x_{i}\right)$, and $\neg x_{i}$ by $\neg P\left(x_{i}\right)$
- Let D be the database instance with $V=\{0,1\}, P=\{1\}$.
- Then the following statements are equivalent:
- $\forall x_{1} \exists x_{2} \ldots . . . \forall x_{k} \psi$ is true
$-\forall \mathrm{x}_{1}\left(\mathrm{~V}\left(\mathrm{x}_{1}\right) \rightarrow \exists \mathrm{x}_{2}\left(\mathrm{~V}\left(\mathrm{x}_{2}\right) \wedge\left(\ldots \forall \mathrm{x}_{\mathrm{k}}\left(\mathrm{V}\left(\mathrm{x}_{\mathrm{k}}\right) \rightarrow \Psi^{*}\right)\right) \ldots\right)\right.$ is true on D .

Sublanguages of Relational Calculus

- Question: Are there interesting sublanguages of relational calculus for which the Query Containment Problem and the Query Evaluation Problem are "easier" than the full relational calculus?
- Answer:
- Yes, the language of Conjunctive Queries (CQs) is such a sublanguage.
- Moreover, conjunctive queries are the most frequently asked queries against relational databases.

Conjunctive Queries (CQs)

- Definition:
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic formulas $R\left(y_{1}, \ldots, y_{n}\right)$, and \wedge and \exists only.

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): \exists z_{1} \ldots \exists z_{m} \phi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{k}\right)\right\}
$$

- where $\phi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{k}\right)$ is a conjunction of atomic formulas of the form $R\left(y_{1}, \ldots, y_{m}\right)$.
- Prenex formula: prefix (quantifiers \& bound variables), then quantifier-free part
- Equivalently, a CQ is a query expressible by a RA expression of the form
- $\pi_{x}\left(\sigma_{\odot}\left(R_{1} \times \ldots \times R_{n}\right)\right)$, where
- Θ is a conjunction of equality atomic formulas (equijoin).
- Equivalently, a CQ is a query expressible by an SQL expression of the form
- SELECT <list of attributes>

FROM <list of relation names>
WHERE <conjunction of equalities>

Conjunctive Queries (CQs)

- Definition:
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic formulas $R\left(y_{1}, \ldots, y_{n}\right)$, and \wedge and \exists only.

$$
\left\{\left(x_{1}, \ldots, x_{k}\right): \exists z_{1} \ldots \exists z_{m} \phi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{k}\right)\right\}
$$

- where $\phi\left(x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{k}\right)$ is a conjunction of atomic formulas of the form $R\left(y_{1}, \ldots, y_{m}\right)$.
- Equivalently, a CQ can be written as a logic-programming rule:

$$
Q\left(x_{1}, \ldots, x_{k}\right):-R_{1}\left(u_{1}\right), \ldots, R_{n}\left(u_{n}\right) \text {, where }
$$

- Each variable x_{i} occurs in the right-hand side of the rule.
- Each \mathbf{u}_{i} is a tuple of variables (not necessarily distinct)
- The variables occurring in the right-hand side (the body), but not in the left-hand side (the head) of the rule are existentially quantified (but the quantifiers are not displayed).

Examples of Conjunctive Queries

- Path of Length 2: (Binary query)

$$
\{(x, y): \exists z(E(x, z) \wedge E(z, y))\}
$$

- As a relational algebra expression:

$$
\pi_{1,4}\left(\sigma_{\$ 2=\$ 3}(E \times E)\right)
$$

- As a Datalogrule:

$$
q(x, y):-E(x, z), E(z, y)
$$

- Cycle of Length 3: (Boolean query)

$$
\exists x \exists y \exists z(E(x, y) \wedge E(y, z) \wedge E(z, x))
$$

- As a rule (the head has no variables)

$$
Q:-E(x, y), E(y, z), E(z, x)
$$

Conjunctive Queries

- Every natural join is a conjunctive query with ...
... no existentially quantified variables
- Example: Given $P(A, B, C), R(B, C, D)$
$-P \bowtie R=\{(x, y, z, w): P(x, y, z) \wedge R(y, z, w)\}$
- $q(x, y, z, w):-P(x, y, z), R(y, z, w)$
(no variables are existentially quantified)
- SELECT P.A, P.B, P.C, R.D

FROM P, R
WHEREP.B = R.B AND P.C=R.C

- Conjunctive queries are also known as SPJ-queries (SELECT-PROJECT-JOIN queries)

Conjunctive Query Evaluation and Containment

- Definition: Two fundamental problems about CQs
- Conjunctive Query Evaluation (CQE):
- Given a conjunctive query q and an instance D, find $q(D)$.
- Conjunctive Query Containment (CQC):
- Given two k-ary conjunctive queries q_{1} and q_{2}, is it true that $\mathrm{q}_{1} \subseteq \mathrm{q}_{2}$? (i.e., for every instance D, we have that $q 1(D) \subseteq q 2(D)$)
- Given two Boolean conjunctive queries $q 1$ and $q 2$, is it true that $q_{1} \vDash q_{2}$? (that is, for all D, if $D \vDash q_{1}$, then $D \vDash q_{2}$)?
- Notice that CQC is logical implication.
- Later today: connection to homomorphisms

Vardi's Taxonomy of the Query Evaluation Problem

M.Y Vardi, "The Complexity of Relational Query Languages", 1982

- Definition: Let L be a database query language.
- The combined complexity of L is the decision problem:
- given an L-sentence and a database instance D, is φ true on D ?
- In symbols, does $D=\varphi$ (does D satisfy φ)?
- The data complexity of L is the family of the following decision problems P_{φ}, where φ is an L-sentence:
- given a database instance D, does $D \vDash \varphi$?
- The query complexity of L is the family of the following decision problems P_{D}, where D is a database instance:
- given an L-sentence φ, does $D \vDash \varphi$?

Vardi's Taxonomy of the Query Evaluation Problem

Vardi's "empirical" discovery:

- For most query languages L :
- The data complexity of L is of lower complexity than both the combined complexity of L and the query complexity of L.
- The query complexity of L can be as hard as the combined complexity of L.

Taxonomy of the Query Evaluation Problem for Relational Calculus

Complexity Classes

The Query Evaluation Problem for Relational Calculus

Problem	Complexity
Combined Complexity	PSPACE-complete
Query Complexity	• in PSPACE - can be PSPACE- complete
Data Complexity	In LOGSPACE

Summary

- Relational Algebra and Relational Calculus have "essentially" the same expressive power.
- The Query Equivalence Problem for Relational Calculus is undecidable.
- Therefore also the Query Containment Problem
- The Query Evaluation Problem for Relational Calculus:
- Data Complexity is in LOGSPACE
- Combined Complexity is PSPACE-complete
- Query Complexity is PSPACE-complete.

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- Beyond CQs
- CQ equivalence under bag semantics
- CQ minimization
- Nested queries
- Tree pattern queries

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to distinct elements of its codomain
surjective (or onto): every element y in the codomain y of f has at least one element x in the domain that maps to it
injective \& surjective
neighter
not a mapping

Bijection, Injection, and Surjection

	surjective	non-surjective
injective	 bijective	injective-only
noninjective	 surjective-only	 general

Bijection, Injection, and Surjection

Neither Injective or Surjective
Two elements in set A maps to the
same element in set B (not injective), and one element in set B is not in the image or range of the function that maps set A to B (not surjective).

Sources: https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur, http://mathonline.wikidot.com/injections-surjections-and-bijections

Bijection, Injection, and Surjection

NOT a
Function
A has many B

General Function

0
Injective (not surjective)

Surjective (not injective)
Every B has some A

Bijective (injective, surjective)
A to B, perfectly

A function not injective not surjective

An injective function not surjective

A surjective function not injective

A bijective function injective + surjective

Not a function

We make a detour to Graph matching

- Finding a correspondence between the nodes and the edges of two graphs that satisfies some (more or less stringent) constraints

Homomorphism

- A graph homomorphism h from graph $G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

Homomorphism

- A graph homomorphism h from $\operatorname{Graph} G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

$$
h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\}
$$

does not need to be surjective

Homomorphism

- A graph homomorphism h from $\operatorname{Graph} G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

$$
h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\}
$$

does not need to be surjective

Homomorphism

- A graph homomorphism h from $\operatorname{Graph} G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

$$
h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\}
$$

does not need to be surjective
$h:\{(1, a),(2, a),(3, b),(4, c)\}$
does not need to be injective

Homomorphism

- A graph homomorphism h from $\operatorname{Graph} G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$
- "edge-preserving": if two nodes Correspondence can be many-to-one: nothing mapped to two nodes in H that prevents that 2 nodes in the first graph are to be mapped to the identical nodes in the second!

$$
h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\}
$$

does not need to be surjective
$h:\{(1, a),(2, a),(3, b),(4, c)\}$
does not need to be injective

Homomorphism

- A graph homomorphism h from $\operatorname{Graph} G\left(V_{G}, E_{G}\right)$ to $H\left(V_{H}, E_{H}\right)$, is a mapping from V_{G} to V_{H} such that $\{x, y\} \in E_{G}$ implies $\{h(x), h(y)\} \in E_{H}$ - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

$$
h:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\}
$$

$$
h:\{(1, a),(2, a),(3, b),(4, c)\}
$$

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible f from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{f(u), f(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

$$
f:\{(\mathrm{a}, 1),(\mathrm{b}, 3),(\mathrm{c}, 4)\}
$$

$$
f:\{(1, a),(2, a),(3, b),(4, c)\}
$$

Graph Isomorphism

- Graphs $G\left(V_{G}, E_{G}\right)$ and $H\left(V_{H}, E_{H}\right)$ are isomorphic iff there is an invertible f from V_{G} to V_{H} s.t. $\{x, y\} \in E_{G}$ iff $\{f(u), f(v)\} \in E_{H}$
- We need to find a one-to-one correspondence

$$
\begin{gathered}
c 4 d\} \\
\text { f: }\{(1, \mathrm{a}),(\mathrm{b}, 2),(\mathrm{c}, 3),(\mathrm{d}, 4),(\mathrm{e}, 5)\} \\
\text { bijection }=\text { surjective and injective }
\end{gathered}
$$

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
- Graph homomorphisms
- Homomorphism beyond graphs
- CQ containment
- Beyond CQs
- CQ equivalence under bag semantics
- CQ minimization
- Nested queries
- Tree pattern queries

Graph Homomorphism beyond graphs

Definition : Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

$$
(x y) \in E(G) \Rightarrow(f(x) f(y)) \in E(H) .
$$

We sometimes write $G \rightarrow H(G \nrightarrow H)$ if there is a homomorphism (no homomorphism) of G to H

Definition of a homomorphism naturally extends to:

- digraphs
- edge-colored graphs
- relational systems
- constraint satisfaction problems (CSPs)

An example

3 "colors" of the vertices

An example

Can this assignment be extended to a homomorphism?

An example

No, this assignment requires a loop on vertex 1 (in H)

An example

Is this assignment allowed?

An example

Definition: Let G and H be graphs. A homom. of G to H is a function $f: V(G) \rightarrow V(H)$ s.t. that

Is this assignment allowed?

An example

Definition: Let G and H be graphs. A homom. of G to H is a function $f: V(G) \rightarrow V(H)$ s.t. that

An example

Basically a partitioning problem!
salences of the partition)
The quotient of the partition (set of equivalences of the partition) is a subgraph of H .

Some observations

When does $\mathrm{G} \rightarrow \mathrm{K}_{3}$ hold? $\left(\mathrm{K}_{3}=3\right.$-clique $=$ triangle $)$ iff G is 3 -colorable

When does $G \rightarrow K_{n}$ hold? ($K_{n}=n$-clique) iff G is n -colorable

Thus homomorphisms generalize colorings: Notation: $\mathrm{G} \rightarrow \mathrm{H}$ is an H -coloring of G .

What is the complexity of testing for the existence of a homomorphism?
NP-complete

The complexity of H-coloring

Let H be a fixed graph.
H-coloring
Instance: A graph G.

Question: Does G admit an H -coloring.

Theorem [Hell,Nesetril 1990] If H is bipartite or contains a loop, then H -colouring is polynomial time solvable; otherwise, H is NP-complete.

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Which of the following formulas imply each other?
$\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{P}(\mathrm{x}, \mathrm{y})$
$\forall \mathrm{x} . \mathrm{P}(\mathrm{x}, \mathrm{x})$
$\exists \mathrm{x} . \exists \mathrm{y} . \mathrm{P}(\mathrm{x}, \mathrm{y})$
$\exists \mathrm{x} . \mathrm{P}(\mathrm{x}, \mathrm{x})$

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not need to range over distinct objects.

$$
\begin{array}{lll}
\forall \mathrm{x} . \forall \mathrm{y} \cdot \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Leftarrow & \forall \mathrm{x} \cdot \mathrm{P}(\mathrm{x}, \mathrm{x}) \\
\exists \mathrm{x} \cdot \exists \mathrm{y} \cdot \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Rightarrow & \exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x}, \mathrm{x})
\end{array}
$$

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not need to range over distinct objects.

$$
\begin{array}{rcc}
\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Leftarrow & \forall \mathrm{x} . \mathrm{P}(\mathrm{x}, \mathrm{x}) \\
\Downarrow-\begin{array}{c}
\text { Domlif domain is not empty! }
\end{array} & \\
\exists \mathrm{x} . \exists \mathrm{y} . \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Longrightarrow & \exists \mathrm{x} . \mathrm{P}(\mathrm{x}, \mathrm{x})
\end{array}
$$

Homomorphisms on Binary Structures

- Definition (Binary algebraic structure): A binary algebraic structure is a set together with a binary operation on it. This is denoted by an ordered pair (S, \star) in which S is a set and \star is a binary operation on S.
- Definition (homomorphism of binary structures): Let (S, \star) and $\left(S^{\prime}, \circ\right)$ be binary structures. A homomorphism from (S, \star) to $\left(S^{\prime}, \circ\right)$ is a map $h: S \longrightarrow S^{\prime}$ that satisfies, for all x, y in S :

$$
h(x \star y)=h(x) \circ h(y)
$$

- We can denote it by $h:(S, \star) \longrightarrow\left(S^{\prime}, \circ\right)$.

Examples

- Let $f(x)=\mathrm{e}^{x}$. Then is f a homomorphism?

$$
f(x+y)=f(x) \cdot f(y)
$$

- Yes, from the real numbers with addition ($\mathbb{R},+$) to
- the positive real numbers with multiplication $\left(\mathbb{R}^{+}, \cdot\right) \quad f_{i}(\mathbb{R},+) \longrightarrow\left(\mathbb{R}^{+}, \cdot\right)$
- even an isomorphism!

The exponential map exp $: \mathbb{R} \rightarrow \mathbb{R}^{+}$defined by $\exp (x)=e^{x}$, where e is the base of the natural logarithm, is an isomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{R}^{+}, x\right)$. Exp is a bijection since it has an inverse function (namely $\log _{e}$) and exp preserves the group operations since $e^{x+y}=e^{x} e^{y}$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

- Let $g(x)=\mathrm{e}^{i x}$. Is g also a homomorphism?
- Yes, from the real numbers with addition ($\mathbb{R},+$) to
- the unit circle in the complex plane with rotation

$$
\begin{aligned}
G & =\mathbb{R} \text { under }+ \\
H & =\{z \in \mathbb{C}:|z|=1\} \\
& =\text { Group under } \times
\end{aligned}
$$

Hint:
Every $z \in \mathbb{C}$ with $|z|=1$ can be written as $z=e^{i \theta}$.
$f: G \rightarrow H$
$x \mapsto e^{i x}$
Show $f(x+y)=f(x) \times f(y)$

$$
\begin{aligned}
e^{i(x+y)} & =e^{i x} \times e^{i y} \\
e^{i x+i y} & =e^{i x} \times e^{i y}
\end{aligned}
$$

$$
e^{i x} \times e^{i y}=e^{i x} \times e^{i y}
$$

$f(0)=f(2 \pi)=1, \quad f(2 \pi n)=1$
f is not 1-1

Isomorphism

- Definition: A homomorphism of binary structures is called an isomorphism iff the corresponding map of sets is one to one and onto.

Some homomorphisms

Binary structure (S, \star)
Homom./Isom.

Homom./Isom.
Graph E(x,y)

Homom./Isom.
Relations R(x,y,z)

Pointers to related work

- Kolaitis. Logic and Databases. Logical Structures in Computation Boot Camp, Berkeley 2016. https://simons.berkeley.edu/talks/logic-and-databases
- Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995. http://webdam.inria.fr/Alice/, Ch 2.1: Theoretical background, Ch 6.2: Conjunctive queries \& homomorphisms \& query containment, Ch 6.3: Undecidability of equivalence for calculus.
- Kolaitis, Vardi. Conjunctive-Query Containment and Constraint Satisfaction. JCSS 2000. https://doi.org/10.1006/jcss.2000.1713
- Vardi. Constraint satisfaction and database theory: a tutorial. PODS 2000. https://doi.org/10.1145/335168.335209

