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Three Fundamental Algorithmic Problems about Queries

Let L be a database query language.
« The Query Evaluation Problem:

— Given a query qin L and a database instance D, evaluate q(D)
— That's the main problem in query processing.

« The Query Equivalence Problem:

— Giventwo queriesgand g’ in L, isitthe casethatg=q’'?
* j.e., isitthe case that, for every database instance D, we have that q(D) = q’(D)?

— This problem underlies query processing and optimization, as we often need to
transform a given query to an equivalent one.

« The Query Containment Problem:

— Given two queriesgand g’ in L, isitthecasethatg<S q’?

Source: Phokion Kolaitis



Outline: Complexity of Query Equivalence

« Query equivalence and query containment



Why bother about Query Containment

« The Query Containment Problem and Query Equivalence Problem
are closely related to each other:
- g=q if and only if
* qSqgandqg Sq
- g< g’ ifand only if
* q=(qnq)



Complexity of Equivalence and Containment

« Theorem: The Query Equivalence Problem for relational calculus queries is...

... undecidable ®

o Proof: Use Trakhtenbrot’s Theorem (1949):

— The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is
undecidable.

— Finite Validity Problem < Query Equivalence Problem

* If Y*is afixed finitely valid relational calculus sentence, then for every relational calculus sentence ¢,
we have that: ¢ is finitely valid & ¢ = *.

e Corollary: The Query Containment Problem for relational calculus queries in
undecidable.

— Proof: Query Equivalence < Query Containment, since
g=g ©q<Sq andq’ Cq.

Source: Phokion Kolaitis



Complexity of the Query Evaluation Problem

« The Query Evaluation Problem for Relational Calculus:

— Given a RC formula ¢ and a database instance D, find ¢2dom(D).

e Theorem: The Query Evaluation Problem for Relational Calculus is ...
... PSPACE-complete.

— PSPACE: decision problems, can be solved using an amount of memory that
is polynomial in the input length (~ in polynomial amount of space).

— PSPACE-complete: PSPACE + every other PSPACE problem can be
transformed to it in polynomial time (PSPACE-hard)

e Proof: We need to show both

* This problem is in PSPACE.
* This problem is PSPACE-hard. (We only focus on this task)

Source: Phokion Kolaitis



Complexity of the Query Evaluation Problem

« Theorem: The Query Evaluation Problem for Relational Calculus is
PSPACE-hard.

e Reduction uses QBF — Quantified Boolean Formulas
— Given QBF Vx; 3%, .... VX U,

— is it true or false (notice every variable is quantified = bound at beginning of
sentence, there are no free variables)

e Proof
— Show that QBF <p Query Evaluation for Relational Calculus

Source: Phokion Kolaitis



Complexity of the Query Evaluation Problem

Proof: Show that QBF <p Query Evaluation for Relational Calculus
e Given QBF Vx; 3x, ... Vx U,

e LetV and P be two unary relation symbols

e Obtain Y* from by replacing x; by P(x.), and -x. by -P(x;)

e Let D be the database instance with V ={0,1}, P={1}.

« Then the following statements are equivalent:
- Vxy A%, ... VX P is true
-V x; (V(X) 2 3 %, (V(X,) A (... V x (V(x,) > L*))...) is true on D.

Source: Phokion Kolaitis



Sublanguages of Relational Calculus

e Question: Are there interesting sublanguages of relational calculus
for which the Query Containment Problem and the Query
Evaluation Problem are “easier” than the full relational calculus?

e Answer:

- Yes, the language of Conjunctive Queries (CQs) is such a sublanguage.

— Moreover, conjunctive queries are the most frequently asked queries
against relational databases.

Source: Phokion Kolaitis
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Conjunctive Queries (CQs)

e Definition:

— A CQis a query expressible by a RC formula in prenex normal form built from atomic
formulas R(y4,...,y,), and A and 3 only.

{ (Xy,eeX): T 2zy..T 2 O(Xy, o)Xy Z9,000Z¢) 1,
— where (x4, ...,X,, Z1,...,Z}) is @ conjunction of atomic formulas of the form R(yy,...,y,,)-
— Prenex formula: prefix (quantifiers & bound variables), then quantifier-free part

o Equivalently, a CQ is a query expressible by a RA expression of the form
- 1y(0g(Ry X ... X R,)), where
— 0@ is a conjunction of equality atomic formulas (equijoin).
« Equivalently, a CQ is a query expressible by an SQL expression of the form

— SELECT <list of attributes>
FROM <list of relation names>
WHERE <conjunction of equalities>

Source: Phokion Kolaitis
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Conjunctive Queries (CQs)

e Definition:

— A CQis a query expressible by a RC formula in prenex normal form built from atomic
formulas R(y4,...,y,), and A and 3 only.

{ (Xy,eeX): T 2zy..T 2 O(Xy, o)Xy Z9,000Z¢) 1,
- where ¢(xy, ..., Xy, Z4,...,2) IS @ conjunction of atomic formulas of the form R(y,...,y,,)-

e Equivalently, a CQ can be written as a logic-programming rule:
Q(Xq,...,X;) - Ry(uy), ..., R(u,), where
— Each variable x; occurs in the right-hand side of the rule.

— Each u; is a tuple of variables (not necessarily distinct)

— The variables occurring in the right-hand side (the body), but not in the left-hand side
(the head) of the rule are existentially quantified (but the quantifiers are not displayed).

Source: Phokion Kolaitis 14



Examples of Conjunctive Queries 13&

e Path of Length 2: (Binary query)

{(x,y): 3z (E(x,2) A E(z,y))}
— As a relational algebra expression:

Ty,4(0¢;-¢3 (EXE))
— As a Datalogrule:

q(le) . E(X,Z), E(Z,y)

e Cycle of Length 3: (Boolean query)
Ax Iy 3z (E(x,y) A E(y,z) A E(z,x))
— As arule (the head has no variables)

Q :- E(X,y), E(y,Z), E(Z)X)
15



Conjunctive Queries

e Every natural join is a conjunctive query with ...
... no existentially quantified variables
« Example: Given P(A,B,C), R(B,C,D)
- P R ={(x,y,z,w): P(x,y,z) A R(y,z,w)}
- alx,y,z,w) - P(x,y,z), R(y,z,w)
(no variables are existentially quantified)

- SELECT P.A, P.B, P.C,R.D
FROM P, R
WHERE P.B=R.B AND P.C=R.C

« Conjunctive queries are also known as SPJ-queries (SELECT-
PROJECT-JOIN queries)
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Conjunctive Query Evaluation and Containment

e Definition: Two fundamental problems about CQs
— Conjunctive Query Evaluation (CQE):
* Given a conjunctive query q and an instance D, find g(D).
— Conjunctive Query Containment (CQC):

* Given two k-ary conjunctive queries g, and q,, is it true that q; € q,?
(i.e., for every instance D, we have that q1(D) € q2(D))

* Given two Boolean conjunctive queries gl and g2, is it true that q, F g,? (that is, for
allD,if DEqqy,thenD Eq,)?

e Notice that CQC is logical implication.
e Later today: connection to homomorphisms
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Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”, 1982

« Definition: Let L be a database query language.

— The combined complexity of L is the decision problem:

e given an L-sentence and a database instance D, is ¢ true on D?
* Insymbols, does D k ¢ (does D satisfy ¢)?

— The data complexity of L is the family of the following decision problems P, where @ is
an L-sentence:

e given a database instance D, does D E ¢?

— The query complexity of L is the family of the following decision problems Py, where D is
a database instance:

e given an L-sentence ¢, does D E @?

21



Vardi’s Taxonomy of the Query Evaluation Problem

|”

Vardi’s “empirical” discovery:
e For most query languages L:

— The data complexity of L is of lower complexity than both the combined
complexity of L and the query complexity of L.

— The query complexity of L can be as hard as the combined complexity of L.

Source: Phokion Kolaitis
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Taxonomy of the Query Evaluation Problem for Relational Calculus

The Query Evaluation Problem
Complexity Classes for Relational Calculus

Problem Complexity
PSPACE Combined PSPACE-complete
Complexity
NP Query Complexity |* in PSPACE
P * can be PSPACE-
complete
NLOGSPACE
LOGSPACE Data Complexity In LOGSPACE

Source: Phokion Kolaitis



Summary

« Relational Algebra and Relational Calculus have “essentially” the
same expressive power.

« The Query Equivalence Problem for Relational Calculus is
undecidable.

 Therefore also the Query Containment Problem

« The Query Evaluation Problem for Relational Calculus:
— Data Complexity is in LOGSPACE
— Combined Complexity is PSPACE-complete
— Query Complexity is PSPACE-complete.
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Outline: Complexity of Query Equivalence

« Query equivalence and query containment
— Graph homomorphisms
— Homomorphism beyond graphs
— CQ containment
— Beyond CQs
— (CQ equivalence under bag semantics
— CQ minimization
— Nested queries
— Tree pattern queries
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Mappings: Injection, Surjection, and Bijection
S

not a mapping (or function)! .

4

njective function (or one-to-one): maps distinet elements
of its domain to distinet elements of its codomain

surjective (or onto): every element v in the codomain Y of
has at least one element x in the domain that maps to i+

mective & surjective

neighter — .

not a mapping ra
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Bijection, Injection, and Surjection

surjective non-surjective
X Y X Y
15 ‘D
2 . b B '
injective 3 C l
4- ‘A
bijective injective-only
20 X ¥
X
1 D
non- : & o
3 *C l
injective 4
surjective-only general

Sources: https://en.wikipedia.org/wiki/Bijection, injection and surjection 33
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Bijection, Injection, and Surjection

Surjective Non-surjective A B
L
1 > a
=
+—
S 2 > b ° o
3 > C _— .
Neither Injective or Surjective
Two elements in set A maps to the
4 > d same element in set B (not injective),
and one element in set B is not in the
image or range of the function that
maps set A to B (not surjective).
[4)]
: \ /
=
[}
2
= Does not pass the
& horizontal line test.
o
=
7 !
Injective (One-to-one) Not Injective

Sources: https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur,
http://mathonline.wikidot.com/injections-surjections-and-bijections
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Bijection, Injection, and Surjection
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Sources: https://www.mathsisfun.com/sets/injective-surjective-bijective.html, https://twitter.com/jdhamkins/status/841318019397779456,
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We make a detour to Graph matching

e Finding a correspondence between the nodes and the edges of two
graphs that satisfies some (more or less stringent) constraints
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Homomorphism

e A graph homomorphism h from graph G(V,,E;) to H(V,,E,), is a
mapping from V. to V, such that {x,y} € E. implies {h(x),h(y)} € E,
— "edge-preserving": if two nodes in G are linked by an edge, then they are

mapped to two nodes in H that are also linked
A
\J
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Homomorphism

e A graph homomorphism h from Graph G(V,E;) to H(V,,E,), is a
mapping from V. to V, such that {x,y} € E. implies {h(x),h(y)} € E,
— "edge-preserving": if two nodes in G are linked by an edge, then they are
mapped to two nodes in H that are also linked

/b\ N\

h:{(a1), (b,3), (c,4);

does not need to be surjective -



Homomorphism

e A graph homomorphism h from Graph G(V,E;) to H(V,,E,), is a
mapping from V. to V, such that {x,y} € E. implies {h(x),h(y)} € E,
— "edge-preserving": if two nodes in G are linked by an edge, then they are
mapped to two nodes in H that are also linked

h:{(a1), (b,3), (c,4);

does not need to be surjective .



Homomorphism

e A graph homomorphism h from Graph G(V,E;) to H(V,,E,), is a
mapping from V. to V, such that {x,y} € E. implies {h(x),h(y)} € E,
— "edge-preserving": if two nodes in G are linked by an edge, then they are
mapped to two nodes in H that are also linked

: ® C% s a O,

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}

does not need to be surjective does not need to be injective 20



Homomorphism

e A graph homomorphism h from Graph G(V,E;) to H(V,,E,), is a
mapping from V. to V, such that {x,y} € E. implies {h(x),h(y)} € E,

— "edge-preserving': if two nodes Correspondence can be many-to-one: nothing

mapped to two nodes in H that prevents that 2 nodes in the first graph are to be
mapped to the identical nodes in the second!

a @ 1 f; a b
2
h:{(a,1), (b,3), (c,4)} h:{(1,a), (2,a), (3,b), (4,c)}
does not need to be surjective does not need to be injective
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Homomorphism

e A graph homomorphism h from Graph G(V,E;) to H(V,,E,), is a
mapping from V. to V, such that {x,y} € E. implies {h(x),h(y)} € E,
— "edge-preserving": if two nodes in G are linked by an edge, then they are
mapped to two nodes in H that are also linked

a ®

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}

homomorphically equivalent 15



Graph Isomorphism

e Graphs G(V,,E;) and H(V,,E,,) are isomorphic iff there is an invertible
ffrom V to V,s.t. {xy} € E; iff {f(u),flv)} € E,

— We need to find a one-to-one correspondence

f.{(a,1), (b,3), (c.4)} f.{(1,a), (2,a), (3,b), (4.c)}

not possible!
43



Graph Isomorphism

e Graphs G(V,,E;) and H(V,,E,) are isomorphic iff there is an invertible
ffrom V to V,s.t. {xy} € E; iff {f(u),flv)} € E,

— We need to find a one-to-one correspondence

o o X

f: {(1,a), (b,2), (c,3), (d,4), (e,5)}

bijection = surjective and injective

44



Outline: Complexity of Query Equivalence

« Query equivalence and query containment
— Graph homomorphisms
— Homomorphism beyond graphs
— CQ containment
— Beyond CQs
— (CQ equivalence under bag semantics
— CQ minimization
— Nested queries
— Tree pattern queries
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Graph Homomorphism beyond graphs

Definition : Let G and H be graphs. A of GtoHis
a function f: V(G) - V(H) such that

(xy)e £6) {11 fiy)e EH).

We sometimes write (G » H) if there is a homomorphism (no
homomorphism) of G to H

Definition of a homomorphism naturally extends to:
e digraphs

* edge-colored graphs

* relational systems
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An example

Example by Rick Brewster, Graph homomorphism tutorial, 2006

2 "colors" of the vertices

1
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An example

2 3

Can this assignment be extended to a homomorphism?

Example by Rick Brewster, Graph homomorphism tutorial, 2006
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An example

P 3

No, this assignment requires a loop on vertex 1 (in H)

Example by Rick Brewster, Graph homomorphism tutorial, 2006
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An example

2

s this assighment allowed?

Example by Rick Brewster, Graph homomorphism tutorial, 2006
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An exam p | e w56 Definition: Let G and H be graphs. A homom.

of G to H is a function f: V(G) - V(H) s.t. that

1 xy € E(G) = flx) fly) € E(H).

2 3

s this assignment allowed?

Example by Rick Brewster, Graph homomorphism tutorial, 2006
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An example

Example by Rick Brewster, Graph homomorphism tutorial, 2006

. = )
sl =6
>

Definition: Let G and H be graphs. A homom.
of G to H is a function f: V(G) - V(H) s.t. that

xy € E(G) = flx) fly) € E(H).

52



An example
Basically a partitioning problem!! C§
The quotient of the partition (set of equivalenees of the partition)
IS a subgraph of H. )
7 -

1

Example by Rick Brewster, Graph homomorphism tutorial, 2006
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Some observations
When does G - K, hold? (K5 = 3-clique = triangle) 0

b
iff G is 3-colorable @
When does G - K hold? (K, = n-clique)
iff G is n-colorable

Thus homomorphisms generalize colorings:
Notation: G - H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism?

NP-complete
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The complexity of H-coloring M
C w
Let H be a fixed graph. G
H-coloring C

Instance: A graph G. L

Question: Does G admit an H-coloring. X

v
Theorem [Hell,Nesetril 1990] If H is bipartite or contains a / t L
loop, then H-colouring is polynomial time solvable;

otherwise, H is NP-complete.
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Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

? which of the following formulas imply each other?

Vx.Vy. P(x,y) VX. P(X,X)

dx.dy. P(x,y) Ix. P(x,x)

56



Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not

need to range over distinct objects. .
P )
Vx.Vy. P(x,y) = VX. P(x,X) 2 2
dx.dy. P(x,y) = dx. P(x,X) P‘ A B,
S

57



Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not
need to range over distinct objects.

Vx.Vy. P(x,y) = VX. P(X,X)

dx.dy. P(x,y) = dx. P(x,X)
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Homomorphisms on Binary Structures

« Definition (Binary algebraic structure): A binary algebraic structure
is a set together with a binary operation on it. This is denoted by an
ordered pair (S,*) in which S is a set and x is a binary operation on S.

e Definition (homomorphism of binary structures): Let (S,x) and (5,0)
be binary structures. A homomorphism from (S,*) to (5’,2) is a map
h: S — S’ that satisfies, for all x, y in S:

hix * y) = h(x) o h(y)

« We can denote it by h: (5,x) — (5,0).
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Examples

e Let f(x) =e*. Thenisfa homomorphism? Flxry) = £(x) - £(y)
- Yes, from the real numbers with addition (R,+) to
— the positive real numbers with multiplication (R*,-) f:(R+) — (R*,-)

— even an isomorphism!

The exponential map exp : R — R defined by exp(x) = €*, where e is the base of
the natural logarithm, is an isomorphism from (R, 4) to (R*, x). Exp s a bijection
since it has an inverse function (namely log, ) and exp preserves the group operations
since e*1Y = ¢*¢”. In this example both the elements and the operations are different
yet the two groups are isomorphic, that is, as groups they have identical structures.

 Let g(x) =e™. Is galsoahomomorphism? wh,
- Yes, from the real numbers with addition (R,+) to / N\ ,
— the unit circle in the complex plane with rotation O;:;;, | -
Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed). K
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Examples

Also see: https://www.youtube.com/watch?v=cYzp5IWqCs


https://www.youtube.com/watch%3Fv=cYzp5IWqCsg

|Isomorphism

e Definition: A homomorphism of binary structures is called an
isomorphism iff the corresponding map of sets is one to one and
onto.
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Some homomorphisms

Binary structure (S, *)
Homom./Isom.

24 7 X
L_./ - M
Homom./Isom. FALsE Homom./Isom.
Graph E(x,y) Group (G, *) like (R,+)
\ \ 279 fmetion, [FS (S, X)
Homon /Iv - I
omom./lsom.
Relations R(x,y,z) F\Q ’ /\H ' (s ,,)
4 ,
gr\«ﬂ meb
~C h\/g
&k d “*/7((\
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Pointers to related work

« Kolaitis. Logic and Databases. Logical Structures in Computation Boot Camp, Berkeley
2016. https://simons.berkeley.edu/talks/logic-and-databases

« Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995.
http://webdam.inria.fr/Alice/, Ch 2.1: Theoretical background, Ch 6.2: Conjunctive queries
& homomorphisms & query containment, Ch 6.3: Undecidability of equivalence for
calculus.

« Kolaitis, Vardi. Conjunctive-Query Containment and Constraint Satisfaction. JCSS 2000.
https://doi.org/10.1006/jcss.2000.1713

« Vardi. Constraint satisfaction and database theory: a tutorial. PODS 2000.
https://doi.org/10.1145/335168.335209
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