
1

T2: Complexity of Query Evaluation
L8: Query containment & Homomorphisms

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Date: 2020/1/31

Updated 2020/2/9

https://northeastern-datalab.github.io/cs7240/sp20/


3

Three Fundamental Algorithmic Problems about Queries

Let L be a database query language.
• The Query Evaluation Problem: 
- Given a query q in L and a database instance D, evaluate q(D)
- That's the main problem in query processing.

• The Query Equivalence Problem: 
- Given two queries q and q’ in L, is it the case that q ≡ q’ ? 

• i.e., is it the case that, for every database instance D, we have that q(D) = q’(D)?
- This problem underlies query processing and optimization, as we often need to 

transform a given query to an equivalent one.

• The Query Containment Problem: 
- Given two queries q and q’ in L, is it the case that q ⊆ q’ ?

Source: Phokion Kolaitis



4

Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries



5

Why bother about Query Containment

• The Query Containment Problem and Query Equivalence Problem
are closely related to each other:
- q ≡ q’ if and only if 

• q ⊆ q’ and q’ ⊆ q
- q ⊆ q’ if and only if

• q ≡ (q ∩ q’)



6

Complexity of Equivalence and Containment

• Theorem: The Query Equivalence Problem for relational calculus queries is...
... undecidable L

• Proof: Use Trakhtenbrot’s Theorem (1949):
- The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is 

undecidable.
- Finite Validity Problem ≼ Query Equivalence Problem

• If ψ* is a fixed finitely valid relational calculus sentence, then for every relational calculus sentence ϕ, 
we have that: ϕ is finitely valid ⇔ ϕ ≡ ψ*.

• Corollary: The Query Containment Problem for relational calculus queries in 
undecidable.
- Proof: Query Equivalence ≼ Query Containment, since 

q ≡ q’ ⇔ q ⊆ q’ and q’ ⊆ q.

Source: Phokion Kolaitis



7

Complexity of the Query Evaluation Problem

• The Query Evaluation Problem for Relational Calculus: 
- Given a RC formula ϕ and a database instance D, find ϕadom(D).

• Theorem: The Query Evaluation Problem for Relational Calculus is ...
... PSPACE-complete.

- PSPACE: decision problems, can be solved using an amount of memory that 
is polynomial in the input length  (~ in polynomial amount of space).

- PSPACE-complete: PSPACE + every other PSPACE problem can be 
transformed to it in polynomial time (PSPACE-hard)

• Proof: We need to show both
• This problem is in PSPACE.
• This problem is PSPACE-hard. (We only focus on this task)

Source: Phokion Kolaitis



8

Complexity of the Query Evaluation Problem

• Theorem: The Query Evaluation Problem for Relational Calculus is 
PSPACE-hard.

• Reduction uses QBF – Quantified Boolean Formulas 
- Given QBF ∀x1 ∃x2 …. ∀xk ψ, 
- is it true or false (notice every variable is quantified = bound at beginning of 

sentence, there are no free variables)
• Proof
- Show that QBF ≼p  Query Evaluation for Relational Calculus

Source: Phokion Kolaitis



9

Complexity of the Query Evaluation Problem

Proof: Show that QBF ≼p  Query Evaluation for Relational Calculus
• Given QBF ∀x1 ∃x2 …. ∀xk ψ, 
• Let V and P be two unary relation symbols
• Obtain ψ* from ψ by replacing xi by P(xi), and ¬xi by ¬P(xi)
• Let D be the database instance with V = {0,1}, P={1}.
• Then the following statements are equivalent:
- ∀x1 ∃x2 …. ∀xk ψ is true
- ∀ x1 (V(x1) → ∃ x2 (V(x2) ∧ (… ∀ xk(V(xk) → ψ*))…) is true on D.

Source: Phokion Kolaitis



12

Sublanguages of Relational Calculus

• Question: Are there interesting sublanguages of relational calculus 
for which the Query Containment Problem and the Query
Evaluation Problem are “easier” than the full relational calculus?

• Answer:
- Yes, the language of Conjunctive Queries (CQs) is such a sublanguage.
- Moreover, conjunctive queries are the most frequently asked queries 

against relational databases.

Source: Phokion Kolaitis



13

Conjunctive Queries (CQs)

• Definition: 
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic 

formulas R(y1,…,yn), and  ∧ and ∃ only.

{ (x1,…,xk):   ∃ z1 … ∃ zm 𝜙(x1, …,xk, z1,…,zk) },
- where 𝜙(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the form R(y1,…,ym).
- Prenex formula: prefix (quantifiers & bound variables), then quantifier-free part

• Equivalently, a CQ is a query expressible by a RA expression of the form
- πX(σΘ(R1× …× Rn)), where
- Θ is a conjunction of equality atomic formulas (equijoin).

• Equivalently, a CQ is a query expressible by an SQL expression of the form 
- SELECT <list of attributes> 

FROM <list of relation names>
WHERE <conjunction of equalities>

Source: Phokion Kolaitis



14

Conjunctive Queries (CQs)

• Definition: 
- A CQ is a query expressible by a RC formula in prenex normal form built from atomic 

formulas R(y1,…,yn), and  ∧ and ∃ only.

{ (x1,…,xk):   ∃ z1 … ∃ zm 𝜙(x1, …,xk, z1,…,zk) },
- where 𝜙(x1, …,xk, z1,…,zk) is a conjunction of atomic formulas of the form R(y1,…,ym).

• Equivalently, a CQ can be written as a logic-programming rule: 
Q(x1,…,xk) :- R1(u1), …, Rn(un), where

- Each variable xi occurs in the right-hand side of the rule.
- Each ui is a tuple of variables (not necessarily distinct)
- The variables occurring in the right-hand side (the body), but not in the left-hand side 

(the head) of the rule are existentially quantified (but the quantifiers are not displayed).

Source: Phokion Kolaitis



15

Examples of Conjunctive Queries

• Path of Length 2: (Binary query)
{(x,y): ∃ z (E(x,z) ∧ E(z,y))}

- As a relational algebra expression:
π1,4(σ$2 = $3 (E×E))

- As a Datalogrule:
q(x,y) :- E(x,z), E(z,y)

• Cycle of Length 3: (Boolean query)
∃x ∃y ∃z (E(x,y) ∧ E(y,z) ∧ E(z,x))

- As a rule (the head has no variables)
Q :- E(x,y), E(y,z), E(z,x)



16

Conjunctive Queries

• Every natural join is a conjunctive query with ...
... no existentially quantified variables

• Example: Given P(A,B,C), R(B,C,D)
- P ⋈ R = {(x,y,z,w): P(x,y,z) ∧ R(y,z,w)}
- q(x,y,z,w) :- P(x,y,z), R(y,z,w)

(no variables are existentially quantified)
- SELECT P.A, P.B, P.C, R.D

FROM P, R
WHERE P.B = R.B AND P.C = R.C

• Conjunctive queries are also known as SPJ-queries (SELECT-
PROJECT-JOIN queries)



17

Conjunctive Query Evaluation and Containment

• Definition: Two fundamental problems about CQs
- Conjunctive Query Evaluation (CQE):

• Given a conjunctive query q and an instance D, find q(D).
- Conjunctive Query Containment (CQC):

• Given two k-ary conjunctive queries q1 and q2, is it true that q1 ⊆ q2?
(i.e., for every instance D, we have that q1(D) ⊆ q2(D))

• Given two Boolean conjunctive queries q1 and q2, is it true that q1 ⊧ q2? (that is, for 
all D, if D ⊧ q1, then D ⊧ q2)?

• Notice that CQC is logical implication.
• Later today: connection to homomorphisms



21

Vardi’s Taxonomy of the Query Evaluation Problem

M.Y Vardi, “The Complexity of Relational Query Languages”, 1982

• Definition: Let L be a database query language.
- The combined complexity of L is the decision problem: 

• given an L-sentence and a database instance D, is ϕ true on D?
• In symbols, does D ⊧ ϕ (does D satisfy ϕ)?

- The data complexity of L is the family of the following decision problems Pϕ, where ϕ is 
an L-sentence: 
• given a database instance D, does D ⊧ ϕ?

- The query complexity of L is the family of the following decision problems PD, where D is 
a database instance: 
• given an L-sentence ϕ, does D ⊧ ϕ?



23

Vardi’s Taxonomy of the Query Evaluation Problem

Vardi’s “empirical” discovery:

• For most query languages L:
- The data complexity of L is of lower complexity than both the combined 

complexity of L and the query complexity of L.
- The query complexity of L can be as hard as the combined complexity of L.

Source: Phokion Kolaitis



24

Complexity Classes

LOGSPACE

Taxonomy of the Query Evaluation Problem for Relational Calculus

NLOGSPACE

P

NP

PSPACE

.

.

.

The Query Evaluation Problem 
for Relational Calculus

Problem Complexity
Combined
Complexity

PSPACE-complete

Query Complexity • in PSPACE
• can be PSPACE-

complete

Data Complexity In LOGSPACE

Source: Phokion Kolaitis



25

Summary

• Relational Algebra and Relational Calculus have “essentially” the 
same expressive power.

• The Query Equivalence Problem for Relational Calculus is 
undecidable.

• Therefore also the Query Containment Problem

• The Query Evaluation Problem for Relational Calculus:
- Data Complexity is in LOGSPACE
- Combined Complexity is PSPACE-complete
- Query Complexity is PSPACE-complete.



30

Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries



32

Mappings: Injection, Surjection, and Bijection

injective function (or one-to-one): maps distinct elements 
of its domain to distinct elements of its codomain

surjective (or onto): every element y in the codomain Y of f 
has at least one element x in the domain that maps to it

injective & surjective

neighter

not a mapping (or function)!

not a mapping



33

Bijection, Injection, and Surjection

Sources: https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection

https://en.wikipedia.org/wiki/Bijection,_injection_and_surjection


34

Bijection, Injection, and Surjection

Sources: https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur, 
http://mathonline.wikidot.com/injections-surjections-and-bijections

https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur
http://mathonline.wikidot.com/injections-surjections-and-bijections


35

Bijection, Injection, and Surjection

Sources: https://www.mathsisfun.com/sets/injective-surjective-bijective.html, https://twitter.com/jdhamkins/status/841318019397779456, 

https://www.mathsisfun.com/sets/injective-surjective-bijective.html
https://twitter.com/jdhamkins/status/841318019397779456


36

We make a detour to Graph matching

• Finding a correspondence between the nodes and the edges of two 
graphs that satisfies some (more or less stringent) constraints



37

Homomorphism

• A graph homomorphism h from graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH

- "edge-preserving": if two nodes in G are linked by an edge, then they are 
mapped to two nodes in H that are also linked

1

2

3

4

a b

c



38

Homomorphism

• A graph homomorphism h from Graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH 

- "edge-preserving": if two nodes in G are linked by an edge, then they are 
mapped to two nodes in H that are also linked

1

2

3

4

a b

c

h: {(a,1), (b,3), (c,4)} 

does not need to be surjective



39

Homomorphism

• A graph homomorphism h from Graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH 

- "edge-preserving": if two nodes in G are linked by an edge, then they are 
mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} 

does not need to be surjective



40

Homomorphism

• A graph homomorphism h from Graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH 

- "edge-preserving": if two nodes in G are linked by an edge, then they are 
mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}

does not need to be surjective does not need to be injective



41

Homomorphism

• A graph homomorphism h from Graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH 

- "edge-preserving": if two nodes in G are linked by an edge, then they are 
mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}

Correspondence can be many-to-one: nothing 
prevents that 2 nodes in the first graph are to be 
mapped to the identical nodes in the second!

does not need to be surjective does not need to be injective



42

Homomorphism

• A graph homomorphism h from Graph G(VG,EG) to H(VH,EH), is a 
mapping from VG to VH such that {x,y} ∈ EG implies {h(x),h(y)} ∈ EH 

- "edge-preserving": if two nodes in G are linked by an edge, then they are 
mapped to two nodes in H that are also linked

1

2

3

4

a b

c

a b

c

h: {(a,1), (b,3), (c,4)} h: {(1,a), (2,a), (3,b), (4,c)}

homomorphically equivalent



43

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
f from VG to VH s.t. {x,y} ∈ EG iff {f(u),f(v)} ∈ EH

- We need to find a one-to-one correspondence

1

2

3

4

a b

c

a b

c

f: {(a,1), (b,3), (c,4)} f: {(1,a), (2,a), (3,b), (4,c)}

not possible!



44

Graph Isomorphism

• Graphs G(VG,EG) and H(VH,EH) are isomorphic iff there is an invertible
f from VG to VH s.t. {x,y} ∈ EG iff {f(u),f(v)} ∈ EH

- We need to find a one-to-one correspondence

1 2

43

5

a

b

c

d

e

f: {(1,a), (b,2), (c,3), (d,4), (e,5)} 

bijection = surjective and injective



45

Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries



46

Graph Homomorphism beyond graphs
Definition : Let G and H be graphs. A homomorphism of G to H is 
a function f: V(G) → V(H) such that

xy ∈ E(G) ⇒ f(x) f(y) ∈ E(H).

We sometimes write G → H (G ↛ H) if there is a homomorphism (no 
homomorphism) of G to H

Definition of a homomorphism naturally extends  to:
• digraphs
• edge-colored graphs
• relational systems
• constraint satisfaction problems (CSPs)



47

An example

G

H

2 3

1

3 "colors" of the vertices

Example by Rick Brewster, Graph homomorphism tutorial, 2006



48

An example

G

H

2 3

1

1

1

Can this assignment be extended to a homomorphism?
Example by Rick Brewster, Graph homomorphism tutorial, 2006



49

An example

G

H

2 3

1

1

1

No, this assignment requires a loop on vertex 1 (in H)
Example by Rick Brewster, Graph homomorphism tutorial, 2006



50

An example

G

H

2 3

1

1

2

Is this assignment allowed?
Example by Rick Brewster, Graph homomorphism tutorial, 2006



51

An example

G

H

2 3

1

1

2

Is this assignment allowed?

Definition: Let G and H be graphs. A homom. 
of G to H is a function f: V(G) → V(H) s.t. that

xy ∈ E(G) ⇒ f(x) f(y) ∈ E(H).

Example by Rick Brewster, Graph homomorphism tutorial, 2006



52

An example

G

H

2 3

1

1

22

1 3

Definition: Let G and H be graphs. A homom. 
of G to H is a function f: V(G) → V(H) s.t. that

xy ∈ E(G) ⇒ f(x) f(y) ∈ E(H).

Example by Rick Brewster, Graph homomorphism tutorial, 2006



53

An example

G H

2 3

1
1

Basically a partitioning problem!

32

The quotient of the partition (set of equivalences of the partition) 
is a subgraph of H. 

Example by Rick Brewster, Graph homomorphism tutorial, 2006



54

Some observations
When does G → K3 hold? (K3 = 3-clique = triangle)

iff G is 3-colorable

When does G → Kn hold? (Kn = n-clique)
iff G is n-colorable

Thus homomorphisms generalize colorings:
Notation: G → H is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism?

NP-complete



55

The complexity of H-coloring

Theorem [Hell,Nesetril 1990] If H is bipartite or contains a 
loop, then H-colouring is polynomial time solvable; 
otherwise, H is NP-complete.

Let H be a fixed graph.
H-coloring
Instance: A graph G.
Question: Does G admit an H-coloring.



56

$x.$y.	P(x,y)	

Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into 
the trap of thinking that distinct variables range over distinct objects.

"x."y.	P(x,y) "x.	P(x,x)

$x.	P(x,x)

Which of the following formulas imply each other??



57

$x.$y.	P(x,y)	

Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into 
the trap of thinking that distinct variables range over distinct objects.

"x."y.	P(x,y) "x.	P(x,x)

$x.	P(x,x)

Recall that distinct variables do not 
need to range over distinct objects.

⟸

⟹



58

$x.$y.	P(x,y)	

Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into 
the trap of thinking that distinct variables range over distinct objects.

"x."y.	P(x,y) "x.	P(x,x)

$x.	P(x,x)

⇓
Only if domain is not empty!
Dom ≠ ∅⇓

⟸

⟹

Recall that distinct variables do not 
need to range over distinct objects.



60

Homomorphisms on Binary Structures

• Definition (Binary algebraic structure): A binary algebraic structure 
is a set together with a binary operation on it.  This is denoted by an 
ordered pair (S,⋆) in which S is a set and ⋆ is a binary operation on S.

• Definition (homomorphism of binary structures): Let (S,⋆) and (S’,∘) 
be binary structures.  A homomorphism from (S,⋆) to (S’,∘) is a map 
h: S ⟶ S’ that satisfies, for all x, y in S:

h(x ⋆ y) = h(x) ∘ h(y)

• We can denote it by h: (S,⋆) ⟶ (S’,∘).



62

Examples

• Let f(x) = ex.  Then is f a homomorphism? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the positive real numbers with multiplication (ℝ+,⋅)
- even an isomorphism!

• Let g(x) = eix.  Is g also a homomorphism? 
- Yes, from the real numbers with addition (ℝ,+) to 
- the unit circle in the complex plane with rotation 

f:(ℝ,+) ⟶ (ℝ+,⋅)

f(x+y) = f(x) ⋅ f(y)

Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed).



63

Examples

Also see: https://www.youtube.com/watch?v=cYzp5IWqCsg

https://www.youtube.com/watch%3Fv=cYzp5IWqCsg


64

Isomorphism

• Definition: A homomorphism of binary structures is called an 
isomorphism iff the corresponding map of sets is one to one and 
onto.



66

Some homomorphisms

Binary	structure	(S,⋆)

Group	(G,⋆) like	(ℝ,+)

Homom./Isom.

Graph	E(x,y)

Relations	R(x,y,z)

Homom./Isom. Homom./Isom.

Homom./Isom.



67

Pointers to related work
• Kolaitis. Logic and Databases. Logical Structures in Computation Boot Camp, Berkeley 

2016. https://simons.berkeley.edu/talks/logic-and-databases
• Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995.

http://webdam.inria.fr/Alice/, Ch 2.1: Theoretical background, Ch 6.2: Conjunctive queries 
& homomorphisms & query containment, Ch 6.3: Undecidability of equivalence for 
calculus.

• Kolaitis, Vardi. Conjunctive-Query Containment and Constraint Satisfaction. JCSS 2000. 
https://doi.org/10.1006/jcss.2000.1713

• Vardi. Constraint satisfaction and database theory: a tutorial. PODS 2000.
https://doi.org/10.1145/335168.335209

https://simons.berkeley.edu/talks/logic-and-databases
http://webdam.inria.fr/Alice/
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1145/335168.335209

