Updated 2020/2/9

T2: Complexity of Query Evaluation L8: Query containment & Homomorphisms

Wolfgang Gatterbauer

CS7240 Principles of scalable data management (sp20)

https://northeastern-datalab.github.io/cs7240/sp20/

Date: 2020/1/31

Three Fundamental Algorithmic Problems about Queries

Let L be a database query language.

- The Query Evaluation Problem:
 - Given a query q in L and a database instance D, evaluate q(D)
 - That's the main problem in query processing.
- The Query Equivalence Problem:
 - Given two queries q and q' in L, is it the case that $q \equiv q'$?
 - i.e., is it the case that, for every database instance D, we have that q(D) = q'(D)?
 - This problem underlies query processing and optimization, as we often need to transform a given query to an equivalent one.
- The Query Containment Problem:
 - Given two queries q and q' in L, is it the case that $q \subseteq q'$?

Source: Phokion Kolaitis

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
 - Graph homomorphisms
 - Homomorphism beyond graphs
 - CQ containment
 - Beyond CQs
 - CQ equivalence under bag semantics
 - CQ minimization
 - Nested queries
 - Tree pattern queries

Why bother about Query Containment

- The Query Containment Problem and Query Equivalence Problem are closely related to each other:
 - $q \equiv q'$ if and only if
 - $q \subseteq q'$ and $q' \subseteq q$
 - $q \subseteq q'$ if and only if
 - $q \equiv (q \cap q')$

Complexity of Equivalence and Containment

- Theorem: The Query Equivalence Problem for relational calculus queries is...
 ... undecidable ⁽³⁾
- Proof: Use <u>Trakhtenbrot's Theorem</u> (1949):
 - The Finite Validity Problem (problem of validity in FOL on the class of all finite models) is undecidable.
 - Finite Validity Problem ≤ Query Equivalence Problem
 - If ψ^* is a fixed finitely valid relational calculus sentence, then for every relational calculus sentence φ , we have that: φ is finitely valid $\Leftrightarrow \varphi \equiv \psi^*$.
- Corollary: The Query Containment Problem for relational calculus queries in undecidable.
 - Proof: Query Equivalence ≤ Query Containment, since

 $q \equiv q' \Leftrightarrow q \subseteq q' \text{ and } q' \subseteq q.$

Complexity of the Query Evaluation Problem

- The Query Evaluation Problem for Relational Calculus:
 - Given a RC formula ϕ and a database instance D, find $\phi^{adom}(D)$.
- Theorem: The Query Evaluation Problem for Relational Calculus is PSPACE-complete.
 - PSPACE: decision problems, can be solved using an amount of memory that is polynomial in the input length (~ in polynomial amount of space).
 - PSPACE-complete: PSPACE + every other PSPACE problem can be transformed to it in polynomial time (PSPACE-hard)
- Proof: We need to show both
 - This problem is in PSPACE.
 - This problem is PSPACE-hard. (We only focus on this task)

Source: Phokion Kolaitis

Complexity of the Query Evaluation Problem

- Theorem: The Query Evaluation Problem for Relational Calculus is PSPACE-hard.
- Reduction uses QBF Quantified Boolean Formulas
 - Given QBF $\forall x_1 \exists x_2 \dots \forall x_k \psi$,
 - is it true or false (notice every variable is <u>quantified = bound</u> at beginning of <u>sentence</u>, there are no free variables)
- Proof
 - Show that QBF $\leq p$ Query Evaluation for Relational Calculus

Complexity of the Query Evaluation Problem

Proof: Show that QBF $\leq p$ Query Evaluation for Relational Calculus

- Given QBF $\forall x_1 \exists x_2 \dots \forall x_k \psi$,
- Let V and P be two unary relation symbols
- Obtain ψ^* from ψ by replacing x_i by $P(x_i)$, and $\neg x_i$ by $\neg P(x_i)$
- Let D be the database instance with V = {0,1}, P={1}.
- Then the following statements are equivalent:
 - $\forall x_1 \exists x_2 \dots \forall x_k \psi$ is true
 - $\forall x_1 (V(x_1) \rightarrow \exists x_2 (V(x_2) \land (... \forall x_k (V(x_k) \rightarrow \psi^*))...) \text{ is true on } D.$

Sublanguages of Relational Calculus

- Question: Are there interesting sublanguages of relational calculus for which the Query Containment Problem and the Query Evaluation Problem are "easier" than the full relational calculus?
- Answer:
 - Yes, the language of Conjunctive Queries (CQs) is such a sublanguage.
 - Moreover, conjunctive queries are the most frequently asked queries against relational databases.

Conjunctive Queries (CQs)

- Definition:
 - A CQ is a query expressible by a RC formula in prenex normal form built from atomic formulas $R(y_1,...,y_n)$, and ∧ and ∃ only.

{ $(x_1,...,x_k): \exists z_1 ... \exists z_m \phi(x_1,...,x_k, z_1,...,z_k)$ },

- where $\phi(x_1, ..., x_k, z_1, ..., z_k)$ is a conjunction of atomic formulas of the form $R(y_1, ..., y_m)$.
- Prenex formula: prefix (quantifiers & bound variables), then quantifier-free part
- Equivalently, a CQ is a query expressible by a RA expression of the form
 - $\pi_X(\sigma_{\Theta}(R_1 \times ... \times R_n))$, where
 - Θ is a conjunction of equality atomic formulas (equijoin).
- Equivalently, a CQ is a query expressible by an SQL expression of the form
 - SELECT <list of attributes>
 FROM <list of relation names>
 WHERE <conjunction of equalities>

Source: Phokion Kolaitis

Conjunctive Queries (CQs)

- Definition:
 - A CQ is a query expressible by a RC formula in prenex normal form built from atomic formulas $R(y_1,...,y_n)$, and ∧ and ∃ only.

{ $(x_1,...,x_k): \exists z_1 ... \exists z_m \phi(x_1,...,x_k, z_1,...,z_k)$ },

- where $\phi(x_1, ..., x_k, z_1, ..., z_k)$ is a conjunction of atomic formulas of the form $R(y_1, ..., y_m)$.
- Equivalently, a CQ can be written as a logic-programming rule:

 $Q(x_1,...,x_k) := R_1(u_1), ..., R_n(u_n)$, where

- Each variable x_i occurs in the right-hand side of the rule.
- Each **u**_i is a tuple of variables (not necessarily distinct)
- The variables occurring in the right-hand side (the body), but not in the left-hand side (the head) of the rule are existentially quantified (but the quantifiers are not displayed).

Examples of Conjunctive Queries

- Path of Length 2: (Binary query)
 {(x,y): ∃ z (E(x,z) ∧ E(z,y))}
 - As a relational algebra expression:
 - $\pi_{1,4}(\sigma_{\$2=\$3} (E \times E))$
 - As a Datalogrule:
 - q(x,y) :- E(x,z), E(z,y)
- Cycle of Length 3: (Boolean query)
 ∃x ∃y ∃z (E(x,y) ∧ E(y,z) ∧ E(z,x))
 - As a rule (the head has no variables)
 Q :- E(x,y), E(y,z), E(z,x)

Conjunctive Queries

- Every natural join is a conjunctive query with no existentially quantified variables
- Example: Given P(A,B,C), R(B,C,D)
 - P \bowtie R = {(x,y,z,w): P(x,y,z) \land R(y,z,w)}
 - q(x,y,z,w) := P(x,y,z), R(y,z,w)

(no variables are existentially quantified)

- SELECT P.A, P.B, P.C, R.D
 FROM P, R
 WHERE P.B = R.B AND P.C = R.C
- Conjunctive queries are also known as SPJ-queries (SELECT-PROJECT-JOIN queries)

Conjunctive Query Evaluation and Containment

- Definition: Two fundamental problems about CQs
 - Conjunctive Query Evaluation (CQE):
 - Given a conjunctive query q and an instance D, find q(D).
 - Conjunctive Query Containment (CQC):
 - Given two k-ary conjunctive queries q₁ and q₂, is it true that q₁ ⊆ q₂?
 (i.e., for every instance D, we have that q1(D) ⊆ q2(D))
 - Given two Boolean conjunctive queries q1 and q2, is it true that q₁ ⊨ q₂? (that is, for all D, if D ⊨ q₁, then D ⊨ q₂)?
- Notice that CQC is logical implication.
- Later today: connection to homomorphisms

Vardi's Taxonomy of the Query Evaluation Problem

M.Y Vardi, "The Complexity of Relational Query Languages", 1982

- Definition: Let L be a database query language.
 - The combined complexity of L is the decision problem:
 - given an L-sentence and a database instance D, is ϕ true on D?
 - In symbols, does $D \models \varphi$ (does D satisfy φ)?
 - The data complexity of L is the family of the following decision problems P_{ϕ} , where ϕ is an L-sentence:
 - given a database instance D, does $D \models \phi$?
 - The query complexity of L is the family of the following decision problems P_D, where D is a database instance:
 - given an L-sentence φ , does D $\models \varphi$?

Vardi's Taxonomy of the Query Evaluation Problem

Vardi's "empirical" discovery:

- For most query languages L:
 - The data complexity of L is of lower complexity than both the combined complexity of L and the query complexity of L.
 - The query complexity of L can be as hard as the combined complexity of L.

Taxonomy of the Query Evaluation Problem for Relational Calculus

Complexity Classes

The Query Evaluation Problem for Relational Calculus

Problem	Complexity
Combined Complexity	PSPACE-complete
Query Complexity	• in PSPACE
	 can be PSPACE- complete
Data Complexity	In Logspace

Summary

- Relational Algebra and Relational Calculus have "essentially" the same expressive power.
- The Query Equivalence Problem for Relational Calculus is undecidable.
 - Therefore also the Query Containment Problem
- The Query Evaluation Problem for Relational Calculus:
 - Data Complexity is in LOGSPACE
 - Combined Complexity is PSPACE-complete
 - Query Complexity is PSPACE-complete.

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
 - Graph homomorphisms
 - Homomorphism beyond graphs
 - CQ containment
 - Beyond CQs
 - CQ equivalence under bag semantics
 - CQ minimization
 - Nested queries
 - Tree pattern queries

Mappings: Injection, Surjection, and Bijection

not a mapping (or function)!

injective function (or one-to-one): maps distinct elements of its domain to <u>distinct elements of its codomain</u>

surjective (or onto): every element y in the codomain Y of f has at least one element x in the domain that maps to it

injective & surjective

neighter

not a mapping

Bijection, Injection, and Surjection

Bijection, Injection, and Surjection

Sources: http://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur, https://www.intechopen.com/books/protein-interactions/relating-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structur, <a href="https://www.intechopen.com/injections-surjections-and-bijections-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-and-its-implications-on-protein-structure-and-function-through-a-bijection-structure-and-function-structure-and-function-structure-and-function-structure-and-function-structure-and-function-structure-and-function-structur

Bijection, Injection, and Surjection

A function not injective not surjective

An injective function not surjective

A surjective function not injective

A bijective function injective + surjective

Not a function

We make a detour to Graph matching

• Finding a correspondence between the nodes and the edges of two graphs that satisfies some (more or less stringent) constraints

- A graph homomorphism *h* from graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

- A graph homomorphism *h* from Graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

h: {(a,1), (b,3), (c,4)}

does not need to be surjective

- A graph homomorphism *h* from Graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

h: {(a,1), (b,3), (c,4)}

does not need to be surjective

- A graph homomorphism *h* from Graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

h: {(a,1), (b,3), (c,4)}

does not need to be surjective

h: {(1,a), (2,a), (3,b), (4,c)}

does not need to be injective

- A graph homomorphism *h* from Graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes mapped to two nodes in H that mapped to two nodes in H that mapped to the identical nodes in the second!

h: {(a,1), (b,3), (c,4)}

does not need to be surjective

h: {(1,a), (2,a), (3,b), (4,c)}

does not need to be injective

- A graph homomorphism *h* from Graph $G(V_G, E_G)$ to $H(V_H, E_H)$, is a mapping from V_G to V_H such that $\{x, y\} \in E_G$ implies $\{h(x), h(y)\} \in E_H$
 - "edge-preserving": if two nodes in G are linked by an edge, then they are mapped to two nodes in H that are also linked

h: {(a,1), (b,3), (c,4)}

h: {(1,a), (2,a), (3,b), (4,c)}

homomorphically equivalent

Graph Isomorphism

- Graphs $G(V_G, E_G)$ and $H(V_H, E_H)$ are isomorphic iff there is an invertible f from V_G to V_H s.t. $\{x, y\} \in E_G$ iff $\{f(u), f(v)\} \in E_H$
 - We need to find a one-to-one correspondence

f: {(a,1), (b,3), (c,4)}

f: {(1,a), (2,a), (3,b), (4,c)}

not possible!

Graph Isomorphism

- Graphs $G(V_G, E_G)$ and $H(V_H, E_H)$ are isomorphic iff there is an <u>invertible</u> f from V_G to V_H s.t. $\{x, y\} \in E_G$ iff $\{f(u), f(v)\} \in E_H$
 - We need to find a one-to-one correspondence

Outline: Complexity of Query Equivalence

- Query equivalence and query containment
 - Graph homomorphisms
 - Homomorphism beyond graphs
 - CQ containment
 - Beyond CQs
 - CQ equivalence under bag semantics
 - CQ minimization
 - Nested queries
 - Tree pattern queries

Graph Homomorphism beyond graphs

Definition : Let G and H be graphs. A homomorphism of G to H is a function $f: V(G) \rightarrow V(H)$ such that

 $(xy) \in E(G) \Rightarrow f(x) f(y) \in E(H).$

We sometimes write $G \rightarrow H$ (G \rightarrow H) if there is a homomorphism (no homomorphism) of G to H

Definition of a homomorphism naturally extends to:

- digraphs
- edge-colored graphs
- relational systems
- constraint satisfaction problems (CSPs)

An example

An example

Can this assignment be extended to a homomorphism?

An example

No, this assignment requires a loop on vertex 1 (in H)

An example

Is this assignment allowed?

Is this assignment allowed?

An example

Basically a partitioning problem! The quotient of the partition (set of equivalences of the partition)

is a subgraph of H.

Some observations

When does $G \rightarrow K_3$ hold? ($K_3 = 3$ -clique = triangle)

iff G is 3-colorable

When does $G \rightarrow K_n$ hold? ($K_n = n$ -clique) iff G is n-colorable

Thus homomorphisms generalize colorings: Notation: $G \rightarrow H$ is an H-coloring of G.

What is the complexity of testing for the existence of a homomorphism?

NP-complete

The complexity of H-coloring

Let H be a fixed graph. H-coloring Instance: A graph G. Question: Does G admit an H-coloring.

Theorem [Hell,Nesetril 1990] If H is bipartite or contains a loop, then H-colouring is polynomial time solvable; otherwise, H is NP-complete.

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

which of the following formulas imply each other?

 $\forall x. \forall y. P(x,y)$

 $\forall x. P(x,x)$

 $\exists x. \exists y. P(x,y)$

 $\exists x. P(x,x)$

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not need to range over distinct objects.

 $\forall x. \forall y. P(x,y) \qquad \Leftarrow \qquad \forall x. P(x,x)$

 $\exists x. \exists y. P(x,y) \implies \exists x. P(x,x)$

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not need to range over distinct objects.

Homomorphisms on Binary Structures

- Definition (Binary algebraic structure): A binary algebraic structure is a set together with a binary operation on it. This is denoted by an ordered pair (*S*,*) in which *S* is a set and * is a binary operation on *S*.
- Definition (homomorphism of binary structures): Let (S,*) and (S',∘) be binary structures. A homomorphism from (S,*) to (S',∘) is a map h: S → S' that satisfies, for all x, y in S:

 $h(x \star y) = h(x) \circ h(y)$

• We can denote it by $h: (S, \star) \longrightarrow (S', \circ)$.

Examples

- Let $f(x) = e^x$. Then is f a homomorphism?
 - Yes, from the real numbers with addition (\mathbb{R} ,+) to
- $f(x+y) = f(x) \cdot f(y)$
- the positive real numbers with multiplication (\mathbb{R}^+, \cdot) $f:(\mathbb{R}, +) \to (\mathbb{R}^+, \cdot)$
- even an isomorphism!

The exponential map exp : $\mathbb{R} \to \mathbb{R}^+$ defined by $\exp(x) = e^x$, where *e* is the base of the natural logarithm, is an isomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^+, \times) . Exp is a bijection since it has an inverse function (namely \log_e) and exp preserves the group operations since $e^{x+y} = e^x e^y$. In this example both the elements and the operations are different yet the two groups are isomorphic, that is, as groups they have identical structures.

- Let $g(x) = e^{ix}$. Is g also a homomorphism?
 - Yes, from the real numbers with addition (\mathbb{R} ,+) to
 - the unit circle in the complex plane with rotation

Paragraph screenshot from p.37 in 2004 - Dummit, Foote - Abstract algebra (book, 3rd ed).

Examples

 $G = \mathbb{R}$ under + $f: G \to H$ $x \mapsto e^{ix}$ $H = \{ z \in \mathbb{C} : |z| = 1 \}$ = Group under \times Show $f(x + y) = f(x) \times f(y)$ $e^{i(x+y)} = e^{ix} \times e^{iy}$ $e^{ix+iy} = e^{ix} \times e^{iy}$ Hint: $e^{ix} \times e^{iy} = e^{ix} \times e^{iy}$ Every $z \in \mathbb{C}$ with |z|=1can be written as $z=e^{i\theta}$. $f(0) = f(2\pi) = 1, f(2\pi n) = 1$ f is not 1-1

Isomorphism

• **Definition**: A homomorphism of binary structures is called an isomorphism iff the corresponding map of sets is one to one and onto.

Some homomorphisms

Pointers to related work

- Kolaitis. Logic and Databases. Logical Structures in Computation Boot Camp, Berkeley 2016. <u>https://simons.berkeley.edu/talks/logic-and-databases</u>
- Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995. <u>http://webdam.inria.fr/Alice/</u>, Ch 2.1: Theoretical background, Ch 6.2: Conjunctive queries & homomorphisms & query containment, Ch 6.3: Undecidability of equivalence for calculus.
- Kolaitis, Vardi. Conjunctive-Query Containment and Constraint Satisfaction. JCSS 2000. https://doi.org/10.1006/jcss.2000.1713
- Vardi. Constraint satisfaction and database theory: a tutorial. PODS 2000. https://doi.org/10.1145/335168.335209