
1

T1: Data models and query languages
L7: Alternative data models: NoSQL

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Version 1/28/2019

Updated 1/29/2020

Acknowledgments to Benny Kimelfeld for using
many of his slides & examples in this lecture

https://northeastern-datalab.github.io/cs7240/sp20/

2

• Introduction
• Transaction Consistency
• 4 main data models

– Key-Value Stores (e.g., Redis)
– Column-Family Stores (e.g., Cassandra)
– Document Stores (e.g., MongoDB)
– Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline: Alternative data models

3

SQL Means More than SQL

• SQL stands for the query language
• But commonly refers to the traditional RDBMS:
- Relational storage of data

• Each tuple is stored consecutively (per row, row-wise)
- Joins as first-class citizens

• In fact, normal forms prefer joins to maintenance
- Strong guarantees on transaction management

• No consistency worries when many transactions operate simultaneously
(concurrently) on common data

• Focus on scaling up
- That is, make a single machine do more, faster

4

Vertical vs. Horizontal Scaling

"scaling up"

• Vertical scaling ("scale up"): you scale by
adding more power (CPU, RAM)

• Horizontal scaling ("scale out"): you
scale by adding more machines

"scaling out"

5

Trends Drive Common Requirements

Social media + mobile
computing

• Explosion in data, always
available, constantly read
and updated

• High load of simple requests
of a common nature

• Some consistency can be
compromised (e.g., 👍)

Cloud computing +
open source

• Affordable resources for
management / analysis of data

• People of various skills / budgets
need software solutions for
distributed analysis of massive data

Database solutions need to scale out
(utilize distribution, “scale horizontally”)

6

Compromises Required

What is needed for effective distributed, data-
and user-intensive applications?

1. Use data models and storage that allow to
avoid joins of big objects

2. Relax the guarantees on consistency

7

NoSQL

• Not Only SQL
- May still support SQL-type languages
- Term introduced by Carlo Strozzi in 1998 to describe an alternative

database model
- Became the name of a movement following Eric Evans’s reuse for a

distributed-database event
• Seminal papers:
- Google’s BigTable

• Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber: Bigtable: A Distributed Storage System for
Structured Data. OSDI 2006: 205-218

- Amazon’s DynamoDB
• DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, Vogels: Dynamo: amazon's highly

available key-value store. SOSP 2007: 205-220

8

“
• Next Generation Databases mostly addressing some of the points: being non-

relational, distributed, open-source and horizontally scalable.
• The original intention has been modern web-scale databases. The movement

began early 2009 and has been growing rapidly. Often more characteristics
apply such as: schema-free, easy replication support, simple API, eventually
consistent / BASE (not ACID), a huge amount of data and more.

• So the misleading term “nosql” (the community now translates it mostly with
“not only sql”) should be seen as an alias to something like the definition
above.

”

NoSQL from nosql-database.org

9

What is NoSQL?

Source: Geek and Poke: http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

10

Common NoSQL Features

• Non-relational data models
• Flexible structure
- No need to fix a schema, attributes can be added and replaced on the fly

• Massive read/write performance; availability via horizontal scaling
- Replication and sharding (data partitioning, we'll discuss that next)
- Potentially thousands of machines worldwide

• Open source (very often)
• APIs to impose locality (opposite of joins)

11

When the database grows: Partitioning Tables

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

12

Vertical Partitioning

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

13

Horizontal Partitioning ("sharding")

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

14

Vertical vs. Horizontal partitioning

Source: http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html, http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html
http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

15

Cp. to concepts in Linear Algebra

Source: "An efficient scheme for probabilistic skyline queries over distributed uncertain data," Xiaoyong Li, Yijie Wang, Jie Yu, Telecommunication systems 2015.

16

Database Replication

• Data replication: storing the same data on several machines (“nodes”)
• Useful for:
- Availability (parallel requests are made against replicas)
- Reliability (data can survive hardware faults)
- Fault tolerance (system stays alive when nodes/network fail)

• Typical architecture: master-slave

Replication example in MySQL
(dev.mysql.com)

17

Open Source

• Free software, source provided
- Users have the right to use, modify and distribute the software
- But restrictions may still apply, e.g., adaptations need to be opensource

• Idea: community development
- Developers fix bugs, add features, ...

• How can that work?
- See [Bonaccorsi, Rossi, 2003. Why open source software can succeed. Research policy,

32(7), pp.1243-1258]

• A major driver of OpenSource is Apache

18

Apache Software Foundation

• Non-profit organization
• Hosts communities of developers
- Individuals and small/large companies

• Produces open-source software
• Funding from grants and contributions
• Hosts very significant projects
- Apache Web Server, Hadoop, Zookeeper, Cassandra, Lucene, OpenOffice,

Struts, Tomcat, Subversion, Tcl, UIMA, ...

19

We Will Look at 4 Data Models

Column-Family Store
(e.g. Cassandra)

Key/Value Store
(e.g. REDIS)

Document Store
(e.g. MongoDB)

Graph Databases
(e.g. Neo4J

Source: Benny Kimelfeld

20

Database engines ranking by "popularity"

Source: https://db-engines.com/en/ranking, 1/2020

https://db-engines.com/en/ranking

21

Database engines ranking by "popularity"

Source: https://db-engines.com/en/ranking_trend, 1/2020

https://db-engines.com/en/ranking_trend

22

Highlighted Database Features

• Data model
- What data is being stored?

• CRUD interface
- API for Create, Read, Update, Delete

• 4 basic functions of persistent storage (insert, select, update, delete)

- Sometimes preceding S for Search

• Transaction consistency guarantees

• Replication and sharding model
- What’s automated and what’s manual?

23

True and False Conceptions

• True:
- SQL does not effectively handle common Web needs of massive

(datacenter) data
- SQL has guarantees that can sometimes be compromised for the sake of

scaling
- Joins are not for free, sometimes undoable

• False:
- NoSQL says NO to SQL
- Nowadays NoSQL is the only way to go
- Joins can always be avoided by structure redesign

24

Strategy Canvas: Example Nintendo Wii (1/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

SIDE TOPIC

25

Strategy Canvas: Example Nintendo Wii (2/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Video Game Console Industry

SIDE TOPIC

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

26

Strategy Canvas: Example Nintendo Wii (3/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii

Create

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Video Game Console Industry

Eliminate Reduce Raise

SIDE TOPIC

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

27

Redefine the Market SIDE TOPIC

28

• Introduction
• Transaction Consistency
• 4 main data models

– Key-Value Stores (e.g., Redis)
– Column-Family Stores (e.g., Cassandra)
– Document Stores (e.g., MongoDB)
– Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline: Alternative data models

29

Transaction

• A sequence of operations (over data) viewed as a single higher-level
operation
- Transfer money from account 1 to account 2

• DBMSs execute transactions in parallel
- No problem applying two “disjoint” transactions
- But what if there are dependencies (conflicts)?

• Transactions can either commit (succeed) or abort (fail)
- Failure due to violation of program logic, network failures, credit-card

rejection, etc.
• DBMS should not expect transactions to succeed

30

Examples of Transactions

• Airline ticketing
- Verify that the seat is vacant, with the price quoted, then charge credit

card, then reserve
• Textbook example: bank money transfer
- Read from acct#1, verify funds, update acct#1, update acct#2

• Online purchasing
- Similar

• “Transactional file systems” (MS NTFS)
- Moving a file from one directory to another: verify file exists, copy, delete

31

Transfer Example

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Begin

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

Commit

txn1 txn2

• Scheduling is the operation of interleaving transactions
• Why is it good?

• A serial schedule executes transactions one at a time, from
beginning to end

• A good (“serializable”) scheduling is one that behaves like
some serial scheduling (typically by locking protocols)

32

Scheduling Example 1

Begin

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

Commit

txn1 txn2

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

33

Scheduling Example 2

Begin

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

Commit

txn1 txn2

Begin

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Commit

Read(A,v)

v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)

x = x-100

Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

34

ACID

• Atomicity
- Either all operations applied or none are (hence, we need not worry about the effect of

incomplete / failed transactions)
• Consistency
- Each transaction can start with a consistent database and is required to leave the

database consistent (bring the DB from one to another consistent state)
• Isolation
- The effect of a transaction should be as if it is the only transaction in execution (in

particular, changes made by other transactions are not visible until committed)
• Durability
- Once the system informs a transaction success, the effect should hold without regret,

even if the database crashes (before making all changes to disk)

35

ACID May Be Overly Expensive

• In quite a few modern applications:
- ACID contrasts with key desiderata: high volume, high availability
- We can live with some errors, to some extent
- Or more accurately, we prefer to suffer errors than to be

significantly less functional
• Can this point be made more “formal”?

36

Simple Model of a Distributed Service

• Context: distributed service
- e.g., social network

• Clients make get / set requests
- e.g., setLike(user,post), getLikes(post)

- Each client can talk to any server

• Servers return responses
- e.g., ack, {user1,....,userk}

• Failure: the network may occasionally disconnect due to failures (e.g., switch
down)

• Desiderata: Consistency, Availability, Partition tolerance

37

CAP Service Properties

• Consistency:
- every read (to any node) gets a response that reflects the most recent

version of the data
• More accurately, a transaction should behave as if it changes the entire state

correctly in an instant, Idea similar to serializability

• Availability:
- every request (to a living node) gets an answer: set succeeds, get returns a

value (if you can talk to a node in the cluster, it can read and write data)
• Partition tolerance:
- service continues to function on network failures (cluster can survive

• As long as clients can reach servers

38

Simple Illustration

set(x,1)

set(x,1)

ok

ok

get(x)

1

CA
Consistency, Availability

set(x,2)

set(x,2)

wait...

get(x) CP
Consistency, Partition tolerance

set(x,2)

set(x,2)

ok

get(x) AP
Availability, Partition tolerance

1

1

Availability

Consistency

Our Relational Database world so far …

In a system that may suffer partitions, you
have to trade off consistency vs. availability

39

The CAP Theorem

Eric Brewer’s CAP Theorem:

A distributed service
can support at most two

out of C, A and P

40

Historical Note

• Brewer presented it as the CAP principle in a 1999 article
- Then as an informal conjecture in his keynote at the PODC 2000 conference

• In 2002 a formal proof was given by Gilbert and Lynch, making CAP
a theorem
- [Seth Gilbert, Nancy A. Lynch: Brewer's conjecture and the feasibility of consistent, available, partition-

tolerant web services. SIGACT News 33(2): 51-59 (2002)]

- It is mainly about making the statement formal; the proof is
straightforward

41Source: http://blog.nahurst.com/visual-guide-to-nosql-systems , 2010

http://blog.nahurst.com/visual-guide-to-nosql-systems

42

CAP theorem

Source: http://guide.couchdb.org

http://guide.couchdb.org/

43

The BASE Model

• Applies to distributed systems of type AP
• Basic Availability
- Provide high availability through distribution: There will be a response to any request.

Response could be a ‘failure’ to obtain the requested data, or the data may be in an
inconsistent or changing state.

• Soft state
- Inconsistency (stale answers) allowed: State of the system can change over time, so

even during times without input, changes can happen due to ‘eventual consistency’

• Eventual consistency
- If updates stop, then after some time consistency will be achieved

• Achieved by protocols to propagate updates and verify correctness of propagation (gossip protocols)

• Philosophy: best effort, optimistic, staleness and approximation allowed

44

• Introduction
• Transaction Consistency
• 4 main data models

– Key-Value Stores (e.g., Redis)
– Column-Family Stores (e.g., Cassandra)
– Document Stores (e.g., MongoDB)
– Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline: Alternative data models

45

Key-Value Stores

• Essentially, big distributed hash maps
• Origin attributed to Dynamo – Amazon’s DB for world-scale

catalog/cart collections
- But Berkeley DB has been here for >20 years

• Store pairs ⟨key, opaque-value⟩
- Opaque means that DB does not associate any structure/semantics with

the value; oblivious to values
- This may mean more work for the user: retrieving a large value and parsing

to extract an item of interest
• Sharding via partitioning of the key space
- Hashing, gossip and remapping protocols for load balancing and fault

tolerance

46

Hashing (Hash tables, dictionaries)

0

m–1

h(k1)

h(k4)

h(k2)

h(k3)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

h(k2)

n = |K| << |U|.

key k “hashes” to slot T[h[k]]

hash table T [0…m–1]h : U ® {0,1,…, m–1}

47

Hashing (Hash tables, dictionaries)

h(k1)

h(k4)

h(k2)

h(k3)

k1

k2

k3

k5

k4

collision
h(k2)=h(k5)

0

m–1

U
(universe of keys)

K
(actual
keys)

hash table T [0…m–1]

48

Example Databases

• Amazon’s DynamoDB
- Originally designed for Amazon’s workload at peaks
- Offered as part of Amazon’s Web services

• Redis
- Next slides and in optional Jupyter notebooks to play with

• Riak
- Focuses on high availability, BASE
- “As long as your Riak client can reach one Riak server, it should be able to write data.”

• FoundationDB
- Focus on transactions, ACID

• Berkeley DB (and Oracle NoSQL Database)
- First release 1994, by Berkeley, acquired by Oracle
- ACID, replication

49

Redis

• Basically a data structure for strings, numbers, hashes, lists, sets
• Simplistic “transaction” management
- Queuing of commands as blocks, really
- Among ACID, only Isolation guaranteed

• A block of commands that is executed sequentially; no transaction interleaving; no roll back on errors

• In-memory store
- Persistence by periodical saves to disk

• Comes with
- A command-line API
- Clients for different programming languages

• Perl, PHP, Rubi, Tcl, C, C++, C#, Java, R, …

50

key value

set x 10 x 10

hset h y 5 h yà5

hset h1 name two
hset h1 value 2_ h1

nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice s {20,Alice}

rpush l a
rpush l b
lpush l c l (c,a,b)

(simple value)

(hash table)

(set)

(list)

key maps to:

Example of Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

51

key value

set x 10 x 10

hset h y 5 h yà5

hset h1 name two
hset h1 value 2_

h1 nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice

s

{20,Alice}

rpush l a
rpush l b
lpush l c

l

(c,a,b)

(simple value)

(set)

(list)

key maps to:

Example of Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

(hash table)

52

An excursion into
indexing

53

“If you don’t find it in the index,
look very carefully through the entire catalog”

- Sears, Roebuck and Co., Consumers Guide, 1897

54

High-level overview: indexes

id age salary other

006 19 50k ...

005 20 55k ...

004 25 50k ...

007 30 80k ...

002 35 75k ...

003 35 70k ...

001 40 65k ...

id age salary other

006 19 50k ...

004 25 50k ...

005 20 55k ...

001 40 65k ...

003 35 70k ...

002 35 75k ...

007 30 80k ...

data file = index file
clustered (primary) index

index file
unclustered (secondary) index

55

Indexes: High-level

• An index on a file speeds up selections on the search key fields for the index.
- Search key properties

• Any subset of fields
• is not the same as key of a relation

• Example:

On which attributes
would you build

indexes?
Product(name, maker, price)

56

More precisely

• An index is a data structure mapping search keys to sets of rows in a database
table

- Provides efficient lookup & retrieval by search key value- usually much faster than
searching through all the rows of the database table

• An index can store the full rows it points to (primary index) or pointers to
those rows (secondary index)

57

Operations on an Index

• Search: Quickly find all records which meet some condition on the search key
attributes
- More sophisticated variants as well. Why?

• Insert / Remove entries
- Bulk Load / Delete. Why?

Indexing is one the most important features
provided by a database for performance

58

Conceptual Example

What if we want to
return all books
published after 1867?
The above table might
be very expensive to
search over row-by-row…

SELECT *
FROM Russian_Novels
WHERE Published > 1867

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Russian_Novels

59

Conceptual Example

Published BID
1866 002

1869 001

1877 003

Maintain an index for this, and search over that!

Russian_NovelsBy_Yr_Index

Why might just keeping the table
sorted by year not be good enough?

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

60

Conceptual Example

Published BID
1866 002

1869 001

1877 003

Russian_NovelsBy_Yr_Index
BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …

002 Crime and
Punishment

Dostoyevsky 1866 …

003 Anna Karenina Tolstoy 1877 …

Indexes shown here as tables, but in reality
we will use more efficient data structures…

Can have multiple indexes to
support multiple search keys

Author Title BID

Dostoyevsky Crime and
Punishment

002

Tolstoy Anna Karenina 003

Tolstoy War and
Peace

001

By_Author_Title_Index

61

Covering Indexes

We say that an index is covering for a specific query
if the index contains all the needed attributes-
meaning the query can be answered using the
index alone!

The “needed” attributes are the union of those in
the SELECT and WHERE clauses…

SELECT Published, BID
FROM Russian_Novels
WHERE Published > 1867

Example:

Published BID
1866 002

1869 001

1877 003

By_Yr_Index

62

High-level Categories of Index Types

• B-Trees
- Very good for range queries, sorted data
- Some old databases only implemented B-Trees
- We will look at a variant called B+ Trees

• Hash Tables
- There are variants of this basic structure to deal with IO
- Called linear or extendible hashing- IO aware!

The data structures
we present here
are “IO aware”

Real difference between structures: costs of ops
determines which index you pick and why

63

Activity-51.ipynb

64

Further Motivation for Indexes: NoSQL!

• NoSQL engines are (basically) just indexes!

- A lot more is left to the user in NoSQL… one of the primary remaining functions of the
DBMS is still to provide index over the data records, for the reasons we just saw!

- Sometimes use B+ Trees, sometimes hash indexes

Indexes are critical across all DBMS types

65

Back to NoSQL!
Concretely, Key-values

66

key value

set x 10 x 10

hset h y 5 h yà5

hset h1 name two
hset h1 value 2_ h1

nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice s {20,Alice}

rpush l a
rpush l b
lpush l c l (c,a,b)

(simple value)

(hash table)

(set)

(list)

key maps to:

Example of Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

67

key value

set x 10 x 10

hset h y 5 h yà5

hset h1 name two
hset h1 value 2_

h1 nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice

s

{20,Alice}

rpush l a
rpush l b
lpush l c

l

(c,a,b)

(simple value)

(set)

(list)

key maps to:

Example of Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

(hash table)

68

Additional Notes

• A key can be any <256MB binary string
- For example, JPEG image

• Some key operations:
- List all keys: keys *
- Remove all keys: flushall
- Check if a key exists: exists k

• You can configure the persistency model
- save m k means save every m seconds if at least k keys have changed

69

Redis Cluster

• Add-on module for managing multi-node applications over Redis
• Master-slave architecture for sharding + replication
- Multiple masters holding pairwise disjoint sets of keys, every master has a

set of slaves for replication and shardingMaster and Slave nodes
Nodes are all connected and functionally equivalent, but
actually there are two kind of nodes: slave and master nodes:

Redundancy
In the example there are two replicas per every master node, so
up to two random nodes can go down without issues.

Working with two nodes
down is guaranteed, but in
the best case the cluster
will continue to work as
long as there is at least
one node for every hash
slot.

Source: http://redis.io/presentation/Redis_Cluster.pdf

Blue … master,
Yellow … replicas
Up to 2 random
nodes can go
down without
issues because of
redundancy

Masters

Slaves

Keys {0,1,8}

http://redis.io/presentation/Redis_Cluster.pdf

70

Do-it-yourself secondary indexing

Source: 2016 - Harrison - Next Generation Databases -- NoSQL, NewSQL, and Big Data: Fig 10-13

How to find users by email?

71

Do-it-yourself secondary indexing

Source: 2016 - Harrison - Next Generation Databases -- NoSQL, NewSQL, and Big Data: Fig 10-13

How to find users by email?

How to find users by country?

72

Do-it-yourself secondary indexing

Source: 2016 - Harrison - Next Generation Databases -- NoSQL, NewSQL, and Big Data: Fig 10-13

How to find users by email?

How to find users by country?

73

When to use it

• Use it:
- All access to the databases is via primary key
- Storing session information (web session)
- user or product profiles (single GET operation)
- shopping card information (based on userid)

• Don't use it:
- relationships between different sets of data
- query by data (based on values)
- operations on multiple keys at a time

74

• Introduction
• Transaction Consistency
• 4 main data models

– Key-Value Stores (e.g., Redis)
– Column-Family Stores (e.g., Cassandra)
– Document Stores (e.g., MongoDB)
– Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline: Alternative data models

75

keyspace

2 Types of Column Stores

sid name address year faculty
861 Alice Vienna 2 NULL
753 Amir London NULL CS
955 Armin NULL 2 IE

Standard RDB

id sid
1 861
2 753
3 955

id name
1 Alice
2 Amir
3 Armin

id address
1 Vienna
2 London

id year
1 2
3 2

id faculty
2 CS
3 IE

Each column stored separately. Why?
Efficiency (fetch only required columns),

compression, sparse data for free

1 sid:861 name:Alice
address:Vienna ts:20

2 sid:753 name:Amir
address:London ts:22

3 sid:955 name:Armin ts:32

1 year:2 ts:26

2 faculty:CS ts:25
email:{prime:c@d ext:c@e}

3 year:2 faculty:IE ts:32
email:{prime:a@b ext:a@c}

column family

column family

“column”

“supercolumn”

Column-Family Store (NoSQL)

timestamp for
conflicts

Column store (still SQL)

Cassandra data model

76

Column Stores

• The two often mixed as “column store” à confusion
- See Daniel Abadi’s blog: http://dbmsmusings.blogspot.com/2010/03/distinguishing-two-major-types-of_29.html

• Common idea: don’t keep a row in a consecutive block, split via projection
- Column store: each column is independent
- Column-family store: each column family is independent

• Both provide some major efficiency benefits in common read-mainly
workloads
- Given a query, load to memory only the relevant columns
- Columns can often be highly compressed due to value similarity
- Effective form for sparse information (no NULLs, no space)

• Column-family store is handled differently from RDBs, often requiring a
designated query language

http://dbmsmusings.blogspot.com/2010/03/distinguishing-two-major-types-of_29.html

77

Examples Systems

• Column store (SQL):
- MonetDB (started 2002, Univ. Amsterdam)
- VectorWise (spawned from MonetDB)
- Vertica (M. Stonebraker)
- SAP Sybase IQ
- Infobright

• Column-family store (NoSQL):
- Google’s BigTable (main inspiration to column families)
- Apache HBase (used by Facebook, LinkedIn, Netflix..., CP in CAP)
- Hypertable
- Apache Cassandra (AP in CAP)

78

Example: Apache Cassandra

• Initially developed by Facebook
- Open-sourced in 2008

• Used by 1500+ businesses, e.g., Comcast, eBay, GitHub, Hulu, Instagram,
Netflix, Best Buy, ...

• Column-family store
- Supports key-value interface
- Provides a SQL-like CRUD interface: CQL

• Uses Bloom filters
- An interesting membership test that can have false positives but never false negatives,

behaves well statistically

• BASE consistency model (AP in CAP)
- Gossip protocol (constant communication) to establish consistency
- Ring-based replication model

79

Example Bloom Filter k=3

Insert(x,H)

Member(y,H)

y1 = is not in H (why ?)

y2 may be in H (why ?)

80

3

2

4

88

3

2

4

Cassandra’s Ring Model

1

5

7

6

write(k,t) hash(k)=2

write(k,t)

write(k,t)

write(k,t)

Replication Factor = 3

Advantage: Flexibility /
ease of cluster redesign

Coordinator node

Primary responsible

Additional replicas

See more: https://www.hakkalabs.co/articles/how-cassandra-stores-data

https://www.hakkalabs.co/articles/how-cassandra-stores-data

81

When to use it (e.g. Cassandra)

• Use it:
- Event logging (multiple applications can write in different columns and

row-key: appname:timestamp)
- CMS: Store blog entries with tags, categories, links in different columns
- Counters: e.g. visitors of a page

• Don't use it:
- if you require ACID, consistency
- if you change query patterns often (in RDMS schema changes are costly, in

Cassandra query changes too: require changing the column family design)

82

• Introduction
• Transaction Consistency
• 4 main data models

– Key-Value Stores (e.g., Redis)
– Column-Family Stores (e.g., Cassandra)
– Document Stores (e.g., MongoDB)
– Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline: Alternative data models

83

Document Stores

• Similar in nature to key-value store, but value is tree structured as a
document

• Motivation: avoid joins; ideally, all relevant joins already
encapsulated in the document structure

• A document is an atomic object that cannot be split across servers
- But a document collection will be split

• Moreover, transaction atomicity is typically guaranteed within a
single document

• Model generalizes column-family and key-value stores

84

Example Databases

• MongoDB
- Next slides

• Apache CouchDB
- Emphasizes Web access

• RethinkDB
- Optimized for highly dynamic application data

• RavenDB
- Deigned for .NET, ACID

• Clusterpoint Server
- XML and JSON, a combined SQL/JavaScript QL

85

MongoDB

• Open source, 1st release 2009, document store
- Actually, an extended format called BSON (Binary JSON = JavaScript Object Notation) for

typing and better compression

• Supports replication (master/slave), sharding (horizontal partitioning)
- Developer provides the "shard key" – collection is partitioned by ranges of values of this

key

• Consistency guarantees, CP of CAP
• Used by Adobe (experience tracking), Craigslist, eBay, FIFA (video game),

LinkedIn, McAfee
• Provides connector to Hadoop
- Cloudera provides the MongoDB connector in distributions

86

Data Example: High-level

{
name: "Alice",
age: 21,
status: "A",
groups: ["algorithms", "theory"]

}

Document

Source: Modified from https://docs.mongodb.com/v3.0/core/crud-introduction/

Collection
{

name: "Alice",
age: 21,
status: "A",
groups: ["algorithms", "theory"]

}

{
name: "Bob",
age: 18,
status: "B",
groups: ["database", "cooking"]

}

{
name: "Charly",
age: 22,
status: "A",
groups: ["database", "cars"]

}

{
name: "Dorothee",
age: 16,
status: "A",
groups: ["cars", "sports"]

}

~ record / row / tuple ~ table

https://docs.mongodb.com/v3.0/core/crud-introduction/

87

MongoDB Terminology

RDBMS
• Database
• Table
• Record/Row/Tuple
• Column
• Primary key
• Foreign key

MongoDB
• Database
• Collection
• Document
• Field
• _id

88

MongoDB Data Model

• JavaScript Object Notation (JSON) model
• Database = set of named collections
• Collection = sequence of documents
• Document = {attribute1:value1,...,attributek:valuek}
• Attribute = string (attributei≠attributej)
• Value = primitive value (string, number, date, ...), or a document, or an array
- Array = [value1,...,valuen]

• Key properties: hierarchical (like XML), no schema
- Collection docs may have different attributes

generalizes relation

generalizes tuple

89

Data Example

{
item: "ABC2",
details: { model: "14Q3", manufacturer: "M1 Corporation" },
stock: [{ size: "M", qty: 50 }],
category: "clothing”

}

{
item: "MNO2",
details: { model: "14Q3", manufacturer: "ABC Company" },
stock: [{ size: "S", qty: 5 }, { size: "M", qty: 5 }, { size: "L", qty: 1 }],
category: "clothing”

}

Collection inventory

db.inventory.insert(
{

item: "ABC1",
details: {model: "14Q3",manufacturer: "XYZ Company"},
stock: [{ size: "S", qty: 25 }, { size: "M", qty: 50 }],
category: "clothing"

}
) Document insertionSource: Modified from https://docs.mongodb.com/v3.0/core/crud-introduction/

https://docs.mongodb.com/v3.0/core/crud-introduction/

90

Example of a Simple Query

{
_id: "a",
cust_id: "abc123",
status: "A",
price: 25,
items: [{ sku: "mmm", qty: 5, price: 3 },

{ sku: "nnn", qty: 5, price: 2 }]
}
{

_id: "b",
cust_id: "abc124",
status: "B",
price: 12,
items: [{ sku: "nnn", qty: 2, price: 2 },

{ sku: "ppp", qty: 2, price: 4 }]
}

Collection orders
db.orders.find(

{ status: "A" },
{ cust_id: 1, price: 1, _id: 0 }

)

In SQL it would look like this:
SELECT cust_id, price

FROM orders
WHERE status="A"

{
cust_id: "abc123",
price: 25

}

selection

projection

Find all orders
and price with
with status "A"

91

When to use it

• Use it:
- Event logging: different types of events across an enterprise
- CMS: user comments, registration, profiles, web-facing documents
- E-commerce: flexible schema for products, evolve data models

• Don't use it:
- if you require atomic cross-document operations
- queries against varying aggregate structures

92

• Introduction
• Transaction Consistency
• 4 main data models

– Key-Value Stores (e.g., Redis)
– Column-Family Stores (e.g., Cassandra)
– Document Stores (e.g., MongoDB)
– Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline: Alternative data models

93

Graph Databases
• Restricted case of a relational schema:

- Nodes (+labels/properties)
- Edges (+labels/properties)

• Motivated by the popularity of network/communication oriented applications

• Efficient support for graph-oriented queries
- Reachability, graph patterns, path patterns

- Ordinary RDBs either not support or inefficient for such queries
• Path of length k is a k-wise self join; yet a very special one...

• Specialized languages for graph queries
- For example, pattern language for paths

• Plus distributed, 2-of-CAP, etc.
- Depending on the design choices of the vendor

94

Example Databases

• Graph with nodes/edges marked with labels and properties (labeled property
graph)
- Sparksee (DEX) (Java, 1st release 2008)
- neo4j (Java, 1st release 2010)
- InfiniteGraph (Java/C++, 1st release 2010)
- OrientDB (Java, 1st release 2010)

• Triple stores: Support W3C RDF and SPARQL, also viewed as graph databases
- MarkLogic, AllegroGraph, Blazegraph, IBM SystemG, Oracle Spatial & Graph, OpenLink

Virtuoso, ontotext

95

neo4j

• Open source, written in Java
- First version released 2010

• Supports the Cypher query language (declarative graph QL)

• Clustering support
- Replication and sharding through master-slave architectures

• Used by ebay, Walmart, Cisco, National Geographic, TomTom,
Lufthansa, ...

96

Examples taken from Graph Databases by Robinson,
Webber, and Eifrem (O’Reilly) – free eBook

97

The Graph Data Model in Cypher

• Labeled property graph model

• Node
- Has a set of labels (typically one label)
- Has a set of properties key:value (where value is of a primitive type or an

array of primitives)

• Edge (relationship)
- Directed: nodeànode
- Has a name
- Has a set of properties (like nodes)

98

Example: Cypher Graph for Social Networks

Graphs Are Everywhere
Graphs are extremely useful in understanding a wide diversity of datasets in fields
such as science, government, and business. The real world—unlike the forms-based
model behind the relational database—is rich and interrelated: uniform and rule-
bound in parts, exceptional and irregular in others. Once we understand graphs, we
begin to see them in all sorts of places. Gartner, for example, identifies five graphs in
the world of business—social, intent, consumption, interest, and mobile—and says
that the ability to leverage these graphs provides a “sustainable competitive advan‐
tage.”

For example, Twitter’s data is easily represented as a graph. In Figure 1-1 we see a
small network of Twitter users. Each node is labeled User, indicating its role in the
network. These nodes are then connected with relationships, which help further
establish the semantic context: namely, that Billy follows Harry, and that Harry, in
turn, follows Billy. Ruth and Harry likewise follow each other, but sadly, although
Ruth follows Billy, Billy hasn’t (yet) reciprocated.

Figure 1-1. A small social graph

Of course, Twitter’s real graph is hundreds of millions of times larger than the exam‐
ple in Figure 1-1, but it works on precisely the same principles. In Figure 1-2 we’ve
expanded the graph to include the messages published by Ruth.

2 | Chapter 1: Introduction

labelproperty

direction
name

99

 (email_4)-[:TO]->(davina),
 (email_4)-[:TO]->(edward);

CREATE (email_5:Email {id:'5', content:'email contents'}),
 (davina)-[:SENT]->(email_5),
 (email_5)-[:TO]->(alice),
 (email_5)-[:BCC]->(bob),
 (email_5)-[:BCC]->(edward);

This leads to the more complex, and interesting, graph we see in Figure 3-10.

Figure 3-10. A graph of email interactions

Common Modeling Pitfalls | 57

Another Example: Email Exchange

100

Query Example

 (email_4)-[:TO]->(davina),
 (email_4)-[:TO]->(edward);

CREATE (email_5:Email {id:'5', content:'email contents'}),
 (davina)-[:SENT]->(email_5),
 (email_5)-[:TO]->(alice),
 (email_5)-[:BCC]->(bob),
 (email_5)-[:BCC]->(edward);

This leads to the more complex, and interesting, graph we see in Figure 3-10.

Figure 3-10. A graph of email interactions

Common Modeling Pitfalls | 57

MATCH (bob:User{username:'Bob'})-[:SENT]->(email)-[:CC]->(alias),
(alias)-[:ALIAS_OF]->(bob)

RETURN email

email

Node{id:"1",content:"..."}

101

Creating Graph Data

This first modeling attempt results in a star-shaped graph with Bob at the center. His
actions of emailing, copying, and blind-copying are represented by relationships that
extend from Bob to the nodes representing the recipients of his mail. As we see in
Figure 3-8, however, the most critical element of the data, the actual email, is missing.

Figure 3-8. Missing email node leads to lost information

This graph structure is lossy, a fact that becomes evident when we pose the following
query:

MATCH (bob:User {username:'Bob'})-[e:EMAILED]->
 (charlie:User {username:'Charlie'})
RETURN e

This query returns the EMAILED relationships between Bob and Charlie (there will
likely be one for each email that Bob has sent to Charlie). This tells us that emails
have been exchanged, but it tells us nothing about the emails themselves:

+----------------+
| e |
+----------------+
| :EMAILED[1] {} |
+----------------+
1 row

54 | Chapter 3: Data Modeling with Graphs

CREATE (alice:User {username:'Alice'}),
(bob:User {username:'Bob'}),
(charlie:User {username:'Charlie'}),
(davina:User {username:'Davina'}),
(edward:User {username:'Edward'}),
(alice)-[:ALIAS_OF]->(bob)

102

Creating Graph Data

This first modeling attempt results in a star-shaped graph with Bob at the center. His
actions of emailing, copying, and blind-copying are represented by relationships that
extend from Bob to the nodes representing the recipients of his mail. As we see in
Figure 3-8, however, the most critical element of the data, the actual email, is missing.

Figure 3-8. Missing email node leads to lost information

This graph structure is lossy, a fact that becomes evident when we pose the following
query:

MATCH (bob:User {username:'Bob'})-[e:EMAILED]->
 (charlie:User {username:'Charlie'})
RETURN e

This query returns the EMAILED relationships between Bob and Charlie (there will
likely be one for each email that Bob has sent to Charlie). This tells us that emails
have been exchanged, but it tells us nothing about the emails themselves:

+----------------+
| e |
+----------------+
| :EMAILED[1] {} |
+----------------+
1 row

54 | Chapter 3: Data Modeling with Graphs

MATCH (bob:User {username:'Bob'}),
(charlie:User {username:'Charlie'}),
(davina:User {username:'Davina'}),
(edward:User {username:'Edward'})

CREATE (bob)-[:EMAILED]->(charlie),
(bob)-[:CC]->(davina),
(bob)-[:BCC]->(edward)

CREATE (alice:User {username:'Alice'}),
(bob:User {username:'Bob'}),
(charlie:User {username:'Charlie'}),
(davina:User {username:'Davina'}),
(edward:User {username:'Edward'}),
(alice)-[:ALIAS_OF]->(bob)

103

Another Example

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN
clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT
relationship), and return the replier’s name and the depth at which he or she replied.
This query returns the following results:

+-------------------+
| replier | depth |
+-------------------+
"Davina"	1
"Bob"	1
"Charlie"	2
"Bob"	3
+-------------------+
4 rows

We see that both Davina and Bob replied directly to Bob’s original email; that Charlie
replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It’s a similar pattern for a forwarded email, which can be regarded as a new email that
simply happens to contain some of the text of the original email. As with the reply
case, we model the new email explicitly. We also reference the original email from the

Common Modeling Pitfalls | 61

MATCH p = (email:Email {id:'6'})
<-[:REPLY_TO*1..4]-(:Reply)<-[:SENT]-(replier)

RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

replier depth

Davina 1

Bob 1

Charlie 2

Bob 3

Path assignment

104

Another Example

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN
clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT
relationship), and return the replier’s name and the depth at which he or she replied.
This query returns the following results:

+-------------------+
| replier | depth |
+-------------------+
"Davina"	1
"Bob"	1
"Charlie"	2
"Bob"	3
+-------------------+
4 rows

We see that both Davina and Bob replied directly to Bob’s original email; that Charlie
replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It’s a similar pattern for a forwarded email, which can be regarded as a new email that
simply happens to contain some of the text of the original email. As with the reply
case, we model the new email explicitly. We also reference the original email from the

Common Modeling Pitfalls | 61

MATCH p = (email:Email {id:'6'})
<-[:REPLY_TO*1..4]-(:Reply)<-[:SENT]-(replier)

RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

replier depth

Davina 1

Bob 1

Charlie 2

Bob 3

Path assignment

105

Another Example

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier p. In the RETURN
clause we then calculate the length of the reply-to chain (subtracting 1 for the SENT
relationship), and return the replier’s name and the depth at which he or she replied.
This query returns the following results:

+-------------------+
| replier | depth |
+-------------------+
"Davina"	1
"Bob"	1
"Charlie"	2
"Bob"	3
+-------------------+
4 rows

We see that both Davina and Bob replied directly to Bob’s original email; that Charlie
replied to one of the replies; and that Bob then replied to one of the replies to a reply.

It’s a similar pattern for a forwarded email, which can be regarded as a new email that
simply happens to contain some of the text of the original email. As with the reply
case, we model the new email explicitly. We also reference the original email from the

Common Modeling Pitfalls | 61

MATCH p = (email:Email {id:'6'})
<-[:REPLY_TO*1..4]-(:Reply)<-[:SENT]-(replier)

RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

replier depth

Davina 1

Bob 1

Charlie 2

Bob 3

Path assignment

106

When to use it

• Use it:
- Connected data, e.g. social graphs, employees where they worked
- Location-based services
- Recommendation engines

• Don't use it:
- Change properties on many entities

107

• Introduction
• Transaction Consistency
• 4 main data models

– Key-Value Stores (e.g., Redis)
– Column-Family Stores (e.g., Cassandra)
– Document Stores (e.g., MongoDB)
– Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline: Alternative data models

108

Concluding Remarks on Common NoSQL

• Aim to avoid join & ACID overhead
- Joined within, correctness compromised for quick answers; believe in best

effort
• Avoid the idea of a schema
• Query languages are more imperative
- And less declarative
- Developer better knows what’s going on; less reliance on smart

optimization plans
- More responsibility on developers

• No standard well studied languages (yet)

