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Outline: Datalog

• Datalog
– Datalog rules
– Recursion
– Semantics
– Datalog¬: Negation, stratification
– Datalog±
– Stable model semantics (Answer set programming)
– Datalog vs. RA
– Naive and Semi-naive evaluation
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Answer Set Programming
• Programming paradigm that can model AI problems (e.g, planning, combinatorics)
• Basic idea

- Allow non-stratified negation and encode problem (specification & "instance") as logic program rules
- Solutions are stable models of the program

• Semantics based on Possible Worlds and Stable Models
- Given an answer set program, there can be multiple solutions (stable models, answer sets)
- Each model: assignment of true/false value to propositions to make all formulas true. 
- Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak 

exceptions, preferences, etc., in a natural way

• Finding stable models of answer set programs is not easy 
- Current systems CLASP, DLV, Smodels, etc., extremely sophisticated
- Work by grounding the program, suitably transforming it to a propositional theory whose models are 

stable models of the original program
- These models found using a SAT solver
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Rules with Negation

• Closed world assumption
- If a fact does not logically follow from a set of Datalog clauses, then we 

conclude that the negation of this fact is true.
• Problem: multiple minimal models ("Herbrand models")
- boring(chess) :- not interesting(chess)
- 𝐻z = 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔 𝑐ℎ𝑒𝑠𝑠 , 𝐻� = {𝑏𝑜𝑟𝑖𝑛𝑔 𝑐ℎ𝑒𝑠𝑠 }
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Semantics: Informally

• Informally, a stable model M of a ground program P is a set of 
ground atoms such that
1. Every rule is satisfied: 

i.e., for any rule in P

if each Bj is satisfied (Bi's are in M) and no Ci is satisfied 
(i.e. no Ci is is in M), then A is in M.

2. Every A Î M can be derived from a rule by a "non-circular reasoning"
(informal for: we are looking for minimal models)

A :- B1, ..., Bm, not C1, ..., not Cn.
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Semantics: "non-circular" more formally
Idea: you guess a set of atoms. You then verify it is indeed exactly 
the set of atoms that "can be derived." 

The reduct of P w.r.t M is:

h :- b1, ..., bm.PM = {
∧ no Ci ∊ M }

M is a stable model of P iff M is the least model of PM

h :- b1, ..., bm, not c1, ..., not cn.

|
∊ P
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Examples

a :- a.P1:

M={a}

M={}

not a stable model (not minimal, derivation of a is based on a 
circular reasoning)

stable model

a :- not b.P2:

M={a} only stable model

a :- not a.P3:

has no stable model

For a normal program without 
negation ("positive program"), its 
least model is the set of its atomic 
consequences.

a :-

a :- a.
vs. 
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Examples

a :- not b.
b :- not a.

P4:

M1={a}
two stable modelsM2={b}

a :- not b.
b :- not a.
a :- not a.

P5:

M={a} only stable model
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3-colorability

Q: For a graph (V, E) find an assignment of one of 3 colors to 
each vertex such that no adjacent vertices share a color.

Convention in ASP: 
Capital letters are 
variables, small 
letters constants

Cp. edge(X,a)
vs. edge(x,'a')

b

c

a

?
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3-colorability

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

Q: For a graph (V, E) find an assignment of one of 3 colors to 
each vertex such that no adjacent vertices share a color.

Convention in ASP: 
Capital letters are 
variables, small 
letters constants

Cp. edge(X,a)
vs. edge(x,'a')

b

c

a

?
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3-colorability

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

color(V,1) :- not color(V,2), not color(V,3), vertex(V). 
color(V,2) :- not color(V,3), not color(V,1), vertex(V). 
color(V,3) :- not color(V,1), not color(V,2), vertex(V). 

Q: For a graph (V, E) find an assignment of one of 3 colors to 
each vertex such that no adjacent vertices share a color.

Convention in ASP: 
Capital letters are 
variables, small 
letters constants

Cp. edge(X,a)
vs. edge(x,'a')

b

c

a

?
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3-colorability

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

color(V,1) :- not color(V,2), not color(V,3), vertex(V). 
color(V,2) :- not color(V,3), not color(V,1), vertex(V). 
color(V,3) :- not color(V,1), not color(V,2), vertex(V). 

:- edge(V,U), color(V,C), color(U,C).

Q: For a graph (V, E) find an assignment of one of 3 colors to 
each vertex such that no adjacent vertices share a color.

Convention in ASP: 
Capital letters are 
variables, small 
letters constants

Cp. edge(X,a)
vs. edge(x,'a')

b

c

a
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Data Conflict Resolution
Using Trust Mappings

SIGMOD 2010
Paper: http://portal.acm.org/citation.cfm?id=1807167.1807193
Full version with proofs: http://arxiv.org/pdf/1012.3320
Old Project web page: https://db.cs.washington.edu/projects/beliefdb/

http://portal.acm.org/citation.cfm%3Fid=1807167.1807193
http://arxiv.org/pdf/1012.3320
https://db.cs.washington.edu/projects/beliefdb/
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Alice

Bob

Problem in social data: often no single ground truth

Charlie

What is the origin 
of this glyph? : ship hull

: cow

: jar

The Indus Script*

* Current state of knowledge on the Indus Script: Rao et al., Science 324(5931):1165, May 2009
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arrow

arrowarrow

“Implicit belief”

ship hull

Alice

Bob
glyph origin

cow

glyph origin

fish

100

50

80

Background: Conflicts & Trust in Community DBs

Alice ¬ Bob (100)
Alice ¬ Charlie (50)
Bob ¬ Alice (80)

ship hull
cow
jar
fish
knot

arrow

glyph origin
Alice
Bob
Charlie
Bob
Charlie
Charlie

“Explicit belief”

Priorities

“Beliefs”: annotated 
(key,value) pairs

Trust mappings

Conflicting beliefs

Recent work on community databases:

Charlie
glyph origin

jar
knot

Taylor & Ives [SIGMOD’06] 
Green et al. [VLDB’07] 
Kot & Koch [VLDB’09]
GBKS [VLDB’09] 

Orchestra
Youtopia
BeliefDB

fish
arrowarrowarrow

fishfish

arrow
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glyph origin
jar t1jar

1. Incorrect inserts
– Value depends on order of inserts

Limitations of previous work: transient effects

Alice

Charlie

Bob
glyph origin

glyph origin
jar t2

cow t3

Alice would have
preferred Bob’s 
value over Charlie’s

100

50
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Alice 50
glyph origin

jar t2

glyph origin
jar t1jar

cow t4

1. Incorrect inserts
– Value depends on order of inserts

2. Incorrect updates
– Mis-handling of revokes

Limitations of previous work: transient effects

Charlie

Bob
glyph origin

jar t3

jar

Automatic conflict resolution with trust mappings: 
1. How to define a globally consistent solution?
2. How to calculate it efficiently?
(3. Several extensions)

Alice and Bob trust each 
other most, but have lost 
“justification” for their beliefs

100 80

GS [Sigmod’10] 
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Agenda

1. Stable solutions
– how to define a unique and consistent solution?

2. Resolution algorithm
– how to calculate the solution efficiently?

3. Extensions
– how to deal with “negative beliefs”?
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30

Binary Trust Networks (BTNs)

D:?C:?

B:wA:v

User D is
user C’s 

“preferred 
parent”

User A has explicit belief v

To simplify presentation: focus on binary TNs

Alice Bob
glyph origin

100

80
Charlie

glyph origin
Dhana

glyph origin

40
Focus on one single key
(we ignore the glyph)

glyph origin
cowship hull
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N2:? N3:?N1:? D:?A:v

N4:?

N2:v N3:vN1:v D:vA:v

N4:?

N2:v N3:vN1:v D:vA:v

N4:v

The definition of a globally consistent solution

D:?C:?

B:wA:v• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

non-dominating
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The definition of a globally consistent solution

D:vC:v

B:wA:v

SS1=(A:v, B:w, C:v, D:v)

non-dominating

N2:v N3:vN1:v D:vA:v

N4:v

• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief
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• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

The definition of a globally consistent solution

D:wC:w

B:wA:v

SS1=(A:v, B:w, C:v, D:v)
SS2=(A:v, B:w, C:w, D:w)N2:v N3:vN1:v D:vA:v

N4:v
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N2:v N3:vN1:v

Possible and certain values from all stable solutions

D:?C:?

B:wA:v

SS1=(A:v, B:w, C:v, D:v)
SS2=(A:v, B:w, C:w, D:w)

X poss(X) cert(X)

A {v}
B {w}
C {v,w}
D {v,w}

{v}
{w}
Æ
Æ

• Possible / Certain semantics
– a stable solution determines, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions, per user

D:vA:v

N4:v

• Stable solution
– assignment of values to each node, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief
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Logic programs (LP) with stable model semantics

Ti
m

e 
[s

ec
]

0

0

1

10

100

1,000

10,000

0 50 100 150 200

0.1

0.01
DLV

State-of-the-art LP solver� Previous work on peer data 
exchange suggest using LPs.

Greco et al. [TKDE’03]

0 50 100 150 200

But solving LPs is hard L

Size of the network (#N + #E)

Arenas et al. [TLP’03]
Barcelo, Bertossi [PADL’03]
Bertossi, Bravo [LPAR’07]

10

1

1,000

100

10,000

Yet surprisingly, our
problem allows a 
PTIME solution J

P(C,x) :- P(A,x)
F(C,B,y) :- P(B,y), P(C,x), x¹y

P(C,y) :- P(B,y), ¬F(C,B,yC

A B

� LPs can capture this semantics.

� There exist powerful and free 
LP solver available.
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DLV example
poss(X,U) ?

./dlv.bin – brave 
input.txt. query-.txt

input.txt query.txt

Size: 38

Executing program

Result

% --- Insert explicit beliefs ---
possH(h8_0,1).
possH(h11_0,0).
possH(h12_0,1).
possH(h13_0,0).
possH(h14_0,1).
% --- Node: 0 ---
possH(h0_1,X) :- possH(h0_0,X).
block(h0_1,11,X) :- poss(11,X), possH(h0_1,Y), Y!=X.
possH(h0_1,X) :- poss(11,X), not block(h0_1,11,X).
possH(h0_2,X) :- possH(h0_1,X).
block(h0_2,3,X) :- poss(3,X), possH(h0_2,Y), Y!=X.
possH(h0_2,X) :- poss(3,X), not block(h0_2,3,X).
possH(h0_3,X) :- possH(h0_2,X).
block(h0_3,12,X) :- poss(12,X), possH(h0_3,Y), Y!=X.
possH(h0_3,X) :- poss(12,X), not block(h0_3,12,X).
poss(0,X) :- possH(h0_3,X).
% --- Node: 1 ---
possH(h1_1,X) :- possH(h1_0,X).
block(h1_1,2,X) :- poss(2,X), possH(h1_1,Y), Y!=X.
possH(h1_1,X) :- poss(2,X), not block(h1_1,2,X).
possH(h1_2,X) :- possH(h1_1,X).
block(h1_2,0,X) :- poss(0,X), possH(h1_2,Y), Y!=X.
possH(h1_2,X) :- poss(0,X), not block(h1_2,0,X).
possH(h1_3,X) :- possH(h1_2,X).
block(h1_3,5,X) :- poss(5,X), possH(h1_3,Y), Y!=X.
possH(h1_3,X) :- poss(5,X), not block(h1_3,5,X).
possH(h1_4,X) :- possH(h1_3,X).
block(h1_4,13,X) :- poss(13,X), possH(h1_4,Y), Y!=X.
possH(h1_4,X) :- poss(13,X), not block(h1_4,13,X).
poss(1,X) :- possH(h1_4,X).
% --- Node: 2 ---

. . . . . . 

% --- Node: 13 ---
poss(13,X) :- possH(h13_0,X).
% --- Node: 14 ---
poss(14,X) :- possH(h14_0,X).
% --- Node: 15 ---
poss(15,X) :- possH(h15_0,X).
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Agenda

1. Stable solutions
– how to define a unique and consistent solution?

2. Resolution algorithm
– how to calculate the solution efficiently?

3. Extensions
– how to deal with “negative beliefs”?
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Resolution Algorithm

closed

G

A{v} C{u}

D E F

H

J L

B{w}

X poss(X) cert(X)

A {v}
B {w}
C {u}
D ?
E ?
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}
?
?
?
?
?
?
?
?

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

open

K

Focus on binary trust network

preferred

non-preferred
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Resolution Algorithm

closed

open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D ?
E ?
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}
?
?
?
?
?
?
?
?

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
Step 1: if $ preferred edges from 

open to closed 
® follow

G

A{v}

D

J

E

H

B{w} C{u}

F

LK
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D {v}
E ?
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}
{v}
?
?
?
?
?
?
?

G

A{v}

J

E

H

B{w} C{u}

F

L

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
Step 1: if $ preferred edges from 

open to closed 
® follow

open

K

D{v}
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E {w}
F ?
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}

{w}
?
?
?
?
?
?

G

A{v}

J

H

B{w} C{u}

F

L

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
Step 1: if $ preferred edges from 

open to closed 
® follow

open

{v} {v}

K

D{v} E{w}
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F {u}
G ?
H ?
J ?
K ?
L ?

{v}
{w}
{u}

{u}
?
?
?
?
?

G

A{v}

J

H

B{w} C{u}

F{u}

L

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
Step 1: if $ preferred edges from 

open to closed 
® follow

open

{w} {w}
{v} {v}

K

D{v} E{w}
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Resolution Algorithm

closed

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G ?
H {w}
J ?
K ?
L ?

{v}
{w}
{u}

?
{w}
?
?
?

A{v}

H{w}

B{w} C{u}

Initialize closed with explicit beliefs
� Keep 2 sets: closed / open

� MAIN
Step 1: if $ preferred edges from 

open to closed 
® follow

F{u}

open

{u} {u}
{w} {w}
{v} {v}

D{v} E{w}

J L

G

K

Now we are stuck!
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Detail: Strongly Connected Components (SCCs)

“Minimal SCCs”: no incoming
edge from other SCC 
= root node(s) in SCC graphA

C

E

G

B

D

F

H

SCC1

SCC2

SCC4

SCC3

A

C

E

G

B

D

F

H

SCC1

SCC2

SCC3

SCC4

For every cyclic or acyclic directed graph:
- The Strongly Connected Components graph is a DAG
- can be calculated in O(n) Tarjan [1972]
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Resolution Algorithm

D{v}

A{v} C{u}

H{w}

B{w}

closed

open

Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J ?
K ?
L ?

{v}
{w}
{u}

?
?
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

?
{w}

?
{w}

{u} {u}
{w} {w}
{v} {v}

“Root SCC”
no incoming
edge from 
other SCC 

G

LJ K
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Resolution Algorithm

A{v} C{u}B{w}

closed

open

Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J ?
K ?
L ?

{v}
{w}
{u}

?
?
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

?
{w}

?
{w}

{u} {u}
{w} {w}
{v} {v}

“Root SCC”
no incoming
edge from 
other SCC 

G

LJ K

D{v}

H{w}
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Resolution Algorithm

D{v}

A{v} C{u}

H{w}

L

B{w}

closed

open

Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J {v,w}
K {v,w}
L ?

{v}
{w}
{u}

Æ
Æ
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

{v,w}
{w}

Æ
{w}

{u} {u}
{w} {w}
{v} {v}

“Root SCC”
no incoming
edge from 
other SCC 

® resolve minimum SCCs

J{v,w} K{v,w}

G{v,w}



182

Resolution Algorithm

D{v}

A{v} C{u}

H{w}

L

B{w}
Step 2: else 
® construct SCC graph of open

X poss(X) cert(X)

A {v}
B {w}
C {u}
D
E
F
G
H
J {v,w}
K {v,w}
L ?

{v}
{w}
{u}

Æ
Æ
?

E{w} F{u}

Initialize closed with explicit beliefs
� MAIN

Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

{v,w}
{w}

Æ
{w}

{u} {u}
{w} {w}
{v} {v}

® resolve minimum SCCs

J{v,w} K{v,w}

G{v,w}

closed

open
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Resolution Algorithm

L{v,w,u}
closed

open
PTIME resolution algorithm
O(n2) worst case
O(n) on reasonable graphs

X poss(X) cert(X)

A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E {w} {w}
F {u} {u}
G {v,w} Æ
H {w} {w}
J {v,w} Æ
K {v,w} Æ
L {v,w,u} Æ

D{v}

A{v} C{u}

H{w}

B{w}

E{w} F{u}

J{v,w} K{v,w}

Step 2: else 
® construct SCC graph of open

Initialize closed with explicit beliefs
� MAIN

Step 1: if $ preferred edges from 
open to closed 
® follow

� Keep 2 sets: closed / open

® resolve minimum SCCs

G{v,w}

Can be implemented
in current DBMS with
transitive closure J
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Experiments on large network data

Web data set with 5.4m links between
270k domain names. Approach:

• Sample links with increasing ratio
• Include both nodes in sample
• Assign explicit beliefs randomly

Calculating poss / cert for fixed key
- DLV: State-of-the art logic programming solver
- RA: Resolution algorithm

Network 1: “Oscillators”

Network 2: “Web link data”
8 16

…
size24
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Size of the network [users + mappings]

Network 3: “Worst case” O(n2)

1

2

3{v}

{w}

{v} {v} {v} {v}
{v} {v} {v} {v}{v}

{v} {v} {v} {v}
{v}

{w} {w} {w} {w}

{w} {w} {w} {w}
{w} {w} {w} {w}
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. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm

{v}

{w}
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. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm

{v}

{w}

{v}

{w}
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. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm

{v}

{w}

{v}

{w}
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. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm

{v}

{w}

{v}

{v}

{v}

{w}

{w}

{v}

{w} {w}
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. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm

{v}

{w}

{v}

{v}

{v}

{w}

{w}

{v}

{w} {w}
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. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm

{v}

{w}

{v}

{v}

{v}

{v}

{v}

{w}

{w}

{w}

{w}

{v} {v}

{w} {w} {w}
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. . .

. . .

. . .

O(n2)-worst-case for Resolution Algorithm
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Agenda

1. Stable solutions
– how to define a unique and consistent solution?

2. Resolution algorithm
– how to calculate the solution efficiently?

3. Extensions
– how to deal with “negative beliefs”?
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3 semantics for negative beliefs
Agnostic Eclectic

NP-hard NP-hardw cycles

w/o cycles* O(n) O(n)

{w+}
{v−,w−}

{v−}
D

E

G H

F

J {u+,v−,w−}

{v−,w−}
{u+}

{w+}
{v−}

{v−}
D

E

G H

F

J {w+}

{w+}
{u+}

{v+}C

AB
{v+} {w−}

{v+,w−}C

AB
{v+} {w−}

* assuming total order on parents for each node
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3 semantics for negative beliefs
Agnostic Eclectic Skeptic

NP-hard O(n2)NP-hardw cycles

w/o cycles* O(n) O(n) O(n)

{w+}
{v−,w−}

{v−}
D

E

G H

F

J {u+,v−,w−}

{v−,w−}
{u+}

{w+}
{v−}

{v−}
D

E

G H

F

J {w+}

{w+}
{u+}

{w+}

G H

F

J {^}

{^}
{u+}

with a variation of resolution algorithm

Our recommendation

{v+}C

AB
{v+} {w−}

{v+,w−}C

AB
{v+} {w−}

{^}

{v+}
{v−}
D

E

C

AB
{v+} {w−}

* assuming total order on parents for each node
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Take-aways automatic conflict resolution

in the paper & TR

– bulk inserts
– agreement checking
– consensus value
– lineage computation

Problem 
• Given explicit beliefs & trust mappings, how to assign 

consistent value assignment to users?

Our solution
• Stable solutions with possible/certain value semantics
• PTIME algorithm [O(n2) worst case, O(n) experiments]
• Several extensions

– negative beliefs: 3 semantics, two hard, one O(n2)

https://db.cs.washington.edu/projects/beliefdb/ 
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details
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Fig_ComplexityOrLong
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that is consistent with the entire network. Definition 2.4 de-
fines a stable solution for this network, but in general there
may be several stable solutions. We have proposed the cer-
tain values as the snapshot to be shown to the user, and
described Algorithm 1, which computes the certain values
(and the possible values too) in time quadratic in the num-
ber of users. The algorithm may need to be run separately
for each object k, an issue that we will address in Sect. 4.

The important property of our approach is that both the
definition and the algorithm are order-invariant : they do
not rely on any order in which conflicts are to be resolved.
The result is a consistent snapshot of the conflicting infor-
mation. By contrast, as we have seen, prior approaches to
conflict resolution process the explicit beliefs in a fixed order
(e.g. in the order of their transaction time), and the result
depends on this order. As a consequence, if any explicit be-
lief is updated, e.g. some belief is revoked, there may be no
way to re-compute a consistent snapshot. In our approach,
if an explicit belief is updated, we will simply re-run the
algorithm and obtain another consistent snapshot.

As a further benefit of a principled approach, we men-
tion here two extensions of our algorithm that allow the
system to answer more complex queries, as those mentioned
in Sect. 2.1.

Retrieving lineage. We show how to extend the algorithm
to compute the lineage of each possible value. Whenever
we insert a value v into poss(x), store a pointer back to
the value v 2 poss(z) that produced this possible value at
x: for Step 1 this is a value in the preferred parent, for
Step 2 there can be several (user, value) pairs from outside
the set S: store pointers to all of them. Thus, from each
value v 2 poss(x) we can trace back several lineages. Note
that this method is not complete: Step 1 misses some lin-
eages that come to x via non-preferred edges. However, it
has the property that each possible value has at least one
lineage that the system can return to the user.

Pairs of possible values. For any two users x, y in a bi-
nary trust network, denote:

poss(x, y)={(v, w) | 9 stable solution b: b(x)=v, b(y)=w}

Thus, poss(x, y) denotes the set of pairs of values that x

and y can take together. Note that if (v, w) 2 poss(x, y)
then x 2 poss(x) and y 2 poss(y), but the converse is not
true. For example in Fig. 4b, poss(x1, x2) contains the
pairs (v, v) and (w,w), but not (v, w) or (w, v).

Proposition 2.13 (Possible Pairs). Algorithm 1
can be extended to compute poss(x, y) for all pairs of users
x, y. The modified algorithm runs in time O(n4) where n

is the number of users.

The sets poss(x, y) allow us to go beyond the snapshot con-
sisting of certain tuples, and answer more complex queries
about the conflicts and the reconciliation. For example,
the agreement checking query mentioned in Sect. 2.1 can
be answered as {(x, y) | 8(v, w) 2 poss(x, y) ) v = w}.

3. CONFLICT RESOLUTION WITH CON-
STRAINTS

In this section, we extend our approach to constraints
which we model as negative beliefs. So far, we have only

considered positive beliefs, i.e. a user either believes that
the value of an object is v or has no opinion at all. A neg-
ative belief, in contrast, states that the value of the object
is not v. We denote with (k, v)+ a positive belief, and with
(k, v)� a negative belief.
Constraints occur naturally in collaborative systems and

enable users to filter the data values they accept. For ex-
ample, one users may define the constraint the value of the
‘carbon-date’ attribute is between 1,200 and 40,000 : this cor-
responds to a negative belief for every value v outside the
range. Or, another user may rely on a reference database
before accepting a value, e.g. the value of the ‘translation
attribute’ must be in the ‘list-of-known-words’. These con-
straints are used to refuse a value from a trusted user and
therefore a↵ect the global conflict reconciliation. In addi-
tion, a user may state a negative belief explicitly in order
to refute another user’s statement. For example, user Alice
may state that the origin of is cow, written (k1, cow)+.
User Bob may disagree. He does not know what the origin
of the glyph is, but believes it cannot be a cow. His belief
is thus (k1, cow)�. Bob may accept other values, such as
horse or jar, from users he trusts, but not cow.
As in the previous section, our discussion focuses on a

single, fixed object k and we will not mention k anymore.
We write a positive belief as v+ and a negative belief as v�,
where v is a data value. An explicit belief can be positive
v+, meaning that the user knows that the value is v, or can
be a set of negative beliefs v�, w�, . . .. We allow these sets
to be infinite as long as they can be finitely represented, for
example by a range predicate.

Definition 3.1 (consistency). Two beliefs b1, b2 are
conflicting (b1 6$b2) if they are either distinct positive beliefs
v+, w+, or one is v+ and the other is v�. Otherwise, b1, b2
are consistent (b1$b2). A set of beliefs B is called consistent
if any two beliefs b1, b2 2 B are consistent.

Definition 3.2 (preferred union). Given two consis-
tent sets of beliefs B1, B2, their preferred union is:

B1~[B2 = B1 [ {b2 | b2 2 B2.
�
8b1 2 B1.b1$b2

�
}

As in the previous section, our goal is to define, then com-
pute all implicit beliefs based on the priority trust mappings.
As we will see next, this raises both conceptual and compu-
tational challenges.

3.1 Three Paradigms
Consider the binary trust network in Fig. 6a. User x1

defines a constraint resulting in a negative belief b�. Let’s
examine user x3: she obviously adopts the explicit belief a+
from her preferred parent x2. The question is: what should
she do with the negative belief b�? Should her belief be
{a+, b�}, or just {a+}? Clearly, once she believes the value
a+, she has no more use for the constraint b�, since the
purpose of the constraint was only to rule out b+ which is
not under consideration at all here. This argument shows
that she may well restrict her belief to {a+}. On the other
hand, her decision may a↵ect the users who trust her. Her
immediate successor x5 will reject a+, but the next user x7

has the option of adopting b+ or not. The decision made
by user x3 a↵ects whether x7 can learn or not about the
constraint b� defined upstream. As this example shows,
there are several choices in defining conflict-resolution in the
presence of negative beliefs, even for graphs without cycles.

6
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(a) Explicit beliefs (b)Agnosticparadigm (c) Eclectic paradigm (d) Skeptic paradigm

Figure 6: (a): An example binary trust network with explicit positive and negative beliefs. The edge from the
preferred parent is labeled as such. (b-d): The three alternative paradigms lead to di↵erent entailed implicit
beliefs at various nodes for the unique stable solution of the trust network.

We propose here three paradigms for trust network res-
olution in the presence of negative beliefs. A paradigm is
formally defined as a set of consistent sets of beliefs that are
considered valid or in normal form. We denote ?= {v� |

v 2 D} the set of all negative beliefs. Equivalently, ? is an
inconsistent constraint that rejects any value.

Agnostic. The only valid belief sets in this paradigm are
singleton positives {v+} and sets of negatives {v�, w�, . . .}.
Once a user knows the value of an object, they do not want
to know any constraints, even if they are consistent with
this value. In the agnostic solution, the negative belief b�
is blocked by x3 who believes only a+ (Fig. 6b).

“An agnostic is a person who believes that nothing is known
or can be known (. . . ) beyond material phenomena.”

Eclectic. Any consistent set of beliefs is valid. In this
paradigm, a user adopts all constraints that are consis-
tent with a given value. Thus, {a+, b�, c�} is a a valid
set of beliefs. The eclectic solution is shown in Fig. 6c.
Here x3 accepts the constraint b� in addition to a+. As a
consequence, this constraint is communicated all the way
to x7, who now rejects b+.

“An eclectic is a person who derives ideas, style, or taste
from a broad and diverse range of sources.”

Skeptic. The valid sets of beliefs are the following: all sets
with only negative beliefs, and all sets that contain exactly
one positive belief and all negative beliefs consistent with
it, i.e. they are of the form {v+} [ (? � {v�}). Thus,
when a user accepts a positive belief v+, she also adopts
a constraint that rules out all other values. The skeptic
solution is shown in Fig. 6d. In this paradigm the belief
a+“means” the set {a+, b�, c�, d�, . . .}. When x5 rejects
a+, his belief becomes ?. This propagates to x7, who
reject b+, similarly to the eclectic paradigm. However, at
the next step x9 rejects c+ too, hence x9 does not belief
any positive value (he believes ?). This di↵ers from the
eclectic paradigm, where x9 believes c+.

“A skeptic is a person inclined to question or doubt all
accepted opinions.”

The paradigm is chosen by the system administrator and
applied to all users. The stable solutions to a trust network

depend on the paradigm chosen. Before we can define the
stable solutions, we need some technical definitions. Let B

be a consistent set of positive and/or negative beliefs. For
each paradigm � 2 {Agnostic, Eclectic, Skeptic} (abbre-
viated by {A, E, S}), the normal form Norm�(B) is:

NormA(B) =

⇢
{v+} if 9v+ 2 B

B otherwise

NormE(B) = B

NormS(B) =

⇢
{v+} [ (?� {v�}) if 9v+ 2 B

B otherwise

The preferred union specialized to the paradigm � is:

B1~[�B2 = Norm�

�
Norm�(B1)~[Norm�(B2)

�
(1)

For example:

{a�}~[A{b+} = {b+}

{a�}~[E{b+} = {b+, a�}

{a�} ~[S {b+} = {b+, a�, c�, d�, . . .}

{b�} ~[S {b+} = ?

We define next a stable solution for a binary trust network
with constraints. We make the restriction that edges enter-
ing the same node have distinct priorities, thus we disallow
ties. We discuss ties in Appendix B.

Definition 3.3 (Stable solution w/ constraints).

Let � 2 {A, E, S}, and let BTN = (U,E,B0) be a binary trust
network, where for all x, B0(x) is either a positive belief, or
a set of negative beliefs, or the empty set. A stable solution
is a function B from users to sets of beliefs such that:
(1) If x has a preferred parent y and a non-preferred parent

z, then B(x)=B0(x) ~[�

�
B(y)~[�B(z)

�
. If x has only

one parent y, then B(x) =B0(x)~[�B(y). If x has no
parent, then B(x)=Norm�

�
B0(x)

�
.

(2) For every belief b 2 B(x) there exists a path x0 !

x1 ! . . . ! xn=x such that b 2 Norm�

�
B0(x0)

�
and

b 2 B(xi) for all i=0, . . . , n.

Consider a node x and a positive belief v+. We say that
v+ is possible if there exists a stable solution B s.t. v+ 2

B(x). We say that v+ is certain, if v+ 2 b(x) for all stable

7
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unreachable nodes, we add ? to the set of possible values,
because in the Skeptic paradigm: {v�}~[S{v+} = ?.

Theorem 3.5. (Skeptic resolution algorithm) Al-
gorithm 2 runs in time O(n2) and computes the set of pos-
sible values, for the Skeptic paradigm.

3.3 Discussion
This section described how to handle constraints during

conflict resolution. We represent constraints as negative be-
liefs and argue that they are an important feature in collab-
orative data sharing. The question we have studied is how
trust mappings should handle constraints. Perhaps the most
natural approach is to use the constraints only as filters for
data values accepted from other users, but otherwise ignore
them during reconciliation. This is what we called the Ag-

nostic paradigm. The second natural approach is to simply
propagate constraints together with data values, in what we
called the Eclectic paradigm. However, we have shown
that computing the possible values under both paradigms is
NP-hard (and computing the certain values is co-NP hard),
so we do not advocate their use in data reconciliation. Our
third paradigm is, we believe, natural too: propagate con-
straints, but in addition associate to a data value a maxi-
mal constraint, which rules out any other data value. This
paradigm, we have shown, is in PTIME, and the algorithm is
a natural, yet somewhat detailed extension of Algorithm 1.
We propose the Skeptic paradigm as the basis for conflict
resolution in cooperative data sharing systems.
We note that, if no constraints exist in the system, then

all three paradigms collapse to the simple semantics we dis-
cussed in Sect. 2.
The hardness of the Agnostic and Eclectic paradigms

holds under the assumption that the network is cyclic: the
proof used oscillators. If the network is a DAG, then all three
paradigms can be computed in PTIME, by simply applying
repeatedly the definition of preferred union (Eq. 1).

Proposition 3.6 (Acyclic BTNs). Let BTN be a bi-
nary trust network that is acyclic. Then for any of the
three paradigms (Agnostic, Eclectic, Skeptic) the follow-
ing hold: (a) there exists exactly one stable solution, and (b)
that solution can be computed in PTIME.

A puzzling question is why is the Skeptic paradigm in
PTIME, while the other two are hard. It is easy to see
that the Boolean gates in Fig. 7 no longer work under Skep-
tic, but we do not consider this a satisfactory explanation.
While we cannot give an ultimate cause, we point out one
interesting di↵erence. The preferred union for Skeptic is as-
sociative, while it is not associative for either Agnostic nor
Eclectic. For example, consider the two expressions B1 =
{a�}~[�

�
{a+}~[�{b+}

�
, B2 =

�
{a�}~[�{a+}

�
~[�{b+}. For

Agnostic, we have B2={b+}, for Eclectic B2={a�, b+},
while for both B1={a�}. By contrast, one can show that ~[S

is associative. Associativity as a desirable property during
data merging was pointed out in [14].

4. EXTENSION TO BULK PROCESSING
So far we have treated one object at a time. If several ob-

jects need to be updated, then the reconciliation algorithm
needs to be run separately for each object. In this section,
we show, that under certain conditions, the set of possi-
ble/certain values can be computed in bulk, for an entire

Algorithm 2: Skeptic Resolution Algorithm

Input: BTN = (U,E, b0)
Output: repPoss(x) for each node x 2 U

foreach x 2 U do prefNeg(x) ; and repPoss(x) ;
P foreach node x with 9v� 2 b0(x) do

prefNeg(x) b0(x)

while 9 preferred edge z ! x with v� 2 prefNeg(z),
v+ 62 b0(x) do

prefNeg(x) prefNeg(x) [ prefNeg(z)

I closed ;
foreach node x with v+ 2 b0(x) do

repPoss(x) b0(x)
add x to closed

open U � closed
M while open 6= ; do
S1 if 9 preferred edge z ! x with z 2 closed, x 2 open and

repPoss(x) = ; then
repPoss(x) repPoss(z)
move x from open to closed

S2 else

Let SCC(open) be the SCC graph constructed from the
open nodes. Let S = {x1, . . . , xn} be a minimal SCC. Let
{z1, . . . , zk} be all nodes in closed that have edges into S.
forall i 2 {1, . . . , n}, j 2 {1, . . . , k} do

foreach v+ 2 repPoss(zj) do

Let S0 = S � {x | v� 2 prefNeg(x)}
if 9 path zj ! xi in S0

then

repPoss(xi) repPoss(xi) [ {v+}
else

repPoss(xi) repPoss(xi) [ {?}

foreach v� 2 repPoss(zj) do

repPoss(xi) repPoss(xi) [ {v�}

move all nodes of S from open to closed

set of objects k1, k2, . . . , kn. We sketch here the approach
and provide the details in Appendix B.
Let TN1, . . . ,TNn be the trust networks for each of the n

objects. We make the following two assumptions:
(i) The set of trust mappings is the same for each object

ki, i.e. a user x trusts a user z globally, for all objects.
(ii) If a user has an explicit belief for an object ki, then

the user has an explicit belief for each of the objects.
Then it is possible to simply adapt both, Algorithm 1

and Algorithm 2 to bulk-compute the set of possible tuples
through SQL queries. Let POSS(X,K,V) denote the a relation
representing the possible values: an entry (x, k, v) means
that v is a possible value for user x and object k. Then, in
step 1 of the modified algorithm, when traversing a preferred
edge z ! x, we perform the following bulk insertion:

insert into POSS

select ’x’ AS X, t.K, t.V

from POSS t

where t.X = ’z’

In step 2, when ’flooding’ a strongly connected component
SCC with the beliefs coming from the users z1, . . . , zk we
perform the following bulk insertions for each xi 2 SCC:

insert into POSS

select distinct ’xi’ AS X, t.K, t.V

from POSS t

where t.X = ’z1’ or . . . t.X = ’zk’

9
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The issue of associativity

left outer join example from p392 in "Maier. The theory of relational databases, 1983."

{𝑎−} ∪� 𝑎 ∪� 𝑏

{𝑎−} ∪� 𝑎 ∪� 𝑏

right preferred union example from "Gatterbauer, Suciu. Conflict resolution using trust mapping. SIGMOD 2010.

= {𝑎−}

= {𝑏}
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Binarization example

z4z3z2z1

x

p4p2p1

z5 z6

p3 p6p5

z7

p7

z4z3z2

y4
y3y2

y5

z6

y6

z5 z7

x=y7

z1=y1

p1 = p2 < p3 = p4 = p5 < p6 < p7
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D E F
D’

Binarization for Resolution Algorithm*

70 30 20 10060

20

120
80

100 E’

D E F

Example Trust Network (TN)
6 nodes, 9 arcs (size 15)
3 explicit beliefs: A:v, B:w, C:u

Corresponding Binary TN (BTN)
8 nodes, 12 arcs (size 20)

Size increase (N+E): ≤ 3

A{v} C{u}B{w} A{v} C{u}B{w}

* Note that binarization is not necessary, but greatly simplifies the presentation
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Logic programs with stable model semantics

E

A C

P(C,x) :- P(A,x)
F(C,B,y) :- P(B,y), P(C,x), x¹y

P(C,y) :- P(B,y), ¬F(C,B,y

F(C,A,y) :- P(A,y), P(C,x), x¹y
P(C,y) :- P(A,y), ¬F(C,A,y)

F(C,B,y) :- P(B,y), P(C,x), x¹y
P(C,y) :- P(B,y), ¬F(C,B,y)  

20 1030

B D

E’
E’’

E

A CB D

10

non-preferred
parent

preferred
parent

C

A B

C

A B

partial order

1: accept all poss of preferred parent

2: accept poss from non-preferred parent, that are not conflicting with an existing value

Step 1: 
Binarization

Step 2: 
Logic program
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D E F
D’

Binarization for Resolution Algorithm*

70 30 20 10060

20

120
80

100 E’

D E F

Example Trust Network (TN)
6 nodes, 9 arcs (size 15)
3 explicit beliefs: A:v, B:w, C:u

Corresponding Binary TN (BTN)
8 nodes, 12 arcs (size 20)

Size increase : ≤ 3

A{v} C{u}B{w} A{v} C{u}B{w}

* Note that binarization is not necessary, but greatly simplifies the presentation
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Stable solutions: example 2

* each node with at least one ancestor with explicit belief

B:?

C:?

D:v

E:w

90

80

100

20

F:u

G:?

A:?

70

70
60

30

• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions
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Stable solutions: example 2

* each node with at least one ancestor with explicit belief

B:v

C:Æ

D:v

E:w

90

80

100

20

F:u

G:v

A:v

70

70
60

30

• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions
poss(G) = {v,...}
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Stable solutions: example 2

* each node with at least one ancestor with explicit belief
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• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions
poss(G) = {v,w,...}
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Stable solutions: example 2

* each node with at least one ancestor with explicit belief
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not stable!
F®G dominated by E®G 

• Priority trust network (TN)
– assume a fixed key
– users (nodes): A, B, C
– values (beliefs): v, w, u
– trust mappings (arcs) from “parents”

• Stable solution
– assignment of values to each node*, 

s.t. each belief has a “non-dominated 
lineage” to an explicit belief

• Certain values
– all stable solution determine, for each 

node, a possible value (“poss”)
– certain value (“cert”) = intersection of 

all stable solutions cert(G) = Æ
poss(G) = {v,w}


