Updated 1/25/2020

T1: Data models and query languages
L6: Datalog vs. Stable models

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)

https://northeastern-datalab.github.io/cs7240/sp20/
Version 1/24/2020

123


https://northeastern-datalab.github.io/cs7240/sp20/

Outline: Datalog

— Stable model semantics (Answer set programming)



Answer Set Programming

e Programming paradigm that can model Al problems (e.g, planning, combinatorics)

o Basicidea
— Allow non-stratified negation and encode problem (specificatioos logic program rules

— Solutions are of the program

« Semantics based on Possible Worlds and Stable Models
— Given an answer set program, there can be (stable models, answer sets)
— Each model: assignment of true/false value to propositions to make all formulas true.

— Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak
exceptions, preferences, etc., in a natural way

e Finding stable models of answer set programs is not easy
— Current systems CLASP, DLV, Smodels, etc., extremely sophisticated

— Work by grounding the program, suitably transforming it to a propositional theory whose models are
stable models of the original program

— These models found using a SAT solver

125



Rules with Negation

e Closed world assumption

— If a fact does not logically follow from a set of Datalog clauses, then we
conclude that the negation of this fact is true.

e Problem: multiple minimal models ("Herbrand models")
— boring(chess) :- not interesting(chess)
- H, = {interesting(chess)}, H, = {boring(chess)}

129



Semantics: Informally

e Informally, a of a ground program P is a set of
ground atoms such that

1. Every rule is satisfied:
i.e., for any rule in

A - Bl’ Ry Bm, ﬂOt Cl’ Ry nOt Cn.

if each B. is satisfied (B;'s are in M) and is satisfied
(i.e.no C isisin M), then A'is in M.

2. Every A € M can be derived from arule bya "
(informal for: we are IOOkiT for

2 {a) > e — g

130



Semantics: "non-circular” more formally

|dea: you guess a set of atoms. You then verify it is indeed exactly
the set of atoms that "can be derived."

The of Pw.rt M is:
={ h:=-by, ..., b,
h:-by.. b, notcy, .., notc,. €PA }
M is a of P iff M is the least model of

132



Examples

edj«( (\\,/(A)',‘

P1: a:-a.
% not a stable model (not minimal, derivation of a is based on a

circular reasoning)

M={} stable model For a normal program without
@ negation ("positive program"), its
»|a ZFTM least model is the set of its atomic
M={a}  only stable model cONSEGUENTES. - & & ’

5T . L
P3: | a:- nGLA. {B(‘BGS Vs. / ~ j

has wo stable model

136



Examples

P4: |a:-notb.
b :- nota./7
|\/|1:{a}

+wo stable models

|V'zz{b}
P5: |a:-notb.
Lo A
m\;

M={a}  ouly stable model

137



3-colorability

Q: For a graph (V, E) find an assignment of one of 3 colors to
each vertex such that no adjacent vertices share a color.

Convention in ASP:
Capltal letters are
variables, small
letters constants

Cp. edge(X,a)
Vs, edoge(x, a

140



3-colorability

Q: For a graph (V, E) find an assignment of one of 3 colors to
each vertex such that no adjacent vertices share a color.

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).

Convention in ASP:
Capltal letters are
variables, small
letters constants

Cp. edge(X,a)
Vs, edoge(x, a

141



3-colorability

Q: For a graph (V, E) find an assignment of one of 3 colors to a

each vertex such that no adjacent vertices share a color. G
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c). Convention in ASP:
Capital letters are

color(V,1) :- not color(V,2), not color(V,3), vertex(V). variables, small
color(V,2) :- not color(V,3), not color(V,1), vertex(V). let+ers constants
color(V,3) :- not color(V,1), not color(V,2), vertex(V).

o Cp. edge(X,a)

- Vs, edoge(x, a

142



3-colorability

Q: For a graph (V, E) find an assignment of one of 3 colors to

each vertex such that no adjacent vertices share a color. G
7%
—
%ex(a). vertex(b). vertex(c). edge(a,b). ed% Convention in ASP:
Capltal letters are
) :- not color(V,2), not color(V,3), vertex(V). variables, simall
color(V,2) :- not color(V,3), not color(V,1), vertex(V). let+ers constants

) :- not color(V,1), not color(V,2), vertex(V).
Cp. edge(X,a)
- edge(V,U), color(V,C), color(U,C). VS, @d@@(x,'a'

143



Q

AU 7L TG P T 1.
Using Trust Mappmg @

ARG\ ' |

SIGMOD 2010

Paper: http://portal.acm.org/citation.cfm?id=1807167.1807193
Full version with proofs: http://arxiv.org/pdf/1012.3320
Old Project web page: https://db.cs.washington.edu/projects/beliefdb/

158


http://portal.acm.org/citation.cfm%3Fid=1807167.1807193
http://arxiv.org/pdf/1012.3320
https://db.cs.washington.edu/projects/beliefdb/

Problem in social data: often no single ground truth

The Indus Script*

What is the origin
of this glyph?

-

\

U

~

)

* Current state of knowledge on the Indus Script: Rao et al., Science 324(5931):1165, May 2009

AR

Charlie

159



Background: Conflicts & Trust in Commumty DBs

Conflicting beliefs

glyph origin “Beliefs”: annotated
ship hull| Alice  (key,value) pairs
cow |[Bob
jar | Charlie
fish |Bob
knot |Charlie
arrow | Charlie

==

“Explicit belief”

Trust : AI|ce
rust mappings oh origin
Alice < Bob (100) U '

100

ship hull

Alice <— Charlie  (50) 2

fish

Bob < Alice (80) 4

arrow

Priorities/ “Implicit belief”

Recent work on community databases:
Taylor & Ives [SIGMOD’06]

Green et al. [VLDB’07] Orchestra
Kot & Koch [VLDB’09]<—Youtopia
GBKS [VLDB’09] = BeliefDB

80 Bob
glyph origin

cCow

U
0 fish
2 arrow

Charlie

alyph

origin
jar

knot

U
4
i

arrow

160



Limitations of previous work: transient effects

1. Incorrect inserts
— Value depends on order of inserts

100

origin
U cow |t3

x50
Alice would have Allce :
preferred Bob’s glyph ~origin ! A

value over Charlie’s 2

K]
Charlie
glyph origin

U jar |ty

161



Limitations of previous work: transient effects

1. Incorrect inserts
— Value depends on order of inserts

2. Incorrect updates
— Mis-handling of revokes

Alice and Bob trust each AIe 50
6 other most, but have lost glyph origin
“justification” for their beliefs T jar |t
A
Charlie
glyph origin
(Automatic conflict resolution with trust mappings: Jar_ |t
1. How to define a globally consistent solution? Y cow |ty
2. How to calculate it efficiently?
\(3. Several extensions) ) GS [Sigmod’10]

162



Agenda

1. Stable solutions
— how to define a unique and consistent solution?

163



Binary Trust Networks (BTNs)

To simplify presentation: focus on binary TNs

gl zg origin
ship hull

;

Charlle
glyph origin

Bob

glyph origin
U

«
"

Dhana

glyph origin

User A has explicit belief v

/

A:v B:w
® ®
User D is
| _— user C’s
' V “preferred
ol e parent”
C:.? D:?

Focus on one single key

(we ignore the glyp

h)

164



The definition of a globally consistent solution

o Stable solution

— assignment of values to each node,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

N,:v

non-dominatin
N "’
o > > > >0

A:v N;:.v /(/::V N;.v  D:v

A:v
®

B:w
o

C\fi

e

C:.?

Y
—
D:?

165



The definition of a globally consistent solution

o Stable solution

— assignment of values to each node,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

N,:v

non-dominatin
N g
o > > > >0

A:v N;:.v /(/::V N;.v  D:v

A:v B:w
o o
« e

C:.v D:v

SS,=(A:v, B:w, C:v, D:v)

166



The definition of a globally consistent solution

o Stable solution

— assignment of values to each node,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

N,:v

o >0 \ >0 >0

A:v N;:.v /(/::V N;.v  D:v

A:v B:w
o ®
Y \
«< e

C:w D:w

SS,=(A:v, B:w, C:v, D:v)
SS,=(A:v, B:w, C:w, D:w)

167



Possible and certain values from all stable solutions

o Stable solution

— assignment of values to each node,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

N,:v

N

A:v N;:;v  N,yv Nsv D

e Possible / Certain semantics

— a stable solution determines, for each
node, a possible value (“poss”)

— certain value (“cert”) = intersection of
all stable solutions, per user

A:v B:w
® ®
C:? ~D:?
SS,=(A:v, B:w, C:v, D:v) ( >
SS,=(A:v, B:w, C:w, D:w) JAD&S ) >
| A &
X poss(X) cert(X) ﬁ
A {v} {v} o\
B {w} {w}
C {vww} O
D {vw} O

168



Logic programs (LP) with stable model semantics

=
* LPs can capturethis se ICS. But solving LPs is hard ®

A B ™\ i 10,000
@ P(C)x) - P(A,x) ool

r |FCByY) == P(B,y), P(CX), X2y [
C P(C,y) :- P(B,y), =F(C,B,y )

|
* There exist powerful and free |
' | S | —0 DLV
LP solver available. B BT T +/200
|
|

Size of the network (#N + #E)

* Previous work on peer data State-of-the-art LP solver

exchange suggest using LPs.

Greco et al. [TKDE'03]
Arenas et al. [TLP’03]
Barcelo, Bertossi [PADL'03]
Bertossi, Bravo [LPAR’07]

Yet surprisingly, our
problem allows a

PTIME solution ©
169



DLV example

Size: 38

11=[0]

12=[1]

input.txt

query.txt

% --- Insert explicit beliefs ---

possH(h8_0,1).
possH(h11_0,0).
possH(h12_0,1).
possH(h13_0,0).
possH(h14_0,1).
% --- Node: 0 ---
possH(h0_1,X)
block(h0_1,11,X)
possH(h0_1,X)
possH(h0_2,X)
block(h0_2,3,X)
possH(h0_2,X)
possH(h0_3,X)
block(h0_3,12,X)
possH(h0_3,X)
poss(0,X)

% --- Node: 1 ---
possH(h1_1,X)
block(h1_1,2,X)
possH(h1_1,X)
possH(h1_2,X)
block(h1_2,0,X)
possH(h1_2,X)
possH(h1_3,X)
block(h1_3,5,X)
possH(h1_3,X)
possH(h1_4,X)
block(h1_4,13,X)
possH(h1_4,X)
poss(1,X)

% --- Node: 2 ---

% --- Node: 13 ---
poss(13,X)
% --- Node: 14 ---
poss(14,X)
% --- Node: 15 ---
poss(15,X)

:- possH(hO_0,X).
:- poss(11,X), possH(h0_1,Y), Y!=X.

:- poss(11,X), not block(h0_1,11,X).

:- possH(hO_1,X).

:- poss(3,X), possH(hO_2,Y), Y!=X.
:- poss(3,X), not block(h0_2,3,X).
:- possH(hO_2,X).

:- poss(12,X), possH(h0_3,Y), Y!=X.

:- poss(12,X), not block(h0_3,12,X).

:- possH(hO_3,X).

:- possH(h1_0,X).

:- poss(2,X), possH(h1_1,Y), Y!=X.
:- poss(2,X), not block(h1_1,2,X).
:- possH(h1_1,X).

:- poss(0,X), possH(h1_2,Y), Y!=X.
:- poss(0,X), not block(h1_2,0,X).
:- possH(h1_2,X).

:- poss(5,X), possH(h1_3,Y), Y!=X.
:- poss(5,X), not block(h1_3,5,X).
:- possH(h1_3,X).

:- poss(13,X), possH(h1_4,Y), Y!=X.

:- poss(13,X), not block(h1_4,13,X).

:- possH(h1_4,X).

:- possH(h13_0,X).
:- possH(h14_0,X).

:- possH(h15_0,X).

poss(X,U) ?

Executing program

.Jdlv.bin — brave
input.txt. query-.txt

Result

Macintosh-2:DLY gati
g, 1
11, A&
T2,
13, @

|_'l.
irs
'—'h.

S, T B T S S R VR SU R S
L = H S s~ S S

170



Agenda

2. Resolution algorithm
— how to calculate the solution efficiently?

171



Resolution Algorithm a | L 4

* Keep 2 sets: cIosemopen
Focus on binary trust network Initialize closed with/explicit beliefs )

oA{v} eB{w} eC{u} /

closed

open \/\/ c @

Yr >%F\ preferred

~non-preferred X POssiX) cert(X)

{v} {v}
{w} {w}
{u} {u}
? ?

I
'\
~XSIOoOMMmMOOm™>™

VOTVOTV TV TV Y TV
VOV TV TV Y TV

172



Resolution Algorithm

closed

e A{v}

open

— | —

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
open to closed

— follow
X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D 7? ?
E ? ?
F ? ?
G ? ?
H ? ?
J ? ?
K ? ?
[ ? ?

173



Resolution Algorithm

A{vi eB{w} e({u}

closed D{V} E F
open
Y Y
J K——0OL

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
open to closed

— follow
X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E 7? ?
F ? ?
G ? ?
H ? ?
J ? ?
K ? ?
[ ? ?

174



Resolution Algorithm

A{v}

closed D{V}JE { W} F

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from

o B{w} ?C{U} open to closed

— follow

open

X poss(X) cert(X)

A {v} {v}

B {w} {w}

C {u} {u}

D {v} {v}
Y Y £ wl {w}

K———OL F ? ?

G ? ?

H 7? ?

J 7?7 ?

K ? ?

L 7 ?

175



Resolution Algorithm

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from

open to closed

— follow
— X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E  {w} {w}
F o {u} {u}
G ? ?
H ? ?
J ? ?
K ? ?
L ? ?

176



Resolution Algorithm

A{v} eB{w} eC{u}

D{v}ﬂxE{W} F{u}

closed

open

Now we are stuck!

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from

open to closed

— follow

X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E {w} {w}
F o {u} {u}
G ? ?

H {w} {w}
J 7?7 ?

K ? ?

L 7 ?

177



Detail: Strongly Connected Components (SCCs)

4 )
For every cyclic or acyclic directed graph:

- The Strongly Connected Components graph is a DAG

- can be calculated in O(n) Tarjan [1972]
L J

“Minimal SCCs”: no incoming
/ edge from other SCC
o< =root node(s) in SCC graph

\
g
i . SCC,4
e YN
i ————
i
D.'
/
/
,I
{ SCC,
i \
scc, (. SCC
__y__- /
l\\ SCC4 R4

________

(N i
_______

178



Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from
open to closed

— construct SCC graph of open

poss(X) cert(X)

— follow
Step 2: else
closed
open X
4 A {v}
B {w}
“Root SCC” | ¢ v}
no incoming | D {v}
edge from £ {w}
other SCC FoA{u}
G ?
H {w}
J ?
K ?
L ?

{v}

{w}
{u}

{v}

{w}
{u}

?

W)

179



Resolution Algorithm

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
open to closed

— follow
Step 2: else
— construct SCC graph of open
closed oD{v}
open X poss(X) cert(X)
§ A {v} {v}
s' OH{w} B wh  {w
“Root SCC” | — C {ul {u)
no incoming | D {v} {v}
edge from L “ lli {w} {w}
other SCC —‘_"’O } {u} {u}
Nl T G °? ?
H {w} {w}
J ? ?
K 7? ?
L 7 ?

180



Resolution Algorithm

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN
Step 1: if 3 preferred edges from
open to closed
A{v} eB{w} eC{u} D ol
Step 2: else
— construct SCC graph of open
— resolve minimum SCCs
closed F{U}
open X poss(X) cert(X)
~~~~~~~~~~~ A W
i B {w} {w}
“Root SCC” | — ¢ {ul tul
no incoming \ ? ?’}} ?’}}
edge from ! N AN w w
thersce 4 OV, WIROKLY, wioL | SR LI C)
N T G {v,w} %)
""" H {w} {w}
J  {v,w} %,
K {v,w} %)
L 7? ?

181



Resolution Algorithm

* Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
?A{V} .B{W} .C{U} open to closed

— follow

Step 2: else
— construct SCC graph of open
— resolve minimum SCCs

X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E {w} {w}
F o {u} {u}

closed G {v,w} %)

— H {w} {w}

open J  {v,w} %)
K {v,w} %,
L 7 ?

182



Resolution Algorithm

* Keep 2 sets: closed / open

Initialize closed with explicit beliefs

* MAIN

Step 1: if 3 preferred edges from
?A{v} .B{W} .C{U} open to closed

— follow

Step 2: else
— construct SCC graph of open
— resolve minimum SCCs

X poss(X) cert(X)

A {v} {v}

{w} B {w} {w}

C A{u} {u}

D {v} {v}

v E {w} {w}

K{v,w}-oL{v,w,u} F o {u} {u}
closed G {v,w} %)

open — Howl o w
Can be implemented PTIME resolution algorithm 7< E:xi g
in current DBMS with / O(n?) worst case L {vwu} O

transitive closure © O(n) on reasonable graphs

183



Experiments on large network data

!
. . |
Calculating poss / cert for fixed key 1
- DLV: State-of-the art logic programming solver } < 10F
- RA: Resolution algorithm )
1
Network 1: “Oscillators” T
| 0-1F o DLV
| B —o0 RA
see I 0.01 ﬁ | I//' | - Iy=1e-5x
. . . > ! 10 100 1,000 10,000 100,000 1,000,000
8 16 24 size } 100 !
: I 2
Network 2: “Web link data” |
Web data set with 5.4m links between | S 10F x
270k domain names. Approach: } %
« Sample links with increasing ratio : E 1E
+ Include both nodes in sample I
« Assign explicit beliefs randomly | 0.1k
: —o RA
I 0.01 . P . - Iy=1e-5x
I 10 100 1,000 10,000 100,000 1,000,000
: 100
: 3
} _ 10}
| Q
| 2,
E
: (=
|
! 0.1 ¢ —0 DLV
| —0 RA
: 0.01 I “’ I I - |y=1e_7X2
| 10 100 1,000 10,000 100,000 1,000,000
l Size of the network [users + mappings] 184




O(n2)-worst-case for Resolution Algorithm

v}
k

{w}
®

L)

A A A

N



O(n2)-worst-case for Resolution Algorithm

0
{a %W . X (.)/ X
O \




O(n2)-worst-case for Resolution Algorithm

187



O(n2)-worst-case for Resolution Algorithm

188



O(n2)-worst-case for Resolution Algorithm

v}
®

189



O(n2)-worst-case for Resolution Algorithm

v}
®

190



O(n2)-worst-case for Resolution Algorithm

v}
®

191



O(n2)-worst-case for Resolution Algorithm

v}
®

192



O(n2)-worst-case for Resolution Algorithm

v}
®

193



O(n2)-worst-case for Resolution Algorithm

v}
®

194



Agenda

3. Extensions
— how to deal with “negative beliefs”?

196



3 semantics for negative beliefs

Agnostic Eclectic
{v+} {w—} {v+} {w—}

J {w+}
w/o cycles’ O(n) O(n)
w cycles NP-hard NP-hard

" assuming total order on parents for each node 197



3 semantics for negative beliefs oureconmenti

Agnostic Eclectic Skeptic

{v+} {w-} {v+} {w—} {v+} {w—}

J {w+} J {u+,v—,w—} J{L}
w/o cycles’ O(n) O(n) O(n)
w cycles NP-hard NP-hard 0(n?)

with a variation of resolution algorithm
" assuming total order on parents for each node 198



Take-aways automatic conflict resolution

Problem
o Given explicit beliefs & trust mappings, how to assign
consistent value assignment to users?

Our solution
« Stable solutions with possible/certain value semantics
« PTIME algorithm [O(n?) worst case, O(n) experiments]
« Several extensions

— negative beliefs: 3 semantics, two hard, one O(n?)

( . )
— bulk inserts

— agreement checking
— consensus value

_— lineage computation

Ve in the paper & TR

J

https://db.cs.washington.edu/projects/beliefdb/
199



details




Fig ComplexityExamplelLong

level 1

level 2

level 3

level 4 A

8-17-2010

Encoding

(0/1) = (a+/b+)

(0/1) = (c+/d+)

(0/1) = (e+/d+)

(0/1) = (e+/f+)

201



Fig. ComplexityOscillator

{0+}  {at}

202



Fig. ComplexityPassLong

{a—} {b+/a+}
X;

8-17-2010

Encoding

(0/1) = (a+/b+)

(0/1) = (c+/d+)

203



Fig_ ComplexityNotLong

{a—} {b+/a+}
X;

204



Fig ComplexityOrLong

{e—} {d+/c+} {c—} {d+/c+} {c—} {d+/c+}
X7 X3 X3

Y;
{e+(c)/d+(c)}

205



Fig_ ComplexityAndLong

{d=} {d+/et} {d—=} {d+/et} {d=} {d+/et}
Yi Yo Y3

{f+(d=)/e+(d=)}

206



DEFINITION 3.1 (CONSISTENCY). Two beliefs by, by are
conflicting (b1 <4 bs) if they are either distinct positive beliefs
v+, w4+, or one is v+ and the other is v—. Otherwise, b1, bo
are consistent (b1<>b2). A set of beliefs B is called consistent
if any two beliefs b1,ba € B are consistent.

DEFINITION 3.2 (PREFERRED UNION). Given two consis-
tent sets of beliefs B1, B2, their preferred union 1s:

BlOBQ — B{ U {bz ‘ bo € BQ.(\V/bl - Bl.bleg)}

207



be a consistent set of positive and/or negative beliefs. For
each paradigm o € {Agnostic,Eclectic,Skeptic} (abbre-
viated by {A,E,S}), the normal form Norm,(B) is:

Normy(B) = { Wt} i v+ €B

B otherwise
Normg(B) = B
B {’U—|—} U (J_ — {fu—}) if Jv+ € B
Normg(B) = { B otherwise

The preferred union specialized to the paradigm o is:
B1U, Bz = Normg, (Normo (B1)JNorme (Bz)) (1)
For example:
{a—}0u{b+} = {b+}
{a—}Ue{b+} = {b+,a—}
{a—}Us {b+} = {b+,a—,c—,d—,...}
{b—}UTs {b+} = L

208



A puzzling question is why is the Skeptic paradigm in
PTIME, while the other two are hard. It is easy to see
that the Boolean gates in Fig. 7 no longer work under Skep-
tic, but we do not consider this a satisfactory explanation.
While we cannot give an ultimate cause, we point out one
interesting difference. The preferred union for Skeptic is as-
sociative, while it is not associative for either Agnostic nor
Eclectic., For example, consider the two expressions B =
{a—}U, (éa—k}fjg{b—l—}), By = ga—}ﬁa{a—l—}) Uy {b+}. For
Agnostic, we have B ={b+}, for Eclectic B2 ={a—, b+},
while for both B; ={a—}. By contrast, one can show that Us
is associative. Associativity as a desirable property during
data merging was poi out in [14].

209



The issue of associativity

null appears in a join column. No matter what choice is taken, tX is not
associative. Consider the relations

q(4 B) r(B_C) s(4_O)

1 2 2 3 1 4
Computing (g 5K r) K s we get {a_} U>a {a} Ua {b} — {a’_}
A4 B C) — .
s {a7} U, {a}) U, {b} = {b}
1 1 4

while g X1 (r £ 5) gives

Q
~
=
2

-
[SS I o8 ]
W

left outer join example from p392 in "Maier. The theory of relational databases, 1983."

right preferred union example from "Gatterbauer, Suciu. Conflict resolution using trust mapping. SIGMOD 2010. 210






Binarization example

Z2 24 R5 26 &7 21=Y1 22 23 24 25 R R7
\‘\\ 11/ N
P2 P3 P4 P5 Pe Pr Y2 Y3
Ya
Ys
Ye
x L=Y7

P1=P2<P3=Psg=P5<Pe< Py

212



Binarization for Resolution Algorithm*

Example Trust Network (TN) Corresponding Binary TN (BTN)
6 nodes, 9 arcs (size 15) 8 nodes, 12 arcs (size 20)
3 explicit beliefs: A:v, B:w, C:u

Size increase (N+E): <3

A{v} B{w} C{u}

N
70 60 30 20

100
k 805%100»})
D 12077F F

* Note that binarization is not necessary, but greatly simplifies the presentation 213



Logic programs with stable model semantics

Step 1:
Binarization

partial order

Step 2:
Logic program

1: accept all poss of preferred parent

\\ P(C,x) :- P(A,x)
.- P(B,y), P(C,x), xzy
.- P(B,y), —=F(C,B,y

A

i

A B C D

30 20 10 10

F(C,B,y)

> E
EII
preferred E non-preferred
parent parent

C

) :- P(A,y), P(C,x), Xy

) - P(Aly)l _IF(CIAIy)
F(C,B,y) :- P(B,y), P(C,x), xzy

) - P(Bly)l _IF(CIBIy)

2: accept poss from non-preferred parent, that are not conflicting with an existing value

214



Binarization for Resolution Algorithm*

Example Trust Network (TN) Corresponding Binary TN (BTN)
6 nodes, 9 arcs (size 15) 8 nodes, 12 arcs (size 20)
3 explicit beliefs: A:v, B:w, C:u

Size increase : £ 3

A{v} B{w} C{u}

N
70 60 30 20

100
k 805%100»})
D 12077F F

* Note that binarization is not necessary, but greatly simplifies the presentation 215



Stable solutions: example 2

« Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

o Stable solution

— assignment of values to each node”,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief

216



Stable solutions: example 2

« Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

o Stable solution

— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief

poss(G) =

{v,...}

217



Stable solutions: example 2

« Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

o Stable solution

— assignment of values to each node”,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief

poss(G) ={v,w,...}

218



Stable solutions: example 2

« Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

o Stable solution

— assignment of values to each node”,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

not stable!

 Certain values F—G dominated by E—>G

— all stable solution determine, for each
node, a possible value (“poss”)

— certain value (“cert”) = intersection of poss(G) = {v,w}
all stable solutions cert(G) =0

* each node with at least one ancestor with explicit belief

219



