T1: Data models and query languages L6: Datalog vs. Stable models

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Version 1/24/2020

Outline: Datalog

- Datalog
- Datalog rules
- Recursion
- Semantics
- Datalog?: Negation, stratification
- Datalog ${ }^{ \pm}$
- Stable model semantics (Answer set programming)
- Datalog vs. RA
- Naive and Semi-naive evaluation

Answer Set Programming

- Programming paradigm that can model AI problems (e.g, planning, combinatorics)
- Basic idea
- Allow non-stratified negation and encode problem (specification \& "instance") as logic program rules
- Solutions are stable models of the program
- Semantics based on Possible Worlds and Stable Models
- Given an answer set program, there can be multiple solutions (stable models, answer sets)
- Each model: assignment of true/false value to propositions to make all formulas true.
- Captures default reasoning, non-monotonic reasoning, constrained optimization, exceptions, weak exceptions, preferences, etc., in a natural way
- Finding stable models of answer set programs is not easy
- Current systems CLASP, DLV, Smodels, etc., extremely sophisticated
- Work by grounding the program, suitably transforming it to a propositional theory whose models are stable models of the original program
- These models found using a SAT solver

Rules with Negation

- Closed world assumption
- If a fact does not logically follow from a set of Datalog clauses, then we conclude that the negation of this fact is true.
- Problem: multiple minimal models ("Herbrand models")
- boring(chess) :- not interesting(chess)
- $H_{a}=\{$ interesting(chess) $\}, H_{b}=\{$ boring(chess) $\}$

Semantics: Informally

- Informally, a stable model M of a ground program P is a set of ground atoms such that

1. Every rule is satisfied:
i.e., for any rule in P

A :- B_{1}, \ldots, B_{m}, not C_{1}, \ldots, not C_{n}.
if each B_{j} is satisfied (B_{i} 's are in M) and no C_{i} is satisfied (i.e. no C_{i} is is in M), then A is in M.
2. Every $A \in M$ can be derived from a rule by a "non-circular reasoning" (informal for: we are looking for minimal models)

Semantics: "non-circular" more formally

Idea: you guess a set of atoms. You then verify it is indeed exactly the set of atoms that "can be derived."

The reduct of P w.r.t M is:

$$
\left.\begin{array}{rl}
P^{M}= & \left\{h:-b_{1}, \ldots, b_{m} .\right. \\
& h:-b_{1}, \ldots, b_{m}, \text { not } c_{1}, \ldots, \text { not } c_{n} .
\end{array} \in P \wedge \text { no } c_{i} \in M\right\}
$$

M is a stable model of P iff M is the least model of $P M$

Examples
P4:

$$
\begin{aligned}
& a:- \text { not } b . \\
& b:- \text { not } a . ~ \\
& M_{1}=\{a\} \\
& M_{2}=\{b\}
\end{aligned}+
$$

two stable models

PS:

$\mathrm{M}=\{a\} \quad$ only stable model
$Q: 7 p$
$d=$

3-colorability
Q: For a graph (V, E) find an assignment of one of 3 colors to each vertex such that no adjacent vertices share a color.

Convention in ASP:
Capital letters are
variables, small
letters constants

CP. edge (X, a)
$v s, \operatorname{edge}\left(x, a^{\prime}\right)$

3-colorability
Q: For a graph (V, E) find an assignment of one of 3 colors to each vertex such that no adjacent vertices share a color.

vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
Convention in ASP:
Capital letters are
variables, small
letters constants

Cp. edge (X, a)
vs, edge $\left(x, a^{\prime} a^{\prime}\right)$

Q: For a graph (V, E) find an assignment of one of 3 colors to each vertex such that no adjacent vertices share a color.


```
vertex(a). vertex(b). vertex(c). edge(a,b). edge(a,c).
color(V,1) :- not color(V,2), not color(V,3), vertex(V).
color(V,2) :- not color(V,3), not color(V,1), vertex(V).
color(V,3) :- not color(V,1), not color(V,2), vertex(V).
```


Convention in ASP: Capital letters are variables, small letters constants
$C p, \operatorname{edge}(X, a)$
vs.edge $\left(x, a^{\prime} a^{\prime}\right)$

Q : For a graph (V, E) find an assignment of one of 3 colors to each vertex such that no adjacent vertices share a color.

Convention in ASP: Capital letters are variables, small letters constants
$C p, \operatorname{edge}(X, a)$
vs.edge $\left(x, a^{\prime} a^{\prime}\right)$

SIGMOD 2010

Paper: http://portal.acm.org/citation.cfm?id=1807167.1807193
Full version with proofs: http://arxiv.org/pdf/1012.3320
Old Project web page: https://db.cs.washington.edu/projects/beliefdb/

Problem in social data: often no single ground truth
The Indus Script*

What is the origin of this glyph?

Background: Conflicts \& Trust in Community DBs

Conflicting beliefs

| glyph | origin | | "Beliefs": annotated |
| :---: | :---: | :---: | :--- | :--- |
| U | ship hull | Alice | (key,value) pairs |
| U | cow | Bob | |
| U | jar | Charlie | |
| h | fish | Bob | |
| h | knot | Charlie | |
| A | arrow | Charlie | |

Trust mappings

Alice \leftarrow Bob r	(100)
Alice \leftarrow Charlie	(50)
Bob \leftarrow Alice	(80)

Priorities

Limitations of previous work: transient effects

1. Incorrect inserts

- Value depends on order of inserts

Limitations of previous work: transient effects

1. Incorrect inserts

- Value depends on order of inserts

2. Incorrect updates

- Mis-handling of revokes

Charlie

Automatic conflict resolution with trust mappings:

1. How to define a globally consistent solution?

2. How to calculate it efficiently?
(3. Several extensions)

Agenda

1. Stable solutions

- how to define a unique and consistent solution?

2. Resolution algorithm

- how to calculate the solution efficiently?

3. Extensions

- how to deal with "negative beliefs"?

Binary Trust Networks (BTNs)
To simplify presentation: focus on binary TNs

User A has explicit belief v

Focus on one single key (we ignore the glyph)

The definition of a globally consistent solution

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

The definition of a globally consistent solution

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

The definition of a globally consistent solution

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

Possible and certain values from all stable solutions

- Stable solution
- assignment of values to each node, s.t. each belief has a "non-dominated lineage" to an explicit belief

- Possible / Certain semantics
- a stable solution determines, for each node, a possible value ("poss")
- certain value ("cert") = intersection of all stable solutions, per user

Logic programs (LP) with stable model semantics

- LPs can capturethis semantics.

- There exist powerful and free LP solver available.
- Previous work on peer data exchange suggest using LPs.

```
Greco et al. [TKDE'03]
Arenas et al. [TLP`03]
Barcelo, Bertossi [PADL`03]
Bertossi, Bravo [LPAR`07]
```

But solving LPs is hard $:$:

State-of-the-art LP solver

Yet surprisingly, our problem allows a PTIME solution ©

DLV example

Size: 38
$\%$--- Insert explicit beliefs --possH(h8_0,1). possH(h11_0,0). possH(h12_0,1). possH(h13_0,0). possH(h14_0,1). \% --- Node: 0 --possH(h0_1,X) block(h0_1,11,X) possH(h0_1,X) possH(h0_2,X) block(h0_2,3,X) $\operatorname{possh}\left(h 0 _2, X\right)$ possH(h0_3, X) block(h0_3,12,X) possH(h0_3,X) poss ($0, \mathrm{X}$) \% --- Node: 1 --possH(h1_1,X) block(h1_1,2,X) $\operatorname{possH}\left(h 1 _1, \mathrm{X}\right)$ possH(h1_2,X) block(h1_2,0,X) possH(h1_2,X) possH(h1_3,X) block(h1_3,5,X) $\operatorname{possH}\left(\mathrm{h} 1 _3, \mathrm{X}\right)$ possH(h1_4, X) block(h1_4,13,X) $\operatorname{possH}\left(\mathrm{h} 1 _4, \mathrm{X}\right)$ poss(1,X) \% --- Node: 2 ---

$$
\text { \% --- Node: } 13 \text {--- }
$$ poss $(13, X)$ \% --- Node: 14 --poss(14,X) \% --- Node: 15 --poss(15,X)

$-\operatorname{possH}(h 0-0, X)$.
$\operatorname{poss}(11, X), \operatorname{possH}\left(h 0 _1, Y\right), Y!=X$. - $\operatorname{poss}(11, X)$, not $\operatorname{block}\left(h 0 _1,11, X\right)$. possH(h0_1,X).
$-\operatorname{poss}(3, X), \operatorname{possH}\left(h 0 _2, Y\right), Y!=X$. :- $\operatorname{poss}(3, X)$, not block(h0_2,3,X). possH(h0_2,X).

- poss(12,X), possH(h0_3,Y), Y!=X. poss(12,X), not block(h0_3,12,X). - $\operatorname{possH}\left(h 0 _3, X\right)$.
- possH(h1_0,X).
poss(2,X), possH(h1_1,Y), Y!=X. - $\operatorname{poss}(2, X)$, not block(h1_1,2,X). possH(h1_1,X).
$\operatorname{poss}(0, X), \operatorname{possH}\left(h 1 _2, Y\right), Y!=X$. - poss(0,X), not block(h1_2,0,X). possH(h1_2,X).
$\operatorname{poss}(5, X), \operatorname{possH}\left(h 1 _3, Y\right), Y!=X$. poss(5,X), not block(h1_3,5,X). possH(h1_3,X).
poss(13,X), possH(h1_4,Y), Y!=X. - poss(13,X), not block(h1_4,13,X) possH(h1_4,X).
:-
possH(h13_0,X).
:- $\operatorname{possH}\left(h 14 _0, \mathrm{X}\right)$.
:- possH(h15_0,X).
query.txt

```
poss(X,U) ?
```


Executing program

./dlv.bin - brave input.txt. query-.txt

Result

Macintosh-2:DLV gatt
8,1
11,0
12,1
13,0
14,1
6,0
1,1
2,1
3,0
3,1
4,8
4,1
5,1
6,1
7,8
7,1

8, 1
11,
12,1
13,
0, 0
1,1
2, 1
3,
3, 1
4,
4, 1
6,
7, 0
7,1

Agenda

1. Stable solutions

- how to define a unique and consistent solution?

2. Resolution algorithm

- how to calculate the solution efficiently?

3. Extensions

- how to deal with "negative beliefs"?

Resolution Algorithm
Focus on binary trust network

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

X	$\operatorname{poss}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$?$	$?$
E	$?$	$?$
F	$?$	$?$
G	$?$	$?$
H	$?$	$?$
J	$?$	$?$
K	$?$	$?$
L	$?$	$?$

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

X	$\operatorname{poss}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$?$	$?$
F	$?$	$?$
G	$?$	$?$
H	$?$	$?$
J	$?$	$?$
K	$?$	$?$
L	$?$	$?$

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

X	$\operatorname{poss}(X)$	$\boldsymbol{c e r t}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$?$	$?$
G	$?$	$?$
H	$?$	$?$
J	$?$	$?$
K	$?$	$?$
L	$?$	$?$

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from open to closed
\rightarrow follow

X	$\boldsymbol{p o s s}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$\{u\}$	$\{u\}$
G	$?$	$?$
H	$?$	$?$
J	$?$	$?$
K	$?$	$?$
L	$?$	$?$

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow

X	$\boldsymbol{p o s s}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$\{u\}$	$\{u\}$
G	$?$	$?$
H	$\{w\}$	$\{w\}$
J	$?$	$?$
K	$?$	$?$
L	$?$	$?$

Detail: Strongly Connected Components (SCCs)
For every cyclic or acyclic directed graph:

- The Strongly Connected Components graph is a DAG
- can be calculated in O(n) Tarjan [1972]

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open

X	$\operatorname{poss}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$\{u\}$	$\{u\}$
G	$?$	$?$
H	$\{w\}$	$\{w\}$
J	$?$	$?$
K	$?$	$?$
L	$?$	$?$

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open

X	$\operatorname{poss}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$\{u\}$	$\{u\}$
G	$?$	$?$
H	$\{w\}$	$\{w\}$
J	$?$	$?$
K	$?$	$?$
L	$?$	$?$

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open
\rightarrow resolve minimum SCCs

X	$\operatorname{poss}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$\{u\}$	$\{u\}$
G	$\{v, w\}$	\varnothing
H	$\{w\}$	$\{w\}$
J	$\{v, w\}$	\varnothing
K	$\{v, w\}$	\varnothing
L	$?$	$?$

Resolution Algorithm

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open
\rightarrow resolve minimum SCCs

X	$\operatorname{poss}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$\{u\}$	$\{u\}$
G	$\{v, w\}$	\varnothing
H	$\{w\}$	$\{w\}$
J	$\{v, w\}$	\varnothing
K	$\{v, w\}$	\varnothing
L	$?$	$?$

- Keep 2 sets: closed / open

Initialize closed with explicit beliefs

- MAIN

Step 1: if \exists preferred edges from
open to closed
\rightarrow follow
Step 2: else
\rightarrow construct SCC graph of open
\rightarrow resolve minimum SCCs

X	$\operatorname{poss}(X)$	$\operatorname{cert}(X)$
A	$\{v\}$	$\{v\}$
B	$\{w\}$	$\{w\}$
C	$\{u\}$	$\{u\}$
D	$\{v\}$	$\{v\}$
E	$\{w\}$	$\{w\}$
F	$\{u\}$	$\{u\}$
G	$\{v, w\}$	\varnothing
H	$\{w\}$	$\{w\}$
J	$\{v, w\}$	\varnothing
K	$\{v, w\}$	\varnothing
L	$\{v, w, u\}$	\varnothing

PTIME resolution algorithm $\mathrm{O}\left(n^{2}\right)$ worst case $\mathbf{O (n)}$ on reasonable graphs

Experiments on large network data

Calculating poss / cert for fixed key

- DLV: State-of-the art logic programming solver
- RA: Resolution algorithm

Network 1: "Oscillators"

Network 2: "Web link data"
Web data set with 5.4 m links between
270k domain names. Approach:

- Sample links with increasing ratio
- Include both nodes in sample
- Assign explicit beliefs randomly

Network 3: "Worst case" O(\boldsymbol{n}^{2})

2

3

O(n2)-worst-case for Resolution Algorithm

Agenda

1. Stable solutions

- how to define a unique and consistent solution?

2. Resolution algorithm

- how to calculate the solution efficiently?

3. Extensions

- how to deal with "negative beliefs"?

3 semantics for negative beliefs

3 semantics for negative beliefs

Agnostic

Our recommendation

Skeptic

w/o cycles*	$\mathbf{O}(\boldsymbol{n})$
w cycles	NP-hard

$\mathrm{O}(\mathrm{n})$
NP -hard

Take-aways automatic conflict resolution

Problem

- Given explicit beliefs \& trust mappings, how to assign consistent value assignment to users?

Our solution

- Stable solutions with possible/certain value semantics
- PTIME algorithm [$\mathbf{O}\left(\mathbf{n}^{2}\right)$ worst case, $\mathbf{O}(\mathbf{n})$ experiments]
- Several extensions
- negative beliefs: 3 semantics, two hard, one $\mathbf{O}\left(\mathrm{n}^{2}\right)$
- bulk inserts
- agreement checking
in the paper \& TR
- consensus value
- lineage computation

details

Fig_ComplexityExampleLong

Encoding
$(0 / 1)=(a+/ b+)$
$(0 / 1)=(c+/ d+)$
$(0 / 1)=(e+/ d+)$
$(0 / 1)=(e+/ f+)$

Fig_ComplexityOscillator

Fig_ComplexityPassLong

Encoding

$(0 / 1)=(a+/ b+)$
$(0 / 1)=(c+/ d+)$

Fig_ComplexityNotLong

Fig_ComplexityOrLong

Fig_ComplexityAndLong

Definition 3.1 (CONSISTENCY). Two beliefs b_{1}, b_{2} are conflicting $\left(b_{1} \not \leftrightarrow b_{2}\right)$ if they are either distinct positive beliefs $v+, w+$, or one is $v+$ and the other is $v-$. Otherwise, b_{1}, b_{2} are consistent $\left(b_{1} \leftrightarrow b_{2}\right)$. A set of beliefs B is called consistent if any two beliefs $b_{1}, b_{2} \in B$ are consistent.

Definition 3.2 (preferred union). Given two consistent sets of beliefs B_{1}, B_{2}, their preferred union is:

$$
B_{1} \vec{\cup} B_{2}=B_{1} \cup\left\{b_{2} \mid b_{2} \in B_{2} .\left(\forall b_{1} \in B_{1} \cdot b_{1} \leftrightarrow b_{2}\right)\right\}
$$

be a consistent set of positive and/or negative beliefs. For each paradigm $\sigma \in\{$ Agnostic, Eclectic, Skeptic $\}$ (abbreviated by $\{\mathrm{A}, \mathrm{E}, \mathrm{S}\})$, the normal form $\operatorname{Norm}_{\sigma}(B)$ is:

$$
\begin{aligned}
& \operatorname{Norm}_{\mathrm{A}}(B)= \begin{cases}\{v+\} & \text { if } \exists v+\in B \\
B & \text { otherwise }\end{cases} \\
& \operatorname{Norm}_{\mathrm{E}}(B)=B \\
& \operatorname{Norm}_{\mathrm{S}}(B)= \begin{cases}\{v+\} \cup(\perp-\{v-\}) & \text { if } \exists v+\in B \\
B & \text { otherwise }\end{cases}
\end{aligned}
$$

The preferred union specialized to the paradigm σ is:

$$
\begin{equation*}
B_{1} \vec{\cup}_{\sigma} B_{2}=\operatorname{Norm}_{\sigma}\left(\operatorname{Norm}_{\sigma}\left(B_{1}\right) \cup \operatorname{Norm}_{\sigma}\left(B_{2}\right)\right) \tag{1}
\end{equation*}
$$

For example:

$$
\begin{aligned}
\{a-\} \vec{U}_{A}\{b+\} & =\{b+\} \\
\{a-\} \vec{U}_{\mathrm{E}}\{b+\} & =\{b+, a-\} \\
\{a-\} \vec{U}_{\mathrm{S}}\{b+\} & =\{b+, a-, c-, d-, \ldots\} \\
\{b-\} \vec{U}_{\mathrm{S}}\{b+\} & =\perp
\end{aligned}
$$

A puzzling question is why is the Skeptic paradigm in PTIME, while the other two are hard. It is easy to see that the Boolean gates in Fig. 7 no longer work under Skeptic, but we do not consider this a satisfactory explanation. While we cannot give an ultimate cause, we point out one interesting difference. The preferred union for Skeptic is associative, while it is not associative for either Agnostic nor Eclectic. For example, consider the two expressions $B_{1}=$ $\left.\{a-\} \vec{\cup}_{\sigma}\left(\{a+\} \vec{\cup}_{\sigma}\{b+\}\right), B_{2}=\left(\{a-\} \vec{U}_{\sigma}\{a+\}\right)\right) \vec{U}_{\sigma}\{b+\}$. For Agnostic, we have $B_{2}=\{b+\}$, for Eclectic $B_{2}=\{a-, b+\}$, while for both $B_{1}=\{a-\}$. By contrast, one can show that \vec{U}_{s} is associative. Associativity as a desirable property during data merging was pointed out in [14].

The issue of associativity

null appears in a join column. No matter what choice is taken, \downarrow is not associative. Consider the relations

$$
q\left(\frac { A B } { 1 } 2 \quad r \left(\frac{B C}{2} 3 \quad s\left(\frac{A C}{14}\right)\right.\right.
$$

Computing $(q \bowtie r) \bowtie s$ we get

$$
\begin{array}{ll}
\left\{a^{-}\right\} \vec{U}_{a}\left(\{a\} \vec{U}_{a}\{b\}\right) & =\left\{a^{-}\right\} \\
\left(\left\{a^{-}\right\} \vec{U}_{a}\{a\}\right) \vec{U}_{a}\{b\} & =\{b\}
\end{array}
$$

while $q \not{ }^{+}(r \bowtie s)$ gives

$$
q^{\prime \prime}\left(\begin{array}{lll}
A & B & C
\end{array}\right)
$$

left outer join example from p392 in "Maier. The theory of relational databases, 1983."

backup

Binarization example

$p_{1}=p_{2}<p_{3}=p_{4}=p_{5}<p_{6}<p_{7}$

Example Trust Network (TN)
6 nodes, 9 arcs (size 15)
3 explicit beliefs: A:v, B:w, C:u

Corresponding Binary TN (BTN) 8 nodes, 12 arcs (size 20)

Size increase (N+E): ≤ 3

Logic programs with stable model semantics

Step 1:
Binarization

Step 2:

Logic program

1: accept all poss of preferred parent

$$
\begin{aligned}
& P(C, x):-P(A, x) \\
& \left\{\begin{array}{l}
F(C, B, y):-P(B, y), P(C, x), x \neq y \\
P(C, y):-P(B, y), \neg F(C, B, y
\end{array}\right.
\end{aligned}
$$

$F(C, A, y):-P(A, y), P(C, x), x \neq y$
$P(C, y):-P(A, y), \neg F(C, A, y)$
$F(C, B, y):-P(B, y), P(C, x), x \neq y$
$P(C, y):-P(B, y), \neg F(C, B, y)$

2: accept poss from non-preferred parent, that are not conflicting with an existing value

Example Trust Network (TN)
6 nodes, 9 arcs (size 15)
3 explicit beliefs: A:v, B:w, C:u

Corresponding Binary TN (BTN) 8 nodes, 12 arcs (size 20)

Size increase : ≤ 3

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution
- assignment of values to each node*, s.t. each belief has a "non-dominated lineage" to an explicit belief

- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of all stable solutions

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution
- assignment of values to each node*, s.t. each belief has a "non-dominated lineage" to an explicit belief
- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of all stable solutions

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution
- assignment of values to each node*, s.t. each belief has a "non-dominated lineage" to an explicit belief
- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of $\operatorname{poss}(G)=\{v, w, \ldots\}$ all stable solutions

Stable solutions: example 2

- Priority trust network (TN)
- assume a fixed key
- users (nodes): A, B, C
- values (beliefs): v, w, u
- trust mappings (arcs) from "parents"
- Stable solution
- assignment of values to each node*, s.t. each belief has a "non-dominated lineage" to an explicit belief
- Certain values
- all stable solution determine, for each node, a possible value ("poss")
- certain value ("cert") = intersection of all stable solutions

