T1: Data models and query languages L4: Relational algebra, Codd's theorem

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Version 1/17/2020

Where we are

Topic 1: Data models and query languages

- Lecture 1 (Tue 1/7): Course introduction, SQL refresher
- Introduction, SQL
- Lecture 2 (Fri 1/10): Logic \& relational calculus
- SQL continued, Logic \& relational calculus
- Lecture 3 (Tue 1/14): Relational Calculus, Relational algebra
- Relational algebra
- Lecture 4 (Fri 1/17): Codd's theorem, Datalog
- Lecture 5 (Tue 1/21): Stable model semantics, Information theory \& normal forms
- Lecture 6 (Fri 1/24): (A1 due) Alternative data models

Parentheses Convention

- We have defined 3 unary operators and 3 binary operators
- It is acceptable to omit the parentheses from $o(R)$ when o is unary
- Then, unary operators take precedence over binary ones
- Example:

$$
\begin{gathered}
\left(\sigma_{\text {course='DB' }}(\text { Course })\right) \times\left(\rho_{\text {cid/cid1 }}(\text { Studies })\right) \\
\text { becomes } \\
\sigma_{\text {course='DB' }} \text { Course } \times \rho_{\text {cid } / \mathrm{cid} 1} \text { Studies }
\end{gathered}
$$

Queries and the connection to logic and algebra

-Why logic?

- A crash course on FOL
- Relational Calculus
- Syntax and Semantics
- Domain Independence and Safety
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RC and RA

6 Primitive Operators

1. Projection (π)
2. Selection (σ)
3. Renaming (ρ)
4. Union (U)
5. Set Difference (-)
6. Cross Product (\times)

Q: Is this a "good" set of primitives?
Could we drop an operator "without losing anything"?

Independence among Primitives

- Let \circ be an RA operator, and let A be a set of RA operators
- We say that \circ is independent of A if \circ cannot be expressed in A; that is, no expression in A is equivalent to \circ

TheOREM: Each of the six primitives is independent of the other five
$\pi \sigma \rho U-X$

Proof:

- Separate argument for each of the six
- Arguments follow a common pattern (next slide)
- We will do one operator here (union)

Recipe for Proving Independence of an operator

1. Fix a schema S and an instance I over S
2. Find some property P over relations
3. Prove: for every expression φ that does not use \circ, the relation $\varphi(I)$ satisfies P
```
Such proofs are typically by induction on the size of the
expression, since operators compose
```

4. Find an expression ψ such that ψ uses \circ and $\psi(I)$ violates P

Independence of Union \cup

1. Fix a schema S and an instance I over S $S: R(A), S(A) \quad I:\{R(0), S(1)\}$ | R | S |
| :---: | :---: |
| \mathbf{A} | \mathbf{A} |
| 0 | 1 |
| | |
| | |
2. Find some property P over relations
\#tuples < 2
3. Prove: for every expression φ that does not use \circ, the relation $\varphi(I)$ satisfies P Induction base: R and S have \#tuples<2 Induction step: If $\varphi_{1}(I)$ and $\varphi_{2}(I)$ have \#tuples <2, then so do:

$$
\sigma_{c}\left(\varphi_{1}(I)\right), \quad \pi_{A}\left(\varphi_{1}(I)\right), \quad \rho_{A / B}\left(\varphi_{1}(I)\right), \quad \varphi_{1}(I) \times \varphi_{2}(I), \quad \varphi_{1}(I)-\varphi_{2}(I)
$$

4. Find an expression ψ such that ψ uses \circ and $\psi(I)$ violates P $\psi=R U S$

Queries and the connection to logic and algebra

-Why logic?

- A crash course on FOL
- Relational Calculus
- Syntax and Semantics
- Domain Independence and Safety
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RC and RA

RA commutators

- The basic commutators:
- Push projection through (1) selection, (2) join
- Push selection through (3) selection, (4) projection, (5) join
- Also: Joins can be re-ordered!
- Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query

An example: SQL to RA to Optimized RA

An example: SQL to RA to Optimized RA

Heuristically, we want selection and projection to occur early to have fewer or smaller "intermediate" tuples

Pushing down may be suboptimal if selection condition is very expensive (e.g. running some image processing algorithm). Projection could be unnecessary effort (but more rarely).

An example: SQL to RA to Optimized RA

Heuristically, we want selection and projection to occur early to have fewer or smaller "intermediate" tuples

$\mathrm{R}(\mathrm{A}, \mathrm{B})$	S(B,C) T(C,D)	Push down selection on A so it occurs earlier	$\Pi_{A, D}$	
SELECT	R.A,T.D			
FROM	R, S, T			
WHERE and and	R. $B=S \cdot B$		$>$	
	S.C = T. C			
	R.A < 10;			
$\Pi_{A, D}$	$\left(T \bowtie\left(\sigma_{A<10} R \bowtie S\right)\right)$		$S(B, C)$	

An example: SQL to RA to Optimized RA

Heuristically, we want selection and projection to occur early to have fewer or smaller "intermediate" tuples

An example: SQL to RA to Optimized RA

```
    R(A,B) S(B,C) T(C,D)
    SELECT R.A,T.D
    FROM R,S,T
WHERE R.B = S.B
        and S.C = T.C
        and R.A < 10;
\Pi}\mp@subsup{|}{A,D}{}(T\bowtie\mp@subsup{\Pi}{A,C}{}(\mp@subsup{\sigma}{A<10}{}R\bowtieS)
    \Pi-C
\(\leadsto\)\begin{tabular}{ll}
\(\sigma_{\mathrm{A}<10}\) & \(\mathrm{~S}(\mathrm{~B}, \mathrm{C})\) \\
\(\mathrm{R}(\mathrm{A}, \mathrm{B})\) & \begin{tabular}{l} 
In general, when is an \\
attribute not needed?
\end{tabular}
\end{tabular}
```


Queries and the connection to logic and algebra

-Why logic?

- A crash course on FOL
- Relational Calculus
- Syntax and Semantics
- Domain Independence and Safety
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RC and RA

In RC:

$\{x \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y} .[\neg \operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$

In RA:

In RC:
$\{x \mid \exists \mathrm{z}, \mathrm{w} . \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y} .[\neg \operatorname{Spouse}(\mathrm{x}, \mathrm{y})]\}$

In RA:

$\pi_{i d}$ Person $-\rho_{\text {person } 1 / \mathrm{id}} \pi_{\text {person } 1}$ Spouse

Equivalence Between RA and D.I. RC

Codd's Theorem:
RA and domain-independent RC have the same expressive power.

More formally, on every schema \mathbf{S} :

1. For every RA expression E
there is a domain-independent $R C$ query Q such that $Q \equiv E$
2. For every* domain-independent $R C$ query Q there is an RA expression E such that $\mathrm{Q} \equiv \mathrm{E}$

About the proof

The proof has two directions

1. Translate a given RA expression into an equivalent RC query

Part 1 is fairly easy: induction on the size of the RA expression
2. Translate a given RC query into an equivalent RA expression

$$
\text { Part } 2 \text { is more involved }
$$

$R A \rightarrow R C:$ Intuition

- Construction by induction

Intuition: $\{x \mid \exists y \cdot R(x, y) \wedge \exists y . S(x, y)\}$ contrast with: $\{x \mid \exists y \cdot R(x, y) \wedge \exists z . S(x, z)\}$

- Slight technicality: need to maintain a mapping b/w attribute names and variables

RA expression	RC formula $\phi \quad$ Here, ϕ_{i} is the formula constructed for E_{i}
$R(n$ columns $)$	$R\left(X_{1}, \ldots, X_{n}\right)$
$E_{1} \times E_{2}$	
$E_{1}-E_{2}$	
$E_{1} \cup E_{2}$	
$\pi_{a_{1}, \ldots, a_{k}}\left(E_{1}\right)$	
$\sigma_{c}\left(E_{1}\right)$	

$R A \rightarrow R C:$ Intuition

- Construction by induction

Intuition: $\{x \mid \exists y \cdot R(x, y) \wedge \exists y . S(x, y)\}$

- Slight technicality: need to maintain a mapping b/w attribute names and variables

RA expression	$R C$ formula $\phi \quad$ Here, ϕ_{i} is the formula constructed for E_{i}
$R(n$ columns)	$R\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
$\mathrm{E}_{1} \times \mathrm{E}_{2}$	$\phi_{1} \wedge \phi_{2}$ disjoint variables (rename)
$\mathrm{E}_{1}-\mathrm{E}_{2}$	$\phi_{1} \wedge \neg \phi_{2}$ use identical variables (rename)
$\mathrm{E}_{1} \cup \mathrm{E}_{2}$	$\phi_{1} \vee \phi_{2}$ use identical variables (rename)
$\pi_{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}}\left(\mathrm{E}_{1}\right)$	
$\sigma_{\mathrm{c}}\left(\mathrm{E}_{1}\right)$	

$R A \rightarrow R C:$ Intuition

- Construction by induction
- Slight technicality: need to maintain a mapping b/w attribute names and variables

RA expression	$R C$ formula $\phi \quad$ Here, ϕ_{i} is the formula constructed for E_{i}
$R(n$ columns)	$R\left(X_{1}, \ldots, X_{n}\right)$
$E_{1} \times E_{2}$	$\phi_{1} \wedge \phi_{2}$ disjoint variables (rename)
$E_{1}-E_{2}$	$\phi_{1} \wedge \neg \phi_{2}$ use identical variables (rename)
$E_{1} \cup E_{2}$	$\phi_{1} \vee \phi_{2}$ use identical variables (rename)
$\pi_{a_{1}, \ldots, a_{k}}\left(E_{1}\right)$	$\exists X_{1} \ldots \exists X m . \phi_{1}$ where X_{1}, \ldots, Xm are the variables not among $a_{1}, \ldots a_{k}$
$\sigma_{c}\left(E_{1}\right)$	$\phi_{1} \wedge c$

$R A \rightarrow R C:$ Example $R \div S$
$R(A, B) \quad S(B)$

RA	RC	Mapping
R		
$\pi_{A}(R)$		
S		
$\pi_{A}(R) \times S$		
$\left(\pi_{A}(R) \times S\right)-R$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		
$\pi_{A}(R)-$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		

$R A \rightarrow R C:$ Example $R \div S$
$R(A, B) \quad S(B)$

$R A$	$R C$	Mapping
R	$R(x, y)$	$x: A, y: B$
$\pi_{A}(R)$	$\exists y \cdot R(x, y)$	$x: A$
S	$S(z)$	$z: B$
$\pi_{A}(R) \times S$		
$\left(\pi_{A}(R) \times S\right)-R$		
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$		
$\pi_{A}(R)-$		

$R A \rightarrow R C:$ Example $R \div S$
$R(A, B) \quad S(B)$

$R A$	$R C$	Mapping
R	$R(x, y)$	$x: A, y: B$
$\pi_{A}(R)$	$\exists y \cdot R(x, y)$	$x: A$
S	$S(z)$	$z: B$
$\pi_{A}(R) \times S$	$\exists y \cdot R(x, y) \wedge S(z)$z needs to be different from 4	$x: A, z: B$
$\left(\pi_{A}(R) \times S\right)-R$	$(\exists y \cdot R(x, y) \wedge S(z)) \wedge \neg R(x, z)$	$x: A, z: B$
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$	$\exists z[(\exists y \cdot R(x, y) \wedge S(z)) \wedge \neg R(x, z)]$	$x: A$
$\pi_{A}(R)-$	$\exists y \cdot R(x, y) \wedge x^{\prime}$ need to be same variable	
$\pi_{A}\left(\left(\pi_{A}(R) \times S\right)-R\right)$	$x: A[(\exists y \cdot R(x, y) \wedge S(z)) \wedge \neg R(x, z)]$	

"Clear" variables (not a standard term)
Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists x . S(y, x)
$$

which variables are free or bound?

"Clear" variables (not a standard term)
Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

recall operator precedence: \exists before \wedge $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not clear: Two x's and y's are
different variables.
? how to make it clear

"Clear" variables (not a standard term)

Formula with clear variables : each quantifier "has its own variables" \& each variable has only free or only bound occurrences

recall operator precedence: \exists before \wedge $\forall x . \exists y \cdot[R(x, y, z)] \wedge \neg \exists x .[S(y, x)]$

Not clear: Two x's and y's are different variables.

$$
\forall x . \exists y . R(x, y, z) \wedge \neg \exists u \cdot S(v, u)
$$

now clear
$\{(\mathrm{z}, \mathrm{v}) \mid \forall \mathrm{x} \cdot \exists \mathrm{y} \cdot \mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \neg \exists \mathrm{u} . \mathrm{S}(\mathrm{v}, \mathrm{u})\}$
but as query not domain-independent

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Which of the following formulas imply each other?
$\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{P}(\mathrm{x}, \mathrm{y})$
$\forall \mathrm{x} . \mathrm{P}(\mathrm{x}, \mathrm{x})$

ヨx. ヨy. P(x,y)
$\exists \mathrm{x} . \mathrm{P}(\mathrm{x}, \mathrm{x})$

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not need to range over distinct objects.

$$
\begin{array}{lll}
\forall \mathrm{x} . \forall \mathrm{y} \cdot \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Leftarrow & \forall \mathrm{x} \cdot \mathrm{P}(\mathrm{x}, \mathrm{x}) \\
\exists \mathrm{x} \cdot \exists \mathrm{y} \cdot \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Rightarrow & \exists \mathrm{x} \cdot \mathrm{P}(\mathrm{x}, \mathrm{x})
\end{array}
$$

Repeated variable names

When evaluating a sentence with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not need to range over distinct objects.

$$
\begin{aligned}
\forall \mathrm{x} . \forall \mathrm{y} . \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Longleftarrow \\
\Downarrow \underset{\substack{\text { Dom } \\
\text { Donlif domain is not empty! }}}{ } & \forall \mathrm{x} . \mathrm{P}(\mathrm{x}, \mathrm{x}) \\
\exists \mathrm{x} . \exists \mathrm{y} . \mathrm{P}(\mathrm{x}, \mathrm{y}) & \Rightarrow
\end{aligned}
$$

$R C \rightarrow R A:$ Intution

Proof (Sketch):

- Show first that for every relational database schema \mathbf{S}, there is a relational algebra expression E such that for every database instance D, we have that adom(D) $=E(D)$.
- Use the above fact and induction on the construction of relational calculus formulas to obtain a translation of relational calculus under the active domain interpretation to relational algebra.
- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra
uses the logical equivalence: $\forall y . \phi \equiv$?
- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra
uses the logical equivalence: $\forall y . \phi \equiv \quad \neg \exists y \cdot \neg \phi$
- As an illustration, consider: $\forall y . R(x, y) \equiv \neg \exists y . \neg R(x, y)$

$$
\text { and recall: } \operatorname{ADom}(D)=\pi_{A}(R) \cup \pi_{B}(R)
$$

$R C$ formula $\phi \quad$ RA expression for $\phi^{\text {adom }}$

$$
\begin{array}{r}
\neg \mathrm{R}(\mathrm{x}, \mathrm{y}) \\
\exists \mathrm{y} \cdot \\
\neg \mathrm{R}(\mathrm{x}, \mathrm{y}) \\
\neg \exists \mathrm{y} \cdot
\end{array} \neg \mathrm{R}(\mathrm{x}, \mathrm{y}), ~ \$
$$

- In this translation, the most interesting part is the simulation of the universal quantifier \forall in relational algebra

$$
\text { uses the logical equivalence: } \forall y . \phi \equiv ? \quad \neg \exists y . \neg \phi
$$

- As an illustration, consider: $\forall y . \mathrm{R}(\mathrm{x}, \mathrm{y}) \equiv \neg \exists \mathrm{y} . \neg \mathrm{R}(\mathrm{x}, \mathrm{y})$

$$
\text { and recall: } \operatorname{ADom}(D)=\pi_{A}(R) \cup \pi_{B}(R)
$$

$R C$ formula $\phi \quad R A$ expression for $\phi^{\text {adom }}$

$$
\begin{array}{r|r}
\neg \mathrm{R}(\mathrm{x}, \mathrm{y}) & (\operatorname{ADom}(\mathrm{D}) \times \operatorname{ADom}(\mathrm{D}))-\mathrm{R} \\
\exists \mathrm{y} \cdot \neg \mathrm{R}(\mathrm{x}, \mathrm{y}) & \pi_{\mathrm{A}}[(\operatorname{ADom}(\mathrm{D}) \times \operatorname{ADom}(\mathrm{D}))-\mathrm{R}] \\
\neg \exists \mathrm{y} \cdot \neg \mathrm{R}(\mathrm{x}, \mathrm{y}) & \operatorname{ADom}(\mathrm{D})-\pi_{\mathrm{A}}[(\operatorname{ADom}(\mathrm{D}) \times \operatorname{ADom}(\mathrm{D}))-\mathrm{R}]
\end{array}
$$

Entire Story in One Slide (repeated slide)

1. $\mathrm{RC}=\mathrm{FOL}$ over DB
2. RC can express "bad queries" that depend not only on the DB, but also on the domain from which values are taken [domain dependence]
3. We cannot test whether an RC query is "good," but we can use a "good" subset of RC that captures all "good" queries [safety]
4. "Good" RC and RA can express the same queries! [equivalence]
