
166

T1: Data models and query languages
L4: Relational algebra, Codd’s theorem

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Version 1/17/2020

Updated 2/8/2020

https://northeastern-datalab.github.io/cs7240/sp20/

167

Where we are

168

Parentheses Convention

• We have defined 3 unary operators and 3 binary operators
• It is acceptable to omit the parentheses from o(R) when o is unary
- Then, unary operators take precedence over binary ones

• Example:

(scourse=‘DB’(Course)) ×(rcid/cid1(Studies))

becomes

scourse=‘DB’Course× rcid/cid1Studies

182

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

183

6 Primitive Operators

1. Projection (p)
2. Selection (s)
3. Renaming (r)
4. Union (⋃)
5. Set Difference (−)
6. Cross Product (×)

Q: Is this a "good" set of primitives?
Could we drop an operator "without
losing anything"?

185

Independence among Primitives

• Let o be an RA operator, and let A be a set of RA operators

• We say that o is independent of A if o cannot be expressed in A;
that is, no expression in A is equivalent to o

THEOREM: Each of the six primitives
is independent of the other five π σ ρ ⋃ –×

Proof:
• Separate argument for each of the six
• Arguments follow a common pattern (next slide)
• We will do one operator here (union)

186

Recipe for Proving Independence of an operator o

1. Fix a schema S and an instance I over S

2. Find some property P over relations

3. Prove: for every expression φ that does not use o, the relation φ(I) satisfies P

4. Find an expression ψ such that ψ uses o and ψ(I) violates P

Such proofs are typically by induction on the size of the
expression, since operators compose

187

Independence of Union ∪

1. Fix a schema S and an instance I over S
S: R(A), S(A) I: {R(0), S(1)}

2. Find some property P over relations
#tuples < 2

3. Prove: for every expression φ that does not use o, the relation φ(I) satisfies P
Induction base: R and S have #tuples<2

4. Find an expression ψ such that ψ uses o and ψ(I) violates P

ψ=R∪S

Induction step: If φ1(I) and φ2(I) have #tuples<2, then so do:
σc(φ1(I)), pA(φ1(I)), ρA/B(φ1(I)), φ1(I)×φ2(I), φ1(I)−φ2(I)

R
A
0

S
A
1

188

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

189

RA commutators

• The basic commutators:
- Push projection through (1) selection, (2) join
- Push selection through (3) selection, (4) projection, (5) join
- Also: Joins can be re-ordered!

• Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the
execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query

191

Π�,À

R(A,B) S(B,C)

T(C,D)

sA<10

Π�,À 𝜎�Ç¨ª 𝑇 ⋈ 𝑅 ⋈ 𝑆

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

An example: SQL to RA to Optimized RA

192

Π�,À

R(A,B) S(B,C)

T(C,D)

sA<10

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Heuristically, we want selection and projection to occur
early to have fewer or smaller "intermediate" tuples

Pushing down may be suboptimal if selection condition is very expensive (e.g. running some image
processing algorithm). Projection could be unnecessary effort (but more rarely).

Π�,À 𝜎�Ç¨ª 𝑇 ⋈ 𝑅 ⋈ 𝑆

Push down
selection on A so
it occurs earlier

193

R(A,B)

S(B,C)

T(C,D)

An example: SQL to RA to Optimized RA

sA<10

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D) Push down
selection on A so
it occurs earlier

Heuristically, we want selection and projection to occur
early to have fewer or smaller "intermediate" tuples

Π�,À 𝑇 ⋈ 𝜎�Ç¨ª𝑅 ⋈ 𝑆

Π�,À

194

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

R(A,B)

S(B,C)

T(C,D)

sA<10Π�,À 𝑇 ⋈ 𝜎�Ç¨ª𝑅 ⋈ 𝑆

Π�,À

Push down
projection so it
occurs earlier

Push down
selection on A so
it occurs earlier

Heuristically, we want selection and projection to occur
early to have fewer or smaller "intermediate" tuples

Π-B,C

Π-B,C

195

An example: SQL to RA to Optimized RA

SELECT R.A,T.D
FROM R,S,T
WHERE R.B = S.B

and S.C = T.C
and R.A < 10;

R(A,B) S(B,C) T(C,D)

Π�,À 𝑇 ⋈ Π�,¿ 𝜎�Ç¨ª𝑅 ⋈ 𝑆
R(A,B)

S(B,C)

T(C,D)

Π�,À

sA<10

Π�,¿

We now eliminate B earlier

In general, when is an
attribute not needed?

Π-C Π-B

Π-C

Π-B

196

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

198

An example

{ x |	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

Person(id, gender, country)
Spouse(person1, person2)

In RA:

In RC:

?

199

An example

πidPerson − rperson1/idπperson1Spouse

{ x |	∃z,w.	Person(x,z,w)	⋀	∀y.[¬Spouse(x,y)]	}

Person(id, gender, country)
Spouse(person1, person2)

In RA:

In RC:

200

Equivalence Between RA and D.I. RC

* Technicality: we consider only queries that output values from the database (otherwise we need to extend RA accordingly…)

More formally, on every schema S:

1. For every RA expression E
there is a domain-independent RC query Q such that Q≡E

2. For every* domain-independent RC query Q	
there is an RA expression E such that Q≡E

CODD'S THEOREM:
RA and domain-independent RC
have the same expressive power.

201

About the proof

The proof has two directions

1. Translate a given RA expression into an equivalent RC query

2. Translate a given RC query into an equivalent RA expression
Part 1 is fairly easy: induction on the size of the RA expression

Part 2 is more involved

202

RA → RC: Intuition
• Construction by induction
• Slight technicality: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2
E1 − E2
E1 ∪ E2
πË¨,…,ËÌ(E1)

σÎ E1

RC	formula	ϕ

R(X1,…,Xn)

Here, ϕi is the formula constructed for Ei

Intuition: {x |∃y.R(x,y) ⋀ ∃y.S(x,y)}
contrast with: {x |∃y.R(x,y) ⋀ ∃z.S(x,z)}

203

RA → RC: Intuition
• Construction by induction
• Slight technicality: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2
E1 − E2
E1 ∪ E2
πË¨,…,ËÌ(E1)

σÎ E1

RC	formula	ϕ

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

ϕ1 ∧ ¬ϕ2 use iden~cal variables (rename)

ϕ1 ∨ ϕ2 use iden~cal variables (rename)

Here, ϕi is the formula constructed for Ei

Intuition: {x |∃y.R(x,y) ⋀ ∃y.S(x,y)}
contrast with: {x |∃y.R(x,y) ⋀ ∃z.S(x,z)}

204

RA → RC: Intuition
• Construction by induction
• Slight technicality: need to maintain a mapping b/w attribute names and variables

RA	expression

R (n columns)

E1 × E2
E1 − E2
E1 ∪ E2
πË¨,…,ËÌ(E1)

σÎ E1

RC	formula	ϕ

R(X1,…,Xn)

ϕ1 ∧ ϕ2 disjoint variables (rename)

ϕ1 ∧ ¬ϕ2 use iden~cal variables (rename)

ϕ1 ∨ ϕ2 use iden~cal variables (rename)

∃X1. . . ∃Xm.ϕ1 where X1, . . . , Xm are the variables not among a1,…ak
ϕ1 ∧ c

Here, ϕi is the formula constructed for Ei

Intuition: {x |∃y.R(x,y) ⋀ ∃y.S(x,y)}
contrast with: {x |∃y.R(x,y) ⋀ ∃z.S(x,z)}

205

RA → RC: Example R÷S

RA

R(A,B)			S(B)

πÐ πÐ R ×S − R

πÐ R −
πÐ πÐ R ×S − R

πÐ R ×S − R

πÐ R ×S

S

πÐ R

R

MappingRC

206

RA → RC: Example R÷S

RA

R(A,B)			S(B)

πÐ πÐ R ×S − R

πÐ R −
πÐ πÐ R ×S − R

πÐ R ×S − R

πÐ R ×S

S

πÐ R

R

Mapping
x:A,	y:B

x:A

z:B

RC

S(z)

∃y. R x, y

R x, y

207

RA → RC: Example R÷S

RA RC

R(A,B)			S(B)

πÐ πÐ R ×S − R

¬∃z ∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃y. R x, y ∧ S(z)

∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃z ∃y. R x, y ∧ S z ∧ ¬R(x, z)

∃y. R x, y ∧πÐ R −
πÐ πÐ R ×S − R

πÐ R ×S − R

πÐ R ×S

S

πÐ R

R

S(z)

∃y. R x, y

R x, y

Mapping
x:A,	y:B

x:A

z:B

x:A,	z:B

x:A,	z:B

x:A

x:Ax's need to be same variable

y's don't need to be same variable

z needs to be
different from y

208

"Clear" variables (not a standard term)

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

? which variables are free or bound?

209

"Clear" variables (not a standard term)

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not clear: Two x's and y's are
different variables.

? how to make it clear

210

"Clear" variables (not a standard term)

∀x. ∃y. R x, y, z ∧ ¬∃x. S(y, x)

Formula	with	clear	variables	:	each	quantifier	"has	its	own	variables"	&	
each	variable	has	only	free	or	only	bound	occurrences

bound boundfree

recall operator precedence: ∃ before ∧
∀x.∃y.[R(x,y,z)]∧¬∃x.[S(y,x)]

Not clear: Two x's and y's are
different variables.

∀x. ∃y. R x, y, z ∧ ¬∃u. S(v, u)

z, v ∀x. ∃y. R x, y, z ∧ ¬∃u. S v, u } but as query not domain-independent

now clear

211

$x.$y.	P(x,y)	

Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

"x."y.	P(x,y) "x.	P(x,x)

$x.	P(x,x)

Which of the following formulas imply each other??

212

$x.$y.	P(x,y)	

Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

"x."y.	P(x,y) "x.	P(x,x)

$x.	P(x,x)

Recall that distinct variables do not
need to range over distinct objects.

⟸

⟹

213

$x.$y.	P(x,y)	

Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

"x."y.	P(x,y) "x.	P(x,x)

$x.	P(x,x)

⇓
Only if domain is not empty!
Dom ≠ ∅⇓

⟸

⟹

Recall that distinct variables do not
need to range over distinct objects.

217

RC → RA: Intution

Proof (Sketch):
• Show first that for every relational database schema S, there is a

relational algebra expression E such that for every database
instance D, we have that adom(D) = E(D).

• Use the above fact and induction on the construction of relational
calculus formulas to obtain a translation of relational calculus under
the active domain interpretation to relational algebra.

219

RC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

∀y. ϕ ≡

R(A,B)

uses the logical equivalence: ?

220

RC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomRC	formula	ϕ

¬∃y.¬R x, y

πÐ R ∪πÖ RADom(D)=
¬∃y.¬R x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. R(x, y) ≡

R(A,B)

uses the logical equivalence:

and recall:

∃y.¬R x, y
¬R x, y

221

RC → RA: Intuition

• In this translation, the most interesting part is the simulation of the
universal quantifier ∀ in relational algebra

• As an illustration, consider:

RA	expression	for	ϕadomRC	formula	ϕ

¬∃y.¬R x, y

πÐ R ∪πÖ RADom(D)=
¬∃y.¬R x, y
¬∃y. ¬ϕ∀y. ϕ ≡

∀y. R(x, y) ≡

R(A,B)

uses the logical equivalence: ?

and recall:

∃y.¬R x, y
¬R x, y ADom(D)×ADom(D) − R

πÐ ADom(D)×ADom(D) − R
πÐ ADom(D)×ADom(D) − RADom(D) −

222

Entire Story in One Slide (repeated slide)

1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on
the domain from which values are taken [domain dependence]

3. We cannot test whether an RC query is “good,” but we can use a ”good”
subset of RC that captures all “good” queries [safety]

4. “Good” RC and RA can express the same queries! [equivalence]

