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Where we are

Topic 1: Data models and query languages
e Lecture 1 (Tue 1/7): Course introduction, SQL refresher
o Introduction, SQL
Lecture 2 (Fri 1/10): Logic & relational calculus

o SQL continued, Logic & relational calculus
Lecture 3 (Tue 1/14): Relational Calculus, Relational algebra

o Relational algebra
Lecture 4 (Fri 1/17): Codd's theorem, Datalog
Lecture 5 (Tue 1/21): Stable model semantics, Information theory & normal forms
Lecture 6 (Fri 1/24): (A1 due) Alternative data models
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Parentheses Convention

« We have defined 3 unary operators and 3 binary operators
« It is acceptable to omit the parentheses from o(R) when o is unary
— Then, unary operators take precedence over binary ones

e Example:

(Gcourse=’DB’(Course)) X (pcid/cidl(StUdieS) )

becomes

cScours.e:’DB’Cou rse X pcid/cidlstUd 1SN

168



Queries and the connection to logic and algebra

* Why logic?
— A crash course on FOL
* Relational Calculus

— Syntax and Semantics
— Domain Independence and Safety

* Relational Algelbra

— Operators
— Independence
— Power of algebra: optimizations

» Equivalence RC and RA
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6 Primitive Operators

Projection ()
Selection (o)
Renaming (p)
Union (U)

Set Difference (-)
Cross Product ( %)

o Uk w N oPE

Q: Is this a "good" set of primitives?
Could we drop an operator "without
losing anything"?
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Independence among Primitives

« Let 0 be an RA operator, and let A be a set of RA operators

« We say that o is independent of A if © cannot be expressed in A;
that is, no expression in A is equivalent to

THEOREM: Each of the six primitives
is independent of the other five

Proof:
« Separate argument for each of the six
« Arguments follow a common pattern (next slide)
* We will do one operator here (union)
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Recipe for Proving Independence of an operator

1. Fix a schema S and an instance | over S

2. Find some over relations

3. Prove: for every expression ¢ that does not use o, the relation ¢(l) satisfies

Such proofs are typically by induction on the <ize of the
expression, since

4. Find an expression yp such that yp uses o and (l) violates
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Independence of Union U

1. Fix a schema S and an instance | over S R S

S: R(A), S(A) - {R(0), S(1)}
0|1

3. Prove: for every expression ¢p that does not use o, the relation (1) satisfies P
Induction base: R and S have #tuples<?2
Induction step: If ¢,(l) and ¢,(I) have #tuples<2, then so do:
o (@1(1),  TA@1(1),  pasl@i(l)),  @1(1) X @y(1),  @1(1)=py(l)

2. Find some property P over relations
#tuples < 2

4. Find an expression p such that yp uses o and y(l) violates P

y=RUS
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Queries and the connection to logic and algebra

* Why logic?
— A crash course on FOL
* Relational Calculus

— Syntax and Semantics
— Domain Independence and Safety

* Relational Algelbra

— QOperators
— Independence
— Power of algebra: optimizations

» Equivalence RC and RA

188



RA commutators

e The basic commutators:

— Push projection through (1) selection, (2) join

— Push selection through (3) selection, (4) projection, (5) join

— Also: Joins can be re-ordered!
« Note that this is not an exhaustive set of operations

This simple set of tools allows us to greatly improve the
execution time of queries by optimizing RA plans!

We next illustrate with an SFW (Select-From-Where) query
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An example: SQL to RA to Optimized RA

R(A,B) S(B,C) T(C,D)

M

SELECT R.A,T.D |

FROM R,S,T G A1l

WHERE R.B = S.B |
and S.C = T.C >
and R.A < 1

0; \
E%é T(C,D)

/" \

s p (0A<10(T X (R S))) R(A,B)  S(B,C)
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An example: SQL to RA to Optimized RA

Heuristically, we want selection and projection +o occur
early o have fewer or smaller "intermediate” tuples

R(A,B) S(B,C) T(C,D)

Push down

[ p

SELECT R.A,T.D on A so |
FROM R,S, T it occurs earlier
WHERE R.B = S.B |

and S.C = T.C >

and R.A < 10: \\

>é T(C,D)

[, p ( (T X (R S))) R(A,B)  S(B,C)

Pushing down may be suboptimal if selection condition is very expevsive (e.9). rumvivg sowme imane

processing algoritihm). Projection could be unecessary effort (but wore rarely). 197



An example: SQL to RA to Optimized RA

Heuristically, we want selection and projection +o occur
early o have fewer or smaller "intermediate” tuples

R(A,B) S(B,C) T(C,D)

Push down

[, p
SELECT R.A,T.D on A so
FROM R,S, T it occurs earlier
WHERE R.B = S.B
and S.C = T.C >
and R.A <

10; \
>é T(C,D)

[y p (T > ( R S)) S(B,C)
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An example: SQL to RA to Optimized RA

Heuristically, we want selection and projection +o occur
early o have fewer or smaller "intermediate” tuples

R(A,B) S(B,C) T(C,D)

Push down -
SELECT R.A,T.D selection on A so oe
FROM R,S,T it occurs earlier ‘
WHERE R.B = S.B
and S.C =T.C Push down >
<

and R.A 10; o it \
occurs earlier T(C,D)

(T X (O'A<1OR X S)) GA|<10 S(B,C)

R(A,B
0, (A,B)
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An example: SQL to RA to Optimized RA

R(A,B) S(B,C) T(C,D)

[y p I,
SELECT R.A,T.D |
FROM R,S,T
WHERE R.B = S.B /
and S.C = T.C
and R.A < 10; HA,C H_E
|
> T(C,D)
HA,D (T X HA’(:(O-A<10R X S)) c5A|<10 S(B,C)
I, M, R(A,B) Tw general, whew is an

ottribute not needed?

we now eliminate B earlier .



Queries and the connection to logic and algebra

* Why logic?
— A crash course on FOL
* Relational Calculus

— Syntax and Semantics
— Domain Independence and Safety

* Relational Algelbra

— QOperators
— Independence
— Power of algebra: optimizations

« Equivalence RC and RA
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Person(id, gender, country)
Spouse(person1, person2)

An example

InRC:
{X | 3z,w. Person(x,z,w) A Vy.|=Spouse(x,y)] }

TvRA: ‘

?
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An exam P le Person(id, gender, country)

Spouse(person1, person2)

{ | 3z,w. Person(x,z,w) A Vy.|=Spouse(x,y)] }

|

1Ti(ipersorl o ppersonl/id’r[person1SpouSe
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Equivalence Between RA and D.l. RC

CoDD'S THEOREM:
RA and domain-independent RC

have the same expressive power.

More formally, on every schema S:

1. For every RA expression &
there is a domain-independent RC query ) suchthat O =E

2. For every* domain-independent RC query ()
there is an RA expression E such that O =E

* Technicality: we consider only queries that output values from the database (otherwise we need to extend RA accordingly...) 200



About the proof

The proof has two directions

1. Translate a given RA expression into an equivalent RC query
Part 1 is fairly easy: nduction on the size of the RA expression

2. Translate a given RC guery into an equivalent RA expression

Part 2 1s more involved
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RA — RC: Intultion

e Construction by induction
* Slight technicality: need to maintain a

Tutuition: §x |FyROv) A FuS(xv)3
contrast with: £x |3yRy) A 32.5(x,2)3

Here, @, is the formula constructed for E

R (n columns)

E, x E,
Ei — K,
E;VE,
Ma .. (E1)

oc(Ep)

R(Xy,X,,)
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RA — RC: Intultion

e Construction by induction
* Slight technicality: need to maintain a

Tutuition: §x |
contrast with: x|

Here, @, is the formula constructed for E

ROxv) A
Rxv) A F2S(x,2)3

S(xM)3

R (n columns)

E, x E,
Ei — K,
E;VE,
Ma .. (E1)

oc(Ep)

R(Xy,X,,)

OIWAYO)

$; A =P, use

$,V P, use

variables (rename)

variables (rename)

variables (rename)
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RA — RC: Intuition Turtuition: #x |30R001) A 34.S ()3
° Construction by induction contrast Wl'H/]\ éx l \/R(X, ) /\ HZ/\S(X,Z/)E
* Slight technicality: need to maintain a

Here, @, is the formula constructed for E

R (n columns)

E, x E,
Ei — K,
E;VE,
Ma .. (E1)

oc(Ep)

R(X4,...X,)

OIANOR variables (rename)

$; A =P, use variables (rename)

$,V P, use variables (rename)

1X;...3Xm. ¢, where X;,..., Xm are the variables aq,...dy
b1 AcC
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RA — RC: Example R+S R(A,B) S(B)

Mapping

R

T, (R)

S

. (R) XS

(mt,(R)XS) — R

1, ((1, (R)XS) — R)

T4 (R) —
1, ((1, (R)XS) — R)
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RA — RC: Example R+S R(A,B) S(B)

Mapping

R R(x,y) , v:B

1, (R) 3y.R(x, v)
S S(z) Z:B

. (R) XS

(mt,(R)XS) — R

1, ((1, (R)XS) — R)

T4 (R) —
1, ((1, (R)XS) — R)
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RA — RC: Example R=S

R(A,B) S(B)

Mapping
R R(x,y) :B
1, (R) 3y.R(x, v)
S S(z) z:B
T, (R) XS Jy. R(x%, v) A S(2) z:B
(1, (R)xS) — R (3y.R(x,v) AS(z)) A =R(x, 7) , Z:B
T, (A (R)XS) —=R) | 3z[(2y.R(x,y) AS(z)) A =R(%,2) |
m,(R) — Jv. R(%,v) A

1, ((1, (R)XS) — R)

—EIZ[(EI .R( ,Y)/\S(Z))/\_IR( ,z)]
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"Clear" variables (not a standard term)

Formula with clear variables : each quantifier "has its own variables" &
each variable has only free or only bound occurrences

Vvx. 3y.R(%,v,z) A =3x. S(y, %)

? which variables are free or bound?
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"Clear" variables (not a standard term)

Formula with clear variables : each quantifier "has its own variables" &
each variable has only free or only bound occurrences

recall operator precedence: 3 before N

vx. 3yv.R(%,v,2) A =23x.S(y, %) V3. R (w2 ) TATX[S (y,x)]

oo~

bound free bound
Not clear: Two x's and y's are
different variables.

? how +o make 1+ clear
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"Clear" variables (not a standard term)

Formula with clear variables : each quantifier "has its own variables" &
each variable has only free or only bound occurrences

recall operator precedence: 3 before N

Vx. 3 .R(/> ,w,X\) VX3 ROGY,2)IA-TX S (y,X)]
bound free bound

Not clear: Two x's and y's are
different variables.

Vvx.3y.R(x,v,z) A =3u.S(v, 1) now clear

{(z,v) | Vx.3v.R(%,v,2) A =3u.S(v, u)} but as dquery not domain-independent

210



Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

? which of the following formulas imply each other?

Vx.Vy. P(x,y) VX. P(X,X)

dx.dy. P(x,y) Ix. P(x,x)
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Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not

need to range over distinct objects. .
P )
Vx.Vy. P(x,y) = VX. P(x,X) 2 2
dx.dy. P(x,y) = dx. P(x,X) P‘ A B,
S
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Repeated variable names

When evaluating a sentence with multiple quantifiers, don’t fall into
the trap of thinking that distinct variables range over distinct objects.

Recall that distinct variables do not
need to range over distinct objects.

Vx.Vy. P(x,y) = VX. P(X,X)

dx.dy. P(x,y) = dx. P(x,X)
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RC — RA: Intution

Proof (Sketch):

« Show first that for every relational database schema S, there is a
relational algebra expression E such that for every database
instance D, we have that adom(D) = E(D).

e Use the above fact and induction on the construction of relational
calculus formulas to obtain a translation of relational calculus under
the active domain interpretation to relational algebra.
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RC — RA: Intuition R(AB)

e In this translation, the most interesting part is the simulation of the
universal quantifier V in relational algebra

uses the logical equivalence: Vy.p = ?
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RC — RA: Intuition R(AB)

e In this translation, the most interesting part is the simulation of the
universal quantifier V in relational algebra

uses the logical equivalence: Vvy.¢ = —3y. =
e As anillustration, consider: Vy.R(x,y) = —=3y.=R(x, V)

and recall: (D)= 1, (R)UTtz(R)

RA expression for ¢padom

—R(x, y)
Jy. =R(%, v)
—3y. =R(x%, V)
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RC — RA: Intuition R(AB)

e In this translation, the most interesting part is the simulation of the
universal quantifier V in relational algebra

uses the logical equivalence: Vy.¢p = ? —=3y.—d

e As anillustration, consider: Vy.R(x,y) = =3y. =R(x, V)

and recall: (D)= 1, (R)UTt;(R)

“R(%, v) ( (D)xADom(D) ) — R
3v. <R, ) 1. [( (D) (D)) — R]
_3y.—R(xy) | ADom(D) — T, [( (D)xADom(D) ) — R]
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Entire Story in One Slide (repeated slide)

1. RC=FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on
the domain from which values are taken

3. We cannot test whether an RC query is “good,” but we can use a “good”
subset of RC that captures all “good” queries

4. “Good” RC and RA can express the same queries!
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