
52

T1: Data models and query languages
L3: Relational calculus, relational algebra

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
1/14/2020

Updated 2/8/2020

https://northeastern-datalab.github.io/cs7240/sp20/

53

Where we are

54

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

55

Bringing in the Domain

• Let S be a schema, D a database over S, and Q an RC query over S
• D gives an interpretation for the underlying FOL

- Predicates ⟶ relations; constants copied; no functions

• Not yet! We need to answer first: What is the domain?

• The active domain ADom (of D and Q) is the set of all the values that occur
in either D or Q

• The query Q is evaluated over D with respect to a domain Dom that contains
the active domain (Dom ⊇ ADom)

• Denote by QDom(D) the result of evaluating Q over D relative to the domain
Dom

56

Domain Independence

• Let S be a schema, and let Q be an RC query over S
• We say that Q is domain independent if for every database D over S

and every two domains Dom1 and Dom2 that contain the active
domain, we have:

QDom1(D)	=	QDom2(D)	=	QADom(D)	

57

Bad News...

• We would like be able to tell whether a given RA query is domain
independent, and then reject “bad queries”

• Alas, this problem is undecidable!
- That is, there is no algorithm that takes as input an RC query and returns

true iff the query is domain independent

First observed in "Di Paola. The Recursive Unsolvability of the Decision Problem for the Class of Definite Formulas, JACM 1969. https://doi.org/10.1145/321510.321524"

https://doi.org/10.1145/321510.321524

58

Good News

Domain-independent RC has an effective syntax; that is:
- A syntactic restriction of RC in which every query is domain

independent
- Restricted queries are said to be safe

• Safety can be tested automatically (and efficiently)
- Most importantly, for every domain independent RC query

there exists an equivalent safe RC query!

59

Safety

• We do not formally define the safe syntax in this course
• Details on the safe syntax can be found in Ch 5.4 of [Alice'95]: Foundations of

Databases by Abiteboul, Hull and Vianu
- Example:

• In ∃x	φ, the variable x should be guarded by φ
• Every variable xi	is guarded by R(x1,...,xk)	
• In φ ⋀	(x=y), the variable x is guarded if and only if either x or y is guarded by φ
• ... and so on

An accessible overview of issues involving safety and issues can be found in
Topor. Safety and Domain Independence. Encyclopedia of Database Systems. https://doi.org/10.1007/978-0-387-39940-9_1255

https://doi.org/10.1007/978-0-387-39940-9_1255

60

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

?	

?	

?	

61

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Not DI

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

?	

?	

62

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Not DI

DI

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

same as {(x,y) | Spouse(x,y)} = Spouse(x,y)

?	

63

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Not DI

DI

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

same as {(x,y) | Spouse(x,y)}

D: Spouse('Alice','Bob')
Dom1={'Alice','Bob'}
Dom2={'Alice','Bob','Charly'}

Dom ⊇ ADom

?	

64

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|	¬Person(x,	'female',	'Canada')	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y=z]	}

{ (x,y)	|∃z	[Spouse(x,z)	⋀	y≠z]	}

Not DI

DI

Not DI

Example fixes:
... ⋀ ∃y.Person(x,y,'Canada')
... ⋀ ∃y,z.Person(x,y,z)

x could be also 'Canada' or 'female' or ...

same as {(x,y) | Spouse(x,y)}

D: Spouse('Alice','Bob')
Dom1={'Alice','Bob'}
Dom2={'Alice','Bob','Charly'}

→ {('Alice','Alice')}
→ {('Alice','Alice'), ('Alice','Charly')}

Dom ⊇ ADom

65

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

?	

?	

?	

66

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')
D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

ADom = ?	
Likes('Alice',	'Alice')

67

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'female',	'Canada')
Person('Beate',	'female',	'Canada')
Person('Cecile',	'female',	'Canada')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile',	'female',	'Canada')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')
Likes('Alice',	'Alice')

68

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

?	
Likes('Alice',	'Alice')

69

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Likes('Alice',	'Cecile')

?	

?	

?	

Likes('Alice',	'Alice')

70

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Not DI

Likes('Alice',	'Cecile')

Alice is in the output if Dom ⊃ ADom (Dora is in Dom)

?	

?	

Example fix:

Likes('Alice',	'Alice')

?	

71

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Not DI

Likes('Alice',	'Cecile')

... ⋀ ∃u,v [Person(y,u,v)]

Alice is in the output if Dom ⊃ ADom (Dora is in Dom)

?	

?	

Example fix:

Likes('Alice',	'Alice')

72

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Not DI

DI

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

?	

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (Dora is in Dom)

73

Which One is Domain Independent? Person(id, gender, country)
Likes(person1, person2)
Spouse(person1, person2)

Person('Alice',	'Alice',	'Alice')
Person('Beate',	'Beate',	'Beate')
Person('Cecile',	'Beate',	'Beate')

Likes('Alice',	'Beate')

ADom =	{'Alice',	'Beate',	'Cecile')
Dom =	{'Alice',	'Beate',	'Cecile',	'Dora')

D

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∃y	[¬Likes(x,y)]	}

{ (x)	|∃z,w Person(x,z,w)	⋀	∀y	[¬Likes(x,y)]	⋀	∃y	[¬Likes(x,y)]	}

Not DI

DI

DI

Likes('Alice',	'Cecile')

x never occurs in Likes(x,_): Beate, Cecile

implication (absorption) if Dom ≠ ∅, which is necessary for there to be Person(x,_,_)

... ⋀ ∃u,v [Person(y,u,v)]Example fix:

Alice is in the output if Dom ⊃ ADom (Dora is in Dom)

74

What is the meaning of the following expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	∃y.	R(x)} ?	
?	

?	

75

What is the meaning of the following expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	∃y.	R(x)} logically equivalent to { x | R(x)} = R(x)

?	

?	

76

What is the meaning of the following expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

?	

77

What is the meaning of the following expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

logically equivalent to { x | R(x)} = R(x)

78

What is the meaning of the following expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}
1. always true for A=∅

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

79

What is the meaning of the following expressions?

{ x |	x ≥	10}

{ x |	∀y	R(x,y)}

{ x |	A(x)	⋀	x ≥	10}

{ x |	∀y	[A(y)	→	R(x,y)]}
what if relation A is empty?

{ x |	∃y.	R(x)}

What if Dom=ℕ?

logically equivalent to { x | R(x)} = R(x)

Neutral	element for	∀	is	true
∑:	
∏:	
⋁:
⋀:

MIN:

0	+	x	=	x

FALSE	⋁	x	=	x
TRUE	⋀	x	=	x

1	⋅	x	=	x

∀:
∃	:

{ x |	∀y	[¬A(y)	⋁ R(x,y)]}

x1 ⋀	x2 ⋀	...	⋀	TRUE
x1 ⋁	x2 ⋁	...	⋁	FALSE	

MIN(∞,	x)	=	x

1. always true for A=∅

2. alternative way
to see that

D: R('a','a')
ADom={'a'}
Dom={'a','Chile'}

80

Example: Querying a Graph

E encodes the directed
edges of a graph

1 2
2 1
2 3
1 4
3 4

E:

What do these queries return ?1

32

4

{ x |	∃y. E(x,y)	}

{ x |	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

{ (x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

?

?

?

81

Example: Querying a Graph

E encodes the directed
edges of a graph

1 2
2 1
2 3
1 4
3 4

E:

What do these queries return ?1

32

4

Nodes	that	have	at	least	one	child:	{1,2,3}

{ x |	∃y. E(x,y)	}

{ x |	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

{ (x,y)	|	∀z.[E(x,z)	→	E(y,z)]}
?

?

82

Example: Querying a Graph

E encodes the directed
edges of a graph

1 2
2 1
2 3
1 4
3 4

E:

What do these queries return ?1

32

4

Nodes	that	have	at	least	one	child:	{1,2,3}

Nodes	that	have	a	great-grand-child:	{1,2}

{ x |	∃y. E(x,y)	}

{ x |	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

{ (x,y)	|	∀z.[E(x,z)	→	E(y,z)]}

?

83

Example: Querying a Graph

E encodes the directed
edges of a graph

1 2
2 1
2 3
1 4
3 4

E:

What do these queries return ?1

32

4

Nodes	that	have	at	least	one	child:	{1,2,3}

Nodes	that	have	a	great-grand-child:	{1,2}

Every	child	of	x	is	a	child	of	y.

{ x |	∃y. E(x,y)	}

{ x |	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

{ (x,y)	|	∀z.[E(x,z)	→	E(y,z)]} Which of the
following tuples
fulfill the condition?

(1,1) (4,4) (1,3) (3,1) (4,1)

∄z.[E(x,z) ⋀ ¬E(x,z]

84

Example: Querying a Graph

E encodes the directed
edges of a graph

1 2
2 1
2 3
1 4
3 4

E:

What do these queries return ?1

32

4

Nodes	that	have	at	least	one	child:	{1,2,3}

Nodes	that	have	a	great-grand-child:	{1,2}

Every	child	of	x	is	a	child	of	y.

{ x |	∃y. E(x,y)	}

{ x |	∃y,z,u.[E(x,y)	⋀	E(y,z)	⋀	E(z,u)]}

{ (x,y)	|	∀z.[E(x,z)	→	E(y,z)]} Which of the
following tuples
fulfill the condition?

(1,1) (4,4) (1,3) (3,1) (4,1)

∄z.[E(x,z) ⋀ ¬E(x,z]

{(1,1),(2,2),(3,1),(3,3),(4,1),	(4,2),	(4,3)}

85

The person/bar/drinks schema Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

What	does	this	query	compute?

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters

86

The person/bar/drinks schema 331

{ x |	∀y.[Frequents(x,y)	→	∃z.[Serves(y,z)	⋀ Likes(x,z)]}

Find	drinkers	that	frequent	only bars	
that	serves	some beer	they	like.

What	does	this	query	compute?

Careful! This query is not domain independent. Why?
Challenge: write this query without the ∀ quantifier!

Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

87

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

88

Algebra

• Algebra is the study of mathematical symbols and the rules for
manipulating these symbols

• e.g., Linear Algebra
• e.g., Relational Algebra
• e.g., Boolean Algebra
• e.g., Abstract algebra (groups, rings, fields, ...)
• e.g., Elementary algebra

89

What is “Algebra”?
• An abstract algebra consists of:

- A class of elements
- A collection of operators

• Each operator:
- Has an arity d
- Has a domain of sequences (e1,…,ed) of elements
- Maps every sequence in its domain to an element e

• The definition of an operator allows for composition:

o1(o2(x),o1(y,o4(x,z)))
• Examples:

- Ring of integers: (𝕫,{+,·})
- Boolean algebra: ({true,false},{∧,∨,¬})
- Relational algebra

set equipped with two binary operations with certain
properties like distributivity of multiplication over addition

90

Distributivity = efficient factorization

What is the shortest
path from s to t?

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

91

Distributivity = efficient factorization

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

92

Distributivity = efficient factorization

min

= min

[a + d, a + e, a + f, a + g, ..., c + g]

[a, b, c] + min [d, e, f, g]

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

min[3,5,6] + min[2,4,7,8]

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

min[x,y]+z = min[(x+z), (y+z)]
(+ distributes over min)

93

Distributivity = efficient factorization

• Semiring (ℝ∞,min,+,∞,0)

min

= min

[a + d, a + e, a + f, a + g, ..., c + g]

[a, b, c] + min [d, e, f, g]

What is the shortest
path from s to t?

Answer: 5 = 3 + 2

min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

min[3,5,6] + min[2,4,7,8]

(Tropical semiring)

a

c

b

d

g

e

f
ts m

=3

=6

=5

=2

=8

=4

=7

min[x,y]+z = min[(x+z), (y+z)]
(+ distributes over min)

Principle of optimality from Dynamic Programming:
irrespective of the initial state and decision, an optimal
solution continues optimally from the resulting state

94

Distributivity = efficient factorization

How many paths are
there from s to t?

a

c

b

d

g

e

f
ts m

95

Distributivity = efficient factorization

How many paths are
there from s to t?

Answer: 12 = 3 ⋅ 4

a

c

b

d

g

e

f
ts m

96

Distributivity = efficient factorization

• Semiring (ℝ,+,⋅,0,1)

How many paths are
there from s to t?

Answer: 12 = 3 ⋅ 4

a

c

b

d

g

e

f
ts m

=1

=1

=1

=1

=1

=1

=1

+[x,y] ⋅ z = +[x⋅z,y⋅z]
(⋅ distributes over +)

count

= count

[a⋅d, a⋅e, a ⋅ f, a ⋅ g, ..., c ⋅ g]

[a, b, c] ⋅ count [d, e, f, g]

count[1⋅1, 1⋅1, 1⋅1, 1⋅1, ..., 1⋅1]

count[1,1,1] ⋅ count[1,1,1,1]

12

(Ring of real numbers)

97

Distributivity = efficient factorization

• Semiring (S,⊕,⊗,0,1)

⊕

= ⊕

[a⊗d, a⊗e, a⊗f, a⊗g, ..., c⊗g]

[a, b, c] ⊗ ⊕[d, e, f, g]

a

c

b

d

g

e

f
ts m

⊕[x,y] ⊗ z = ⊕[x⊗ z,y⊗ z]
(⊗ distributes over ⊕)

Semirings generalize this idea

98

Matrix multiplication

How many paths are
there from 7 to 6?

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011"

99

Matrix multiplication

How many paths are
there from 7 to 6?

matrix
multiplication

=
⋅ ⋅

⋅⋅

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011"

⨀

100

Matrix multiplication

How many paths are
there from 7 to 6?

matrix
multiplication

2

=
⋅ ⋅

⋅⋅
= 0⋅0 + 0⋅0 + 1⋅1
+ 1⋅0 + 1⋅1 + ...

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011"

⨀

101

Matrix multiplication

How many paths are
there from 7 to 6?

matrix
multiplication

2

2

2

2

2

only diagonals and
7→6 are shown

=
⋅ ⋅

⋅⋅
= 0⋅0 + 0⋅0 + 1⋅1
+ 1⋅0 + 1⋅1 + ...

Example graph taken from "Kepner, Gilbert. Graph algorithms in the language of linear algebra, 2011"

⨀

Shortest Path from 7 to 6 ?

102

The Relational Algebra
• In the relational algebra (RA) the elements are relations
- Recall: pairs (s,r)

• RA has 6 primitive operators:
- Unary: projection, selection, renaming
- Binary: union, difference, Cartesian product

• Each of the six is essential (independent)—we cannot define it using the others
- We will see what exactly this means and how this can be proved

• In practice, we allow many more useful operators that can be defined by the primitive ones
- For example, intersection via union and difference

103

RA vs Other QLs

• Some subtle (yet important) differences between RA and other
languages
- Can tables have duplicate records?

• (RA vs. SQL)
- Are missing (NULL) values allowed?

• (RA vs. SQL)
- Is there any order among records?

• (RA vs. SQL)
- Is the answer dependent on the domain from which values are taken (not

just the DB)?
• (RA vs. RC)

104

Recall: Virtues of the relational model

• Physical independence (logical too), Declarative

• Simple, elegant clean: Everything is a relation

• Why did it take multiple years?
- Doubted it could be done efficiently.

105

RDBMS Architecture

• How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

106

RDBMS Architecture

• How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL)
queries into precise and optimizable expressions!

107

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

108

Relational Algebra (RA)

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: ⋃
5. Difference*: –

• Auxiliary operators (sometimes counted as basic):
6. Renaming: ρ

• Derived
7. Intersection / complement
8. Joins ⨝ (natural,equi-join, theta join, semi-join)
9. Division

• Extended RA
1. Duplicate elimination δ
2. Grouping and aggregation ɣ
3. Sorting 𝛕

All operators take in 1 or
more relations as inputs

and return another
relation

* Relational difference – is also sometimes written as \ like set difference.
– is used by [Ramakrishnan+'03] and [Garcia-Molina+2014] and [Elmasri+'15]

109

Keep in mind: RA operates on sets!

• RDBMSs use multisets, however in relational algebra formalism we will
consider sets!

• Also: we will consider the named perspective, where every attribute must
have a unique name
- àattribute order does not matter…

Now on to the basic RA operators…

110

1. Selection (𝜎)

• Returns all tuples which satisfy a
condition

• Notation: sc (R)
• Examples
- sSalary > 40000 (Employee)
- sname = “Smith” (Employee)

• The condition c can be =, <, £, >, ³,
<> combined with AND, OR, NOT

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎��� ��.�(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

111

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Another example:

112

2. Projection (Π)

• Eliminates columns, then removes
duplicates (set perspective!)

• Notation: P A1,…,An (R)
• Example: project social-security

number and names:
- P SSN, Name (Employee)
- Output schema: Answer(SSN, Name)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π�����,���(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

113

P SSN (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Another example:

SSN
1234545
5423341
4352342

114

P Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000

Another example:

115

P Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000

Another example:

Name Salary
John 20000
John 60000
John 20000

Bag semantics Set semantics

Which is more efficient?

116

Composing RA Operators

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)

no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

πzip,disease(Patient)

πzip,disease(σdisease=‘heart’(Patient))

zip disease
98125 heart
98120 heart

σdisease=‘heart’ (πzip,disease (Patient))

"commuting operators"

118

Logical Equivalece of RA Plans

• Given relations R(A,B) and S(B,C):

- Here, projection & selection commute:
• 𝜎� �(Π�(𝑅)) = Π�(𝜎� �(𝑅))

- What about here?
• 𝜎� �(Π¢(𝑅)) ?= Π¢(𝜎� �(𝑅))

119

Commuting functions: a digression

• Do functions commute with taking the expectation?
- E[f(x)] = f(E[x]) ?

• Only for linear functions
- Thus f(x)=ax + b
- E[ax+b] = a E[x] + b

• Jensen's inequality for convex f
- E[f(x)] ≥ f(E[x])

• Example f(x) = x2

- Assume 0 £ x £ 1
- f(E[x]) = f(0.5) = 0.25

- E[f(x)] =
∫¤
¥ ¦ §
¨©ª

= «§¬

�
¨
ª = 0.33 0 1

1

0.25

0
0.5

0.33

120

Ratio of averages != average of ratios

121

RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

Π�����,���(𝜎�����.�(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎�����.�(Π�����,���(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

122

3. Cross-Product (×)

• Each tuple in R1 with each tuple in
R2

• Notation: R1 ´ R2
• Example:
- Employee ´ Dependents

• Rare in practice; mainly used to
express joins

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 × 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

123

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 × 𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

124

4. Union (∪) and 5. Difference (–)

• Examples:
- ActiveEmployees ∪ RetiredEmployees
- AllEmployees – RetiredEmployees

What do they mean over bags ?

R1 ∪ R2
R1 – R2

Only make sense if R1, R2 have the same schema

Students (neuid, fname, lname)
Faculty (neuid, fname, lname, college)

R1 R2

R1 R2

125

6. Renaming (𝜌)

• Changes the schema, not the
instance

• A ‘special’ operator- neither basic
nor derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
- r A1àB1,…,AnàBn (R)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
𝜌�´µ¶·¶,����,�¸�¶�¹´�º�(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We care about this operator because we
are working in a named perspective

126

sid sname gpa
001 John 3.4

002 Bob 1.3

𝜌�´µ¶·¶,����,�¸�¶�¹´�º�(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:

127

Why renaming
A B
1 2
3 4

R

R ´ S

A R.B S.B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

B C D
2 5 6
4 7 8
9 10 11

S

𝜌¢→»(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

What if we have R ´ R?

128

Implied Operators

• Derived relational operators
- Not among the 5 basic operators (sometimes 6 if renaming counted)
- Can be expressed in RA (implied)
- Very common in practice

• Enhancing the available operator set with the implied operators is a good
idea!
- Easier to write queries
- Easier to understand/maintain queries
- Easier for DBMS to apply specialized optimizations

129

7. What about Intersection ∩?

• As derived operator using union and minus
R S?

130

7. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

R SR ∩ S = ((R ∪ S) − (R − S)) − (S − R)

?

131

7. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

• Derived using join

R SR ∩ S = ((R ∪ S) − (R − S)) − (S − R)

R ∩ S = R − (S − R)

?

132

7. What about Intersection ∩?

• As derived operator using union and minus

• Derived operator using minus only!

• Derived using join

• Example
- UnionizedEmployees Ç RetiredEmployees

R ∩ S = R ⨝ S

R SR ∩ S = ((R ∪ S) − (R − S)) − (S − R)

R ∩ S = R − (S − R)

?

133

8 Joins: Overview

• Natural join
• Theta-join
• Equi-join (most important)

134

8a. Natural Join (⋈)

• Notation: R1 ⋈ R2

• Joins R1 and R2 on equality of all shared attributes
- If R1 has attribute set A, and R2 has attribute set B, and

they share attributes A⋂B = C, can also be written:
R1 ⋈ 𝐶 R2

• Our first example of a derived RA operator:
- Meaning: R1 ⋈ R2 = PA U B(sR1.C=R2.C(R1 ´ R2))
- Meaning: R1 ⋈ R2 = PA U B(sC=D(𝜌¿→À(R1) ´ R2))
- Where:

• The rename 𝜌¿→À renames the shared attributes in one of
the relations

• The selection sC=D checks equality of the shared attributes
• The projection PA U B eliminates the duplicate common

attributes

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

136

An example
A B
1 2
3 4

R

R ⨝ S

A B C D
1 2 5 6
3 4 7 8

B C D
2 5 6
4 7 8
9 10 11

S

𝜌¢→»(R) ´ S

A E B C D
1 2 2 5 6
1 2 4 7 8
1 2 9 10 11
3 4 2 5 6
3 4 4 7 8
3 4 9 10 11

R ⨝ S =
PABC(sR.B=S.B(R × S)) =
PAR.BC(sR.B=S.B(R × S)) =
PABC(sB=E(𝜌¢→»(R) ´ S))

138

Natural Join practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

140

8b. Theta Join (⋈q)

• A join that involves a predicate

• Here q can be any condition
• No projection in this case!
• Example

SELECT *
FROM

Students,People
WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈Á 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a
theta join + a projection.

R1 ⨝q R2 = sq (R1 X R2)

P ⨝ P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

141

8c. Equi-join (⋈ A=B)

• A theta join where q is an equality
• R1 ⋈ A=B R2 = s A=B (R1 ´ R2)
• Example:
- Employee ⋈ SSN=SSN Dependents

SELECT *
FROM

Students S,
People P

WHERE sname = pname;

SQL:

RA:
𝑆 ⋈����� ����� 𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join in practice!

What is the connection with
natural join?

142

Join Summary

• Theta-join: R ⨝q S = σq (R × S)
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- No projection

• Equijoin: R ⨝θ S = σθ (R × S)
- Join condition θ consists only of equalities
- No projection

• Natural join: R ⨝ S = πA (σθ (R × S))
- Equality on all fields with same name in R and in S
- Projection πA drops all redundant attributes

143

Some Examples

Name of supplier of parts with size greater than 10

Name of supplier of red parts or parts with size greater than 10
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor=‘red’ (Part)))
πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨ pcolor=‘red’ (Part)))

Can be represented as trees as well

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

145

Representing RA Queries as Trees

Part

Supplyσpsize>10

πsname

Answer

Supplier

πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

147

Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
S.name = P.name;

How do we represent
this query in RA?

Π���,�¶¶¸���(𝜎�����.�(𝑆 ⋈ 𝑃))

Students(sid,name,gpa)
People(ssn,name,address)

148

9. Division

• Consider two relations R(X,Y) and S(Y)
- Here, X and Y are tuples of attributes

• R ÷ S is the relation T(X) that contains all the Xs that occur with
every Y in S

149

Formal Definition

• Legal input: (R,S) such that R has all the attributes of S

• R÷S is the relation T with:
- The header of R, with all attributes of S removed
- Tuple set {t[X] | t[X,Y]∊R for every s[Y]∊S}

• This is an abuse of notation, since the attributes in X need not necessarily
come before those of Y

150

Questions

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course
AI
DB
ML

course
ML ?

?

÷ =

÷ =

Studies Course

151

Questions

÷sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

=

÷ =

(RxS)÷S =

(RxS)÷R =

course
AI
DB
ML

course
ML

sid student
2 Bob
3 Charly

sid student
3 Charly

?
?

recall set semantics for RAStudies Course

152

Questions

÷sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

=

÷ =

(RxS)÷S =

(RxS)÷R =

Q: If R has 1000 tuples and S has
100 tuples, how many tuples can be
in R÷S?

Q: If R has 1000 tuples and S has
1001 tuples, how many tuples can
be in R÷S?

course
AI
DB
ML

course
ML

sid student
2 Bob
3 Charly

sid student
3 Charly

R

S

recall set semantics for RA

R,S have disjoint attribute sets

Studies Course

153

Questions

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

course type
AI elective
DB core
ML core

Studies CourseType

Who took all core courses in RA?

?

154

Questions

sid student course
1 Alice AI
1 Alice DB
2 Bob DB
2 Bob ML
3 Charly AI
3 Charly DB
3 Charly ML

Studies CourseType

Studies ÷ πcoursestype='core'CourseType

Who took all core courses in RA?

course type
AI elective
DB core
ML core

155

How to write R÷S in Primitive RA?

R(X,Y)	÷ S(Y) A B
a 0
a 1
a 2
b 1

B
1
2

A
a?

R S Q÷ =

156

How to write R÷S in Primitive RA?

R(X,Y)	÷ S(Y) A B
a 0
a 1
a 2
b 1

B
1
2

A
a

b 2

?
1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

157

How to write R÷S in Primitive RA?

Each X of R w/ each Y of S

R(X,Y)	÷ S(Y) A B
a 0
a 1
a 2
b 1

B
1
2

A
a

b 2
πXR × S

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

158

How to write R÷S in Primitive RA?

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

R(X,Y)	÷ S(Y) A B
a 0
a 1
a 2
b 1

B
1
2

A
a

b 2
πXR × S() − R 1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

159

How to write R÷S in Primitive RA?

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R

R(X,Y)	÷ S(Y) A B
a 0
a 1
a 2
b 1

R
B
1
2

S
A
a

Q

b 2

÷ =

πX()πXR × S() − R 1

2

3
4: {a} = {a,b} – {b}

160

How to write R÷S in Primitive RA?

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R

R÷S

R(X,Y)	÷ S(Y) A B
a 0
a 1
a 2
b 1

B
1
2

A
a

b 2
πX()πXR × S() − RπXR −

1

2

3
4: {a} = {a,b} – {b}

R S Q÷ =

161

R÷S in Primitive RA vs. RC

R(X,Y)	÷ S(Y)

In RA:

A B
a 0
a 1
a 2
b 1

R
B
1
2

S
A
a

Q

b 2

÷ =

In DRC:

πXR × S() − RπXR − πX()
?

162

R÷S in Primitive RA vs. RC

R(X,Y)	÷ S(Y)

In RA:

A B
a 0
a 1
a 2
b 1

R
B
1
2

S
A
a

Q

b 2

÷ =

{ X |	∃Z.[R(X,Z)] ⋀	∀Y.[S(Y)	→	R(X,Y)] }
In DRC:

πXR × S() − RπXR − πX()
what if S(Y)=∅ ?

? without universal quantification

163

R÷S in Primitive RA vs. RC

R(X,Y)	÷ S(Y)

In RA:

A B
a 0
a 1
a 2
b 1

R
B
1
2

S
A
a

Q

b 2

÷ =

{ X |	∃Z.[R(X,Z)] ⋀	∀Y.[S(Y)	→	R(X,Y)] }
In DRC:

{ X |	∃Z.[R(X,Z)] ⋀	∄Y.[S(Y)	∧	¬R(X,Y)] }

πXR × S() − RπXR − πX()

In TRC: ?

what if S(Y)=∅ ?

164

R÷S in Primitive RA vs. RC

R(X,Y)	÷ S(Y)

In RA:

A B
a 0
a 1
a 2
b 1

R
B
1
2

S
A
a

Q

b 2

÷ =

{ X |	∃Z.[R(X,Z)] ⋀	∀Y.[S(Y)	→	R(X,Y)] }
In DRC:

{ X |	∃Z.[R(X,Z)] ⋀	∄Y.[S(Y)	∧	¬R(X,Y)] }

πXR × S() − RπXR − πX()

{ r.A |	∃r∊R.[∄s∊S.[∄r2∊R.[r2.B=s.B ∧	r2.A=r.A)] }
In TRC:

? in SQL

what if S(Y)=∅ ?

165

R÷S in Primitive RA vs. RC

A B
a 0
a 1
a 2
b 1

R
B
1
2

S
A
a

Q

b 2

÷ =In SQL

SELECT DISTINCT R.A
FROM R
WHERE not exists (

SELECT *
FROM S
WHERE not exists (

SELECT *
FROM R AS R2
WHERE R2.B=S.B
AND R2.A=R.A))

In TRC:
{ r.A |	∃r∊R.[∄s∊S.[∄r2∊R.[r2.B=s.B ∧	r2.A=r.A)] }

