T1: Data models and query languages L3: Relational calculus, relational algebra

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
1/14/2020

Where we are

Topic 1: Data models and query languages

- Lecture 1 (Tue 1/7): Course introduction, SQL refresher
- Introduction, SQL
- Lecture 2 (Fri 1/10): Logic \& relational calculus
- SQL continued, Logic \& relational calculus
- Lecture 3 (Tue 1/14): Relational Calculus, Relational algebra
- Lecture 4 (Fri 1/17): Codd's theorem, Datalog
- Lecture 5 (Tue 1/21): Stable model semantics, Information theory \& normal forms
- Lecture 6 (Fri 1/24): (A1 due) Alternative data models

Queries and the connection to logic and algebra

-Why logic?

- A crash course on FOL
- Relational Calculus
- Syntax and Semantics
- Domain Independence and Safety
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RC and RA

Bringing in the Domain

- Let \mathbf{S} be a schema, D a database over \mathbf{S}, and Q an RC query over \mathbf{S}
- D gives an interpretation for the underlying FOL
- Predicates \longrightarrow relations; constants copied; no functions
- Not yet! We need to answer first: What is the domain?
- The active domain ADom (of D and Q) is the set of all the values that occur in either D or Q
- The query Q is evaluated over D with respect to a domain Dom that contains the active domain ($\mathrm{Dom} \supseteq \mathrm{ADom}$)
- Denote by $Q^{\operatorname{Dom}}(\mathrm{D})$ the result of evaluating Q over D relative to the domain Dom

Domain Independence

- Let \mathbf{S} be a schema, and let Q be an RC query over \mathbf{S}
- We say that Q is domain independent if for every database D over \mathbf{S} and every two domains Dom1 and Dom2 that contain the active domain, we have:

$$
\mathrm{Q}^{\mathrm{Dom} 1}(\mathrm{D})=\mathrm{Q}^{\mathrm{Dom} 2}(\mathrm{D})=\mathrm{Q}^{\mathrm{ADom}}(\mathrm{D})
$$

Bad News...

- We would like be able to tell whether a given RA query is domain independent, and then reject "bad queries"
- Alas, this problem is undecidable!
- That is, there is no algorithm that takes as input an RC query and returns true iff the query is domain independent

Good News

Domain-independent RC has an effective syntax; that is:

- A syntactic restriction of RC in which every query is domain independent
- Restricted queries are said to be safe
- Safety can be tested automatically (and efficiently)
- Most importantly, for every domain independent RC query there exists an equivalent safe RC query!

Safety

- We do not formally define the safe syntax in this course
- Details on the safe syntax can be found in Ch 5.4 of [Alice'95]: Foundations of Databases by Abiteboul, Hull and Vianu
- Example:
- In $\exists x \varphi$, the variable x should be guarded by φ
- Every variable x_{i} is guarded by $R\left(x_{1}, \ldots, x_{k}\right)$
- $\operatorname{In} \varphi \wedge(x=y)$, the variable x is guarded if and only if either x or y is guarded by φ
- ... and so on

$\{(\mathrm{x}) \mid \neg$ Person(x, 'female', 'Canada') $\}$?$\{(x, y) \mid \boxminus z[\operatorname{Spouse}(x, z) \wedge y=z]\}$?
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y \neq z]\}$

Which one is Domain Indenendent? Likes(person1, person2)
 Spouse(person1, person2)
 Example fixes: $\quad . . \wedge \exists y, z, \operatorname{Person}(x, y, z)$
 $\wedge \exists y \cdot \operatorname{Person}(x, y, '$ 'Canada')
 $\{(x) \mid \neg \operatorname{Person}(x$, 'female', 'Canada') $\}$

x could be also 'Canada' or 'female' or...
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y=z]\}$
$\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y} \neq \mathrm{z}]\}$

Which One is Domain Independent? Person(id, gender, country) Likes(person1, person2)
 Spouse(person1, person2)
 Example fixes: $\quad . . \wedge \exists y, z, \operatorname{Person}(x, y, z)$
 $\Lambda \exists y \cdot \operatorname{Person}(x, y, '$ 'Canada')
 $\{(x) \mid \neg \operatorname{Person}(x$, 'female', 'Canada') $\}$
 x could be also 'Canada' or 'female' or.
 $\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y=z]\}$
 same as $\{(x, y) \mid \operatorname{Spouse}(x, y)\}=\operatorname{Spouse}(x, y)$
 $\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y \neq z]\}$

Which One is Domain Independent?

Example fixes: $\ldots \wedge \exists y, z, \operatorname{Person}(x, y, z)$
 \wedge ヨy.Person ($x, y,{ }^{\prime}$ 'Canada')

$\{(x) \mid \neg \operatorname{Person}(x$, 'female', 'Canada') $\}$
x could be also 'Canada' or 'female' or .
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y=z]\}$
same as $\{(x, y) \mid$ Spouse $(x, y)\}$

$$
\begin{gathered}
\{(\mathrm{x}, \mathrm{y}) \mid \exists \mathrm{z}[\operatorname{Spouse}(\mathrm{x}, \mathrm{z}) \wedge \mathrm{y} \neq \mathrm{z}]\} \\
\operatorname{D:~} \quad \text { Spouse('Alice','Bob') } \\
\operatorname{Dom}_{1}=\left\{\text { 'Alice' }^{\prime}, \text { 'Bob' }\right\} \\
\operatorname{Dom}_{2}=\left\{\text { 'Alice' }^{\prime}, ' \text { 'Bob','Charly' }\right\} \\
\operatorname{Dom} \supseteq \text { ADom }
\end{gathered}
$$

Which One is Domain Independent?

Example fixes: $\ldots \wedge \exists y, z, \operatorname{Person}(x, y, z)$
 \wedge ヨy.Person ($x, y,{ }^{\prime}$ 'Canada')

$\{(\mathrm{x}) \mid \neg \operatorname{Person(x,}$,'female', 'Canada') $\}$
x could be also 'Canada' or 'female' or
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y=z]\}$
same as $\{(x, y) \mid$ Spouse $(x, y)\}$
$\{(x, y) \mid \exists z[\operatorname{Spouse}(x, z) \wedge y \neq z]\}$
Not DI

$$
\begin{aligned}
& \text { D: Spouse('Alice','Bob') } \\
& \text { Dom }_{1}=\{\text { 'Alice','Bob' }\} \quad \rightarrow\left\{\text { ('Alice' ','Alice' }^{\prime}\right\} \\
& \operatorname{Dom}_{2}=\{\text { 'Alice', 'Bob'', 'Charly' }\} \rightarrow\left\{(' A l i c e ', ' A l i c e '), ~(' A l i c e ', ' C h a r l y ') ~^{\prime}\right. \\
& \text { Dom } \supseteq \text { ADom }
\end{aligned}
$$

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{X}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent? D
 Person('Alice', 'female', 'Canada') Likes('Alice', 'Beate')
 Person('Beate', 'female', 'Canada') Likes('Alice', 'Cecile') Person('Cecile', 'female', 'Canada') Likes('Alice', 'Alice')
 ADom = \{'Alice', 'Beate', 'Cecile', 'female', 'Canada')

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$

Which One is Domain Independent? Person(id, gender, country) D
 Person('Alice', 'Alice', 'Alice')
 Person('Beate', 'Beate', 'Beate')
 Person('Cecile', 'Beate', 'Beate') Likes('Alice', 'Alice')
 Likes('Alice', 'Beate') Likes('Alice', 'Cecile') Spouse(person1, person2)

ADom $=$ \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')

$$
\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}
$$

$$
\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}
$$

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\underset{\text { Which One is Domain Independent? }}{\text { We }}$
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Beate', 'Beate') Likes('Alice', 'Alice')

Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

ADom = \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')

$$
\begin{gathered}
\text { Example fix: ? } \\
\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \text { Person }(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\} \\
\text { Alice is in the output if Dom } \supset \text { ADom (Dora is in Dom) } \\
\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \text { Person }(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}
\end{gathered}
$$

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\underset{\text { Dich One is Domain Independent? }}{\substack{\text { When } \\ \text { When }}}$
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Beate', 'Beate') Likes('Alice', 'Alice')

Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

ADom = \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')

$$
\begin{aligned}
& \quad \text { Example fix: ... } \wedge \exists u, v[\operatorname{Person}(\mathrm{y}, \mathrm{u}, \mathrm{v})] \\
& \{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \text { Person }(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\} \\
& \text { Alice is in the output if } \operatorname{Dom} \supset \text { ADom (Dora is in } \operatorname{Dom}) \\
& \{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \text { Person }(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

$\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}$
$\underset{\text { Dich One is Domain Independent? }}{\substack{\text { When } \\ \text { When }}}$
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Beate', 'Beate')

Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

ADom = \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')

$$
\begin{aligned}
& \text { Example fix: ... } \wedge \exists u, v[\operatorname{Person}(y, u, v)] \\
& \{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}
\end{aligned}
$$

Which One is Domain Independent?
D
Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Beate', 'Beate')

Person(id, gender, country) Likes(person1, person2)
Spouse(person1, person2)

ADom = \{'Alice', 'Beate', 'Cecile')
Dom = \{'Alice', 'Beate', 'Cecile', 'Dora')

$$
\begin{aligned}
& \text { Example fix: ... } \wedge \exists u, v[\operatorname{Person}(\mathrm{y}, \mathrm{u}, \mathrm{v})] \\
& \{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \text { Person }(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\} \\
& \text { Alice is in the output if } \operatorname{Dom} \supset \operatorname{ADom}(\operatorname{Dora} \text { is in } \operatorname{Dom})
\end{aligned} \quad \text { Not DI }
$$

 \(\{(\mathrm{x}) \mid \exists \mathrm{z}, \mathrm{w} \operatorname{Person}(\mathrm{x}, \mathrm{z}, \mathrm{w}) \wedge \forall \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})] \wedge \exists \mathrm{y}[\neg \operatorname{Likes}(\mathrm{x}, \mathrm{y})]\}\)
 What is the meaning of the following expressions?
$\{x \mid \exists y \cdot R(x)\} \quad ?$
$\{x \mid x \geq 10\} \quad$?
$\{x \mid \forall y R(x, y)\} \quad ?$

What is the meaning of the following expressions?

$$
\begin{array}{lc}
\{x \mid \exists y \cdot R(x)\} & \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
\{x \mid x \geq 10\} & ? \\
\{x \mid \forall y R(x, y)\} & ?
\end{array}
$$

What is the meaning of the following expressions?

$$
\begin{array}{ll}
\{x \mid \exists y . R(x)\} & \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
\{x \mid x \geq 10\} & \text { What if } \operatorname{Dom}=\mathbb{N} ? \\
\{x \mid \forall y R(x, y)\} & ?
\end{array}
$$

What is the meaning of the following expressions?

$$
\begin{array}{lll}
\{x \mid \exists y . R(x)\} & \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
\{x \mid x \geq 10\} & \text { What if } \operatorname{Dom}=\mathbb{N} ? & \{x \mid A(x) \wedge x \geq 10\} \\
\{x \mid \forall y R(x, y)\} & \begin{array}{l}
D: R\left('^{\prime} a^{\prime}, a^{\prime}\right)
\end{array} & \{x \mid \forall y[A(y) \rightarrow R(x, y)]\} \\
& \begin{array}{l}
\text { ADom }=\left\{a^{\prime},\right. \\
\operatorname{Dom}=\left\{a^{\prime}, ' C h i l e '\right\}
\end{array} & \text { what if relation } A \text { is empty? }
\end{array}
$$

What is the meaning of the following expressions?

$$
\begin{array}{lll}
\{x \mid \exists y . R(x)\} & \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
\{x \mid x \geq 10\} & \text { What if } \operatorname{Dom}=\mathbb{N} ? & \{x \mid A(x) \wedge x \geq 10\} \\
\{x \mid \forall y R(x, y)\} & \begin{array}{l}
D: R\left('^{\prime} a^{\prime}, a^{\prime}\right) \\
A D o m=\left\{a^{\prime}\right. \\
D o m=\left\{a^{\prime}, ' C h i l e '\right\}
\end{array} & \{x \mid \forall y[A(y) \rightarrow R(x, y)]\} \\
& & \text { what if relation } A \text { is empty? } \\
& \text { 1.always true for } A=\varnothing \\
& \{x \mid \forall y \rightarrow A(y) \vee R(x, y)]\}
\end{array}
$$

What is the meaning of the following expressions?

$$
\begin{aligned}
& \{x \mid \exists y . R(x)\} \quad \text { logically equivalent to }\{x \mid R(x)\}=R(x) \\
& \{x \mid x \geq 10\} \quad \text { What if Dom }=\mathbb{N} \text { ? } \quad\{x \mid A(x) \wedge x \geq 10\} \\
& \{x \mid \forall y R(x, y)\} \quad D: \quad R\left(C^{\prime} a^{\prime}, a^{\prime}\right) \\
& \text { Dom }=\left\{a^{\prime} a^{\prime}, ' \text { Chile' }\right\} \\
& \{\mathrm{x} \mid \forall \mathrm{y}[\mathrm{~A}(\mathrm{y}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})]\} \\
& \text { what if relation } A \text { is empty? }
\end{aligned}
$$

Neutral element for \forall is true

$\sum: 0+x=x$
$\Pi: 1 \cdot x=x$
$\operatorname{MIN}: \operatorname{MIN}(\infty, x)=x$

V: FALSE $\vee \mathrm{x}=\mathrm{x} \quad \exists: \mathrm{x}_{1} \vee \mathrm{x}_{2} \vee \ldots$ FALSE
$\wedge:$ TRUE $\wedge x=x \quad \forall: x_{1} \wedge x_{2} \wedge \ldots \wedge$ TRUE

1. always true for $A=\varnothing$
$\{x \mid \forall y \neg A(y) \vee R(x, y)]\}$
2. alternative way
to see that

Example: Querying a Graph

What do these queries return ?

$$
\begin{gathered}
\{\mathrm{x} \mid \exists \mathrm{y} . \mathrm{E}(\mathrm{x}, \mathrm{y})\} \\
?
\end{gathered}
$$

E:

1	2
2	1
2	3
1	4
3	4

$$
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\}
$$

?

$$
\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\}
$$

$$
?
$$

[^0]
Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot E(x, y)\}
$$

Nodes that have at least one child: $\{1,2,3\}$

E:

1	2
2	1
2	3
1	4
3	4

$$
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\}
$$

$$
?
$$

$$
\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\}
$$

$$
?
$$

[^1]
Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot E(x, y)\}
$$

Nodes that have at least one child: $\{1,2,3\}$

$$
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\}
$$

Nodes that have a great-grand-child: $\{1,2\}$

$$
\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\}
$$

?

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y . E(x, y)\}
$$

Nodes that have at least one child: $\{1,2,3\}$

$$
\{x \mid \exists y, z, u \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\}
$$

Nodes that have a great-grand-child: $\{1,2\}$

$$
\left\{\begin{array}{c}
\nexists z \cdot[E(x, z) \wedge \neg E(x, z] \\
\{(x, y) \mid \forall z \cdot[E(x, z) \rightarrow E(y, z)]\}
\end{array}\right.
$$

Every child of x is a child of y.

Which of the following tuples fulfill the condition?

Example: Querying a Graph

What do these queries return ?

$$
\{x \mid \exists y \cdot \mathrm{E}(\mathrm{x}, \mathrm{y})\}
$$

Nodes that have at least one child: $\{1,2,3\}$

$$
\{\mathrm{x} \mid \exists \mathrm{y}, \mathrm{z}, \mathrm{u} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{E}(\mathrm{y}, \mathrm{z}) \wedge \mathrm{E}(\mathrm{z}, \mathrm{u})]\}
$$

Nodes that have a great-grand-child: $\{1,2\}$

$$
\left\{\begin{array}{c}
\nexists \mathrm{z} \cdot[\mathrm{E}(\mathrm{x}, \mathrm{z}) \wedge \neg \mathrm{E}(\mathrm{x}, \mathrm{z}] \\
\{(\mathrm{x}, \mathrm{y}) \mid \forall \mathrm{z} .[\mathrm{E}(\mathrm{x}, \mathrm{z}) \rightarrow \mathrm{E}(\mathrm{y}, \mathrm{z})]\}
\end{array}\right.
$$

which of the following tuples
Every child of x is a child of y. fulfill the condition?

The person/bar/drinks schema Serves(bar, drink)

What does this query compute?

$$
\{x \mid \forall y \cdot[\operatorname{Frequents}(x, y) \rightarrow \exists z \cdot[\operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z)]\}
$$

The person/bar/drinks schema

What does this query compute?

$$
\{x \mid \forall y \cdot[\operatorname{Frequents}(x, y) \rightarrow \exists z \cdot[\operatorname{Serves}(y, z) \wedge \operatorname{Likes}(x, z)]\}
$$

Find drinkers that frequent only bars that serves some beer they like.

Careful! This query is not domain independent. Why?
challenge: write this query without the \forall quantifier!

Queries and the connection to logic and algebra

-Why logic?

- A crash course on FOL
- Relational Calculus
- Syntax and Semantics
- Domain Independence and Safety
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RC and RA

Algebra

- Algebra is the study of mathematical symbols and the rules for manipulating these symbols
- e.g., Linear Algebra
- e.g., Relational Algebra
- e.g., Boolean Algebra
- e.g., Abstract algebra (groups, rings, fields, ...)
- e.g., Elementary algebra

What is "Algebra"?

- An abstract algebra consists of:
- A class of elements
- A collection of operators
- Each operator:
- Has an arity d
- Has a domain of sequences $\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{d}}\right)$ of elements
- Maps every sequence in its domain to an element e
- The definition of an operator allows for composition:

$$
o_{1}\left(o_{2}(x), o_{1}\left(y, o_{4}(x, z)\right)\right)
$$

- Examples:
- Ring of integers: $(\mathbb{Z},\{+, \cdot\})$
- Boolean algebra: (\{true,false\},\{^,V,๑\})
- Relational algebra
set equipped with two binary operations with certain properties like distributivity of multiplication over addition

Distributivity = efficient factorization

What is the shortest path from s to t ?

Distributivity = efficient factorization

What is the shortest path from s to t ?

Answer: $5=3+2$

Distributivity = efficient factorization

What is the shortest path from s to t?

Answer: $5=3+2$
$\min [a+d, a+e, a+f, a+g, \ldots, c+g]$

$$
\min [3+2,3+4,3+7,3+8, \ldots, 6+8]
$$

$$
=\min [a, b, c]+\min [d, e, f, g]
$$

$$
\min [3,5,6]+\min [2,4,7,8]
$$

$$
\begin{aligned}
& \min [x, y]+z=\min [(x+z),(y+z)] \\
& (+ \text { distributes over min })
\end{aligned}
$$

Distributivity = efficient factorization
(Tropical semiring)

- Semiring $\left(\mathbb{R}^{\infty}, \min ,+, \infty, 0\right)$

What is the shortest path from s to t?

Answer: $5=3+2$

Principle of optimality from Dynamic Programming: irrespective of the initial state and decision, an optimal solution continues optimally from the resulting state

$$
\begin{aligned}
& \min [a+d, a+e, a+f, a+g, \ldots, c+g] \\
& \min [3+2,3+4,3+7,3+8, \ldots, 6+8] \\
& =\min [a, b, c]+\min [d, e, f, g] \\
& \\
& \min [3,5,6]+\min [2,4,7,8]
\end{aligned}
$$

$\min [x, y]+z=\min [(x+z),(y+z)]$
(+ distributes over min)

Distributivity = efficient factorization

How many paths are there from s to + ?

Distributivity = efficient factorization

How many paths are there from s to t?

Answer: $12=3 \cdot 4$

Distributivity = efficient factorization

(Ring of real numbers)

- Semiring ($\mathbb{R},+, \cdot, 0,1)$


```
count[a\cdotd,a\cdote,a\cdotf,a\cdotg, .., c\cdotg]
    count[[}[\mp@subsup{\underbrace}{12}{1\cdot1,1\cdot1,1\cdot1,1\cdot1,\ldots,1\cdot1}
= count [a, b, c] · count [d, e, f,g]
count [1,1,1] count [1,1,1,1]
\(+[x, y] \cdot z=+[x \cdot z, y \cdot z]\)
```

How many paths are there from s to t?

Answer: $12=3 \cdot 4$

Distributivity = efficient factorization

- Semiring $(S, \oplus, \otimes, 0,1)$

$\bigoplus[a \otimes d, a \otimes e, a \otimes f, a \otimes g, \ldots, c \otimes g]$

$=\bigoplus[a, b, c] \otimes \bigoplus[d, e, f, g]$

$\oplus[x, y] \otimes z=\oplus[x \otimes z, y \otimes z]$
 (\otimes distributes over \oplus)

Matrix multiplication

How many paths are there from 7 to 6 ?

Matrix multiplication

matrix
multiplication
How many paths are there from 7 to 6 ?

Matrix multiplication

matrix
multiplication
$\mathbf{A}_{1} \frac{\text { in-verex }}{34567}$

$$
=0 \cdot 0+0 \cdot 0+1 \cdot 1
$$

$$
+1 \cdot 0+1 \cdot 1+\ldots
$$

How many paths are there from 7 to 6 ?

How many paths are there from 7 to 6 ?

only diagonals and
$7 \rightarrow 6$ are shown

Shortest Path from 7 to 6 ?

The Relational Algebra

- In the relational algebra (RA) the elements are relations
- Recall: pairs (s,r)
- RA has 6 primitive operators:
- Unary: projection, selection, renaming
- Binary: union, difference, Cartesian product
- Each of the six is essential (independent)-we cannot define it using the others
- We will see what exactly this means and how this can be proved
- In practice, we allow many more useful operators that can be defined by the primitive ones
- For example, intersection via union and difference

RA vs Other QLs

- Some subtle (yet important) differences between RA and other languages
- Can tables have duplicate records?
- (RA vs. SQL)
- Are missing (NULL) values allowed?
- (RA vs. SQL)
- Is there any order among records?
- (RA vs. SQL)
- Is the answer dependent on the domain from which values are taken (not just the DB)?
- (RA vs. RC)

Recall: Virtues of the relational model

- Physical independence (logical too), Declarative
- Simple, elegant clean: Everything is a relation
- Why did it take multiple years?
- Doubted it could be done efficiently.

- How does a SQLengine work ?

Declarative query (from user)

RDBMS Architecture

- How does a SQL engine work ?

Optimized RA Plan

Relational Algebra allows us to translate declarative (SQL) queries into precise and optimizable expressions!

Queries and the connection to logic and algebra

-Why logic?

- A crash course on FOL
- Relational Calculus
- Syntax and Semantics
- Domain Independence and Safety
- Relational Algebra
- Operators
- Independence
- Power of algebra: optimizations
- Equivalence RC and RA

Relational Algebra (RA)

- Five basic operators:

1. Selection:
2. Projection: П
3. Cartesian Product: \times
4. Union: U
5. Difference*: -

- Auxiliary operators (sometimes counted as basic):

6. Renaming: ρ

- Derived

7. Intersection / complement
8. Joins \bowtie (natural,equi-join, theta join, semi-join)
9. Division

- Extended RA

1. Duplicate elimination δ
2. Grouping and aggregation γ
3. Sorting τ

All operators take in 1 or more relations as inputs and return another relation

Keep in mind: RA operates on sets!

- RDBMSs use multisets, however in relational algebra formalism we will consider sets!

- Also: we will consider the named perspective, where every attribute must have a unique name
- \rightarrow attribute order does not matter...

Now on to the basic RA operators...

1. Selection (σ)

Students(sid,sname gpa)

- Returns all tuples which satisfy a condition
- Notation: $\sigma_{c}(R)$
- Examples
- $\sigma_{\text {Salary }}>40000$ (Employee)
- $\sigma_{\text {name }}=$ "Smith" (Employee)
- The condition c can be $=,<, \leq,>, \geq$, <> combined with AND, OR, NOT
SQL:

RA:
$\sigma_{g p a>3.5}$ (Students)

Another example:

SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

$\sigma_{\text {Salary }} 40000$ (Employee)

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

2. Projection (П)

- Eliminates columns, then removes duplicates (set perspective!)
- Notation: $\Pi_{\text {AI,..,An) }}^{\text {(}}$ (R)

- Example: projectsocial-security number and names:
- $\Pi_{\text {SSN, Name }}$ (Employee)
- Output schema: Answer(SSN, Name)

$\Pi_{\text {sname,gpa }}$ (Students)

Another example：

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

Mイルど $\Pi_{\text {Sst }}$（Employee）

Another example:

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

$\Pi_{\text {Name,Salary }}$ (Employee)

Name	Salary
John	20000
John	60000

Another example:

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

$\Pi_{\text {Name,Salary }}$ (Employee)

Bag semantics

Name	Salary
John	20000
John	60000
John	20000

Set semantics

Name	Salary
John	20000
John	60000

Composing RA Operators

Logical Equivalece of RA Plans

- Given relations $R(A, B)$ and $S(B, C)$:
- Here, projection \& selection commute:
- $\left.\sigma_{A-\mathcal{F}^{5}}\left(\Pi_{A}^{A}\right)(R)\right)=\Pi_{A}\left(\sigma_{A=5}(R)\right)$
- What about here?
- $\sigma_{A=5}\left(\frac{R}{-T}(R)\right):=\Pi_{B}\left(\sigma_{A=5}(R)\right)$

Commuting functions: a digression

- Do functions commute with taking the expectation?
- $E[f(x)]=f(E[x])$?
- Only for linear functions
- Thus $f(x)=a x+b$
$-E[a x+b]=a E[x]+b$
- Jensen's inequality for convex f
- $E[f(x)] \geq f(E[x])$
- Example $f(x)=x^{2}$
- Assume $0 \leq x \leq 1$
$-f(E[x])=f(0.5)=0.25$
$-\mathrm{E}[\mathrm{f}(\mathrm{x})]=\frac{\int_{0}^{1} f(x)}{1-0}=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=0.33$

Ratio of averages != average of ratios

RA Operators are Compositional!

Students(sid,sname,gpa)

```
SELECT DISTINCT
    sname, gpa
FROM Students WHERE gpa > 3.5;
```


$\Pi_{\text {sname,gpa }}\left(\sigma_{\text {gpa>3.5 }}(\right.$ Students $\left.)\right)$

$$
\sigma_{\text {gpa>3.5 }}\left(\Pi_{\text {sname,gpa }}(\text { Students })\right)
$$

How do we represent this query in RA?

Are these logically equivalent?
3. Cross-Product (×)

- Each tuple in R1 with each tuple in

```
Students(sid, sname, gpa)
People(ssn, pname, address)
``` R2
- Notation: R1 \(\times\) R2
- Example:
SQL:

FROM Students, People;
- Employee \(\times\) Dependents
- Rare in practice; mainly used to express joins

RA:
Students \(\times\) People

\section*{Another example: People}

\section*{Students}
\begin{tabular}{|c|c|c|}
\hline ssn & pname & address \\
\hline 1234545 & John & 216 Rosse \\
\hline 5423341 & Bob & 217 Rosse \\
\hline
\end{tabular}\(\times\)\begin{tabular}{|c|c|c|}
\hline sid & sname & gpa \\
\hline 001 & John & 3.4 \\
\hline 002 & Bob & 1.3 \\
\hline
\end{tabular}

\section*{Students \(\times\) People}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ssn & pname & address & sid & sname & gpa \\
\hline 1234545 & John & 216 Rosse & 001 & John & 3.4 \\
\hline 5423341 & Bob & 217 Rosse & 001 & John & 3.4 \\
\hline 1234545 & John & 216 Rosse & 002 & Bob & 1.3 \\
\hline 5423341 & Bob & 216 Rosse & 002 & Bob & 1.3 \\
\hline
\end{tabular}

\section*{R1 U R2 \\ R1 - R2}
- Examples:
- ActiveEmployees U RetiredEmployees
- AllEmployees - RetiredEmployees

Only make sense if R1, R2 have the same schema

What do they mean over bags ?

\section*{6. Renaming (\(\rho\))}
- Changes the schema, not the instance
- A 'special' operator- neither basic nor derived
- Notation: \(\rho_{\text {B1,..., } \mathrm{Bn}}(\mathrm{R})\)
- Note: this is shorthand for the proper form (since names, not order matters!):
SQL:

SELECT
sid AS studId, sname AS name, gpa AS gradePtAvg FROM Students;
- \(\rho_{A 1 \rightarrow B 1, \ldots, A n \rightarrow B n}(R)\)
\[
R A:
\]
\(\rho_{\text {studId,name,gradePtAvg }}\) (Students)
We care about this operator because we are working in a named perspective

\section*{Another example:}

\section*{Students}
\begin{tabular}{|c|c|c|}
\hline sid & sname & gpa \\
\hline 001 & John & 3.4 \\
\hline 002 & Bob & 1.3 \\
\hline
\end{tabular}
\(\rho_{\text {studld,name,gradePtAvg }}\) (Students)
Students
\begin{tabular}{|c|c|c|}
\hline studId & name & gradePtAvg \\
\hline 001 & John & 3.4 \\
\hline 002 & Bob & 1.3 \\
\hline
\end{tabular}

Why renaming
\(R\)
\begin{tabular}{|l|l|}
\hline\(A\) & \(B\) \\
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{tabular}

S
\begin{tabular}{|l|l|l|}
\hline\(B\) & \(\mathbf{C}\) & \(\mathbf{D}\) \\
\hline 2 & 5 & 6 \\
\hline 4 & 7 & 8 \\
\hline 9 & 10 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\(\mathrm{R} \times \mathrm{S}\) \\
\hline \(\mathbf{A}\) & \(\mathrm{R} \cdot \mathrm{B}\) & \(8 . \mathrm{B}\) & \(\mathbf{C}\) & \(\mathbf{D}\) \\
\hline 1 & 2 & 2 & 5 & 6 \\
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 1 & 2 & 9 & 10 & 11 \\
\hline 3 & 4 & 2 & 5 & 6 \\
\hline 3 & 4 & 4 & 7 & 8 \\
\hline 3 & 4 & 9 & 10 & 11 \\
\hline
\end{tabular}
\[
\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}
\]
\begin{tabular}{|l|l|l|l|l|}
\hline A & E & B & C & D \\
\hline 1 & 2 & 2 & 5 & 6 \\
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 1 & 2 & 9 & 10 & 11 \\
\hline 3 & 4 & 2 & 5 & 6 \\
\hline 3 & 4 & 4 & 7 & 8 \\
\hline 3 & 4 & 9 & 10 & 11 \\
\hline
\end{tabular}

What if we have \(R \times R\) ?

\section*{Implied Operators}
- Derived relational operators
- Not among the 5 basic operators (sometimes 6 if renaming counted)
- Can be expressed in RA (implied)
- Very common in practice
- Enhancing the available operator set with the implied operators is a good idea!
- Easier to write queries
- Easier to understand/maintain queries
- Easier for DBMS to apply specialized optimizations
7. What about Intersection \(\cap\) ?
- As derived operator using union and minus
?

\section*{R \\ S}
7. What about Intersection \(\cap\) ?
- As derived operator using union and minus
\[
R \cap S=((R \cup S)-(R-S))-(S-R)
\]
- Derived operator using minus only!
?

\section*{7. What about Intersection \(\cap\) ?}
- As derived operator using union and minus
\[
R \cap S=((R \cup S)-(R-S))-(S-R)
\]
- Derived operator using minus only!

\(R \cap S=\quad R \quad-(S-R)\)
- Derived using join
?

\section*{7. What about Intersection \(\cap\) ?}
- As derived operator using union and minus
\[
R \cap S=((R \cup S)-(R-S))-(S-R)
\]
- Derived operator using minus only!
\[
R \cap S=\quad R \quad-(S-R)
\]
- Derived using join
\[
R \cap S=R \bowtie S
\]
- Example
- UnionizedEmployees \(\cap\) RetiredEmployees

8 Joins: Overview
- Natural join
- Theta-join
- Equi-join (most important)
```

Students(sid,name,gpa)
People(ssn, name, address)

```

\section*{SQL:}

\section*{SELECT DISTINCT \\ ssid, S.name, gpa, ssn, address FROM \\ Students S, People P \\ WHERE S.name = P.name;}

RA:
Students \(\bowtie\) People

\section*{An example}

\(R \bowtie S\)
\begin{tabular}{|l|l|l|l|}
\hline\(A\) & \(B\) & \(C\) & D \\
\hline 1 & 2 & 5 & 6 \\
\hline 3 & 4 & 7 & 8 \\
\hline
\end{tabular}
\(R \bowtie S=\)
\(\Pi_{A B C}\left(\sigma_{R . B=S . B}(R \times S)\right)=\)
\(\Pi_{A R . B C}\left(\sigma_{R . B=S . B}(R \times S)\right)=\)
\(\Pi_{\mathrm{ABC}}\left(\sigma_{\mathrm{B}=\mathrm{E}}\left(\rho_{B \rightarrow E}(\mathrm{R}) \times \mathrm{S}\right)\right)\)
\(\widehat{\rho_{B \rightarrow E}}(R) \times S\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\mathbf{A}\) & E & B & C & D \\
\hline 1 & 2 & 2 & 5 & 6 \\
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 1 & 2 & 4 & 9 & 10 & 11 \\
\hline 3 & 4 & 2 & 5 & 6 \\
\hline 3 & 4 & 4 & 7 & 8 \\
\hline 3 & 4 & 0 & 10 & 11 \\
\hline
\end{tabular}

\section*{Natural Join practice}
- Given schemas \(R(A, B, C, D), S(\notin, C / E)\), what is the schema of \(R \bowtie S\) ?
- Given \(R(A, B, C), S(D, E)\), what is \(R \bowtie S\) ?
- Given \(R(A, B), S(A, B)\), what is \(R \bowtie S\) ?
- A join that involves a predicate

R1 \(\wedge_{\text {б }}\) R2 \(=\sigma_{\theta}(\) R1 XR2)
- Here \(\theta\) can be any condition
- No projection in this case!
- Example

AnonPatient (age, zip, disease)
Voters (name, age, zip)

\section*{SQL:}
```

FROM
Students,People
WHERE 9;

```

\section*{RA:}

Students \(\bowtie_{\theta}\) People
\(\mathrm{P} \bowtie_{\text {P.zip }=\text { V.zip and P.age }>=\text { V.age }-1 \text { and P.age }<=\text { V.age }+1 \mathrm{~V}, ~}^{\text {.ag }}\)

8c. Equi-join \(\left(\bowtie_{A=B}\right)\)
- A theta join where q is an equality
- \(R 1 \bowtie_{A=B} R 2=\sigma_{A=B}(R 1 \times R 2)\)
- Example:
- Employee \(\bowtie_{\text {SSN=SSN }}\) Dependents
SQL:
```

SELECT *
FROM
Students S,
People P
WHERE sname = pname;

```

Most common join in practice!

What is the connection with natural join?

RA:
\(S \bowtie_{\text {sname= }}\) pname \(P\)

\section*{Join Summary}
- Theta-join: \(R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)\)
- Join of \(R\) and \(S\) with a join condition \(\theta\)
- Cross-product followed by selection \(\theta\)
- No projection
- Equijoin: \(\mathrm{R} \bowtie_{\theta} S=\sigma_{\theta}(R \times S)\)
- Join condition \(\theta\) consists only of equalities
- No projection
- Natural join: \(R \bowtie S=\pi_{A}\left(\sigma_{\theta}(R \times S)\right)\)
- Equality on all fields with same name in \(R\) and in \(S\)
- Projection \(\pi_{A}\) drops all redundant attributes

\section*{Some Examples}

> Supplier(sno,sname,scity,sstate) Part(pno,pname,psize,pcolor) Supply(sno,pno,qty,price)

Name of supplier of parts with size greater than 10
\(\Pi_{\text {sname }}\left(\right.\) Supplier \(\bowtie\) Supply \(\bowtie\left(\sigma_{\text {psize>10 }}(\right.\) Part \(\left.)\right)\)

Name of supplier of red parts or parts with size greater than 10
\(\Pi_{\text {sname }}\left(\right.\) Supplier \(\bowtie\) Supply \(\bowtie\left(\sigma_{\text {psize>10 }}\left(\right.\right.\) Part \(\cup \sigma_{\text {pcolor='red' }}(\) Part)))
\(\Pi_{\text {sname }}\left(\right.\) Supplier \(\bowtie\) Supply \(\bowtie\left(\sigma_{\text {psize>10 }} \vee\right.\) pcolor='red' \((\) Part \(\left.\left.)\right)\right)\)

Can be represented as trees as well
\(\Pi_{\text {sname }}\left(\right.\) Supplier \(\bowtie\) Supply \(\bowtie\left(\sigma_{\text {psize>10 }}(\right.\) Part \(\left.)\right)\)

Example: Converting SFW Query -> RA
```

Students(sid, name,gpa)
People(ssn, name, address)

```

SELECT DISTINCT gpa, address
FROM Students S, People P
WHERE gpa > 3.5 AND S.name = P.name;

How do we represent this query in RA?

\section*{9. Division}
- Consider two relations \(R(X, Y)\) and \(S(Y)\)
- Here, \(X\) and \(Y\) are tuples of attributes
- \(\mathrm{R} \div \mathrm{S}\) is the relation \(T(X)\) that contains all the X s that occur with every \(Y\) in \(S\)

\section*{Formal Definition}
- Legal input: \((R, S)\) such that \(R\) has all the attributes of \(S\)
- \(R \div S\) is the relation \(T\) with:
- The header of \(R\), with all attributes of \(S\) removed
- Tuple set \(\{t[\mathbf{X}] \mid t[\mathbf{X}, \mathrm{Y}] \in \mathrm{R}\) for every \(\mathrm{s}[\mathrm{Y}] \in \mathrm{S}\}\)
- This is an abuse of notation, since the attributes in X need not necessarily come before those of Y

\section*{Questions}

Studies
\begin{tabular}{|c|c|c|c|c|}
\hline sid & student & course & \multirow[b]{2}{*}{\(\div\)} & course \\
\hline 1 & Alice & AI & & ML \\
\hline 1 & Alice & DB & \multirow{6}{*}{\(\div\)} & \\
\hline 2 & Bob & DB & & \\
\hline 2 & Bob & ML & & course \\
\hline 3 & Charly & AI & & AI \\
\hline 3 & Charly & DB & & DB \\
\hline 3 & Charly & ML & & ML \\
\hline
\end{tabular}

\section*{Questions}

\[
(R x S) \div S=?
\]
\[
(R x S) \div R=?
\]

\section*{Questions}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ Studies } \\
\hline sid & student & course \\
\hline 1 & Alice & Al \\
\hline 1 & Alice & DB \\
\hline 2 & Bob & DB \\
\hline 2 & Bob & ML \\
\hline 3 & Charly & Al \\
\hline 3 & Charly & DB \\
\hline 3 & Charly & ML \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{4}{*}{\(\div\)} & Course & \multicolumn{3}{|r|}{recall set semantics for \(R A\)} \\
\hline & course & & sid & student \\
\hline & \multirow[t]{2}{*}{ML} & & 2 & Bob \\
\hline & & & 3 & Charly \\
\hline \multirow{4}{*}{\(\div\)} & course & \multirow{4}{*}{\(=\)} & \multirow[t]{2}{*}{sid} & student \\
\hline & AI & & & Charly \\
\hline & DB & & & \\
\hline & ML & & & \\
\hline
\end{tabular}

Q: If \(R\) has 1000 tuples and \(S\) has
100 tuples, how many tuples can be in \(R \div S\) ?

Q: If \(R\) has 1000 tuples and \(S\) has
\[
(R x S) \div R=S
\]

\section*{Questions}

Studies
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ sid } & student \\
\hline 1 & course \\
\hline 1 & Alice & Al \\
\hline 2 & Bob & DB \\
\hline 2 & Bob & DB \\
\hline 3 & Charly & Al \\
\hline 3 & Charly & DB \\
\hline 3 & Charly & ML \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ course } \\
\hline type \\
\hline Al & elective \\
\hline DB & core \\
\hline ML & core \\
\hline
\end{tabular}

Who took all core courses in RA?

\section*{Questions}

Studies
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ sid } \\
\hline & student & course \\
\hline 1 & Alice & Al \\
\hline 1 & Alice & DB \\
\hline 2 & Bob & DB \\
\hline 2 & Bob & ML \\
\hline 3 & Charly & Al \\
\hline 3 & Charly & DB \\
\hline 3 & Charly & ML \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ course } \\
\hline type \\
\hline Al & elective \\
\hline DB & core \\
\hline ML & core \\
\hline
\end{tabular}

Who took all core courses in RA?
Studies \(\div \pi_{\text {course }} \sigma_{\text {type='core' }}\) CourseType

How to write \(R \div S\) in Primitive RA?

\section*{\(R(X, Y) \div S(Y)\)}
\begin{tabular}{|c|c|c|c|}
\hline R & & \multicolumn{2}{|l|}{\(\mathrm{S}=\mathrm{Q}\)} \\
\hline A & B & B & A \\
\hline a & 0 & 1 & a \\
\hline a & 1 & 2 & \\
\hline a & 2 & & \\
\hline b & 1 & & \\
\hline
\end{tabular}

How to write \(R \div S\) in Primitive RA?

\section*{\(R(X, Y) \div S(Y)\)}
\[
\begin{aligned}
& \text { 4: }\{a\}=\{a, b\}-\{b\}
\end{aligned}
\]

How to write \(R \div S\) in Primitive RA?
\[
R(X, Y) \div S(Y)
\]

How to write \(R \div S\) in Primitive RA?

\section*{\(R(X, Y) \div S(Y)\)}
\[
\left(\pi_{X} R \times S\right)-R
\]
\((X, Y)\) s.t. \(X\) in \(R, Y\) in \(S\), but \((X, Y)\) not in \(R\)

How to write \(R \div S\) in Primitive RA?
\[
R(X, Y) \div S(Y)
\]

\begin{tabular}{|c|c|c|c|}
\hline R & & \multicolumn{2}{|l|}{\(S=Q\)} \\
\hline A & B & B & A \\
\hline a & 0 & 1 & a \\
\hline a & 1 & 2 & \\
\hline a & 2 & & \\
\hline b & 1 & & \\
\hline b & 2 & & \\
\hline 3 & & & \\
\hline & \{a\} & , b\} & \\
\hline
\end{tabular}
\(X\) s in \(R\) where for some \(Y\) in \(S,(X, Y)\) is not in \(R\)

How to write \(R \div S\) in Primitive RA?

\(R \div S\) in Primitive RA vs. RC
\[
\begin{aligned}
& R(X, Y) \div S(Y) \\
& I n n R A:^{I_{X} R}-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right) \\
& \text { InDRC: ? }
\end{aligned}
\]
\(R \div S\) in Primitive RA vs. RC
\[
\begin{aligned}
& R(X, Y) \div S(Y)
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
\text { In RA: } \\
\pi_{X} R-\pi_{X}\left(\left(\pi_{X} R \times S\right)-R\right)
\end{array} \\
& \text { In DRC: what if } S(Y)=\varnothing \text { ? } \\
& \{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{Y} .[\mathrm{S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}
\end{aligned}
\]
? without universal quantification
\(R \div S\) in Primitive RA vs. RC
In DRC: what if \(S(Y)=\varnothing\) ?
\[
\{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \nexists \mathrm{Y} \cdot[\mathrm{~S}(\mathrm{Y}) \wedge \neg \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}
\]
In TRC:
\(R \div S\) in Primitive RA vs. RC

In DRC: what if \(S(Y)=\varnothing\) ?
\(\{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \forall \mathrm{Y} .[\mathrm{S}(\mathrm{Y}) \rightarrow \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}\)
\(\{\mathrm{X} \mid \exists \mathrm{Z} \cdot[\mathrm{R}(\mathrm{X}, \mathrm{Z})] \wedge \nexists \mathrm{Y} \cdot[\mathrm{S}(\mathrm{Y}) \wedge \neg \mathrm{R}(\mathrm{X}, \mathrm{Y})]\}\)
? in SQL
In TR C:
\[
\left\{r \cdot A \mid \exists r \in R .\left[\nexists \mathrm{s} \in \mathrm{~S} .\left[\nexists \mathrm{r}_{2} \in \mathrm{R} \cdot\left[\mathrm{r}_{2} \cdot \mathrm{~B}=\mathrm{s} \cdot \mathrm{~B} \wedge \mathrm{r}_{2} \cdot \mathrm{~A}=\mathrm{r} \cdot \mathrm{~A}\right)\right]\right]\right\},
\]
\(R \div S\) in Primitive RA vs. RC

\section*{In SQL}

SELECT DISTINCT R.A
FROM R
WHERE not exists (SELECT *
FROM S
WHERE not exists (

SELECT *
FROM R AS R2 WHERE R2.B=S.B AND R2.A=R.A))

In TRC:
\[
\left\{r . A \mid \exists r \in R .\left[\nexists \mathrm{s} \in \mathrm{~S} \cdot\left[\nexists \mathrm{r}_{2} \in \mathrm{R} \cdot\left[\mathrm{r}_{2} \cdot \mathrm{~B}=\mathrm{s} \cdot \mathrm{~B} \wedge \mathrm{r}_{2} \cdot \mathrm{~A}=\mathrm{r} \cdot \mathrm{~A}\right)\right]\right\}\right.
\]```

[^0]: Eencodes the directed
 edges of a graph

[^1]: Eencodes the directed
 edges of a graph

