Updated 2/8/2020

T1: Data models and query languages L3: Relational calculus, relational algebra

Wolfgang Gatterbauer

CS7240 Principles of scalable data management (sp20)

https://northeastern-datalab.github.io/cs7240/sp20/

1/14/2020

Where we are

Topic 1: Data models and query languages

- Lecture 1 (Tue 1/7): Course introduction, SQL refresher
 - Introduction, SQL
- Lecture 2 (Fri 1/10): Logic & relational calculus
 - SQL continued, Logic & relational calculus
- Lecture 3 (Tue 1/14): Relational Calculus, Relational algebra
- Lecture 4 (Fri 1/17): Codd's theorem, Datalog
- Lecture 5 (Tue 1/21): Stable model semantics, Information theory & normal forms
- Lecture 6 (Fri 1/24): (A1 due) Alternative data models

Queries and the connection to logic and algebra

- Why logic?
 - A crash course on FOL
- Relational Calculus
 - Syntax and Semantics
 - Domain Independence and Safety
- Relational Algebra
 - Operators
 - Independence
 - Power of algebra: optimizations
- Equivalence RC and RA

Bringing in the Domain

- Let **S** be a schema, D a database over **S**, and Q an RC query over **S**
- D gives an interpretation for the underlying FOL
 - Predicates \rightarrow relations; constants copied; no functions
- Not yet! We need to answer first: *What is the domain?*
- The *active domain* **ADom** (of D and Q) is the set of all the values that occur in either D or Q
- The query Q is evaluated over D with respect to a domain Dom that contains the active domain (Dom ⊇ ADom)
- Denote by Q^{Dom}(D) the result of evaluating Q over D relative to the domain
 Dom

Domain Independence

- Let ${\boldsymbol{S}}$ be a schema, and let Q be an RC query over ${\boldsymbol{S}}$
- We say that Q is domain independent if for every database D over S and every two domains Dom1 and Dom2 that contain the active domain, we have:

$$Q^{\text{Dom1}}(D) = Q^{\text{Dom2}}(D) = Q^{\text{ADom}}(D)$$

Bad News...

- We would like be able to tell whether a given RA query is domain independent, and then reject "bad queries"
- Alas, this problem is undecidable!
 - That is, there is no algorithm that takes as input an RC query and returns true iff the query is domain independent

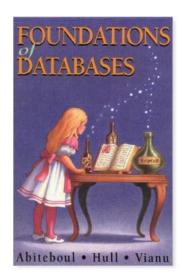
Good News

Domain-independent RC has an effective syntax; that is:

- A syntactic restriction of RC in which every query is domain independent
- Restricted queries are said to be *safe*
- Safety can be tested automatically (and efficiently)
 - Most importantly, for every domain independent RC query there exists an equivalent safe RC query!

Safety

- We do not formally define the safe syntax in this course
- Details on the safe syntax can be found in Ch 5.4 of [Alice'95]: Foundations of Databases by Abiteboul, Hull and Vianu
 - Example:
 - In $\exists x \phi$, the variable x should be guarded by ϕ
 - Every variable x_i is guarded by $R(x_1,...,x_k)$
 - In $\phi \land (x=y)$, the variable x is guarded if and only if either x or y is guarded by ϕ
 - ... and so on



Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

 $\{(x) \mid \neg Person(x, 'female', 'Canada') \}$

 $\{ (x,y) | \exists z [Spouse(x,z) \land y=z] \}$

 $\left\{ (\mathbf{x}, \mathbf{y}) | \exists z [Spouse(\mathbf{x}, z) \land \mathbf{y} \neq z] \right\}$

60

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Not DI

Example fixes: ... $\Lambda \exists y, z. \operatorname{Person}(x, y, z)$... $\Lambda \exists y. \operatorname{Person}(x, y, 'Canada')$ $\left\{ (x) \mid \neg \operatorname{Person}(x, 'female', 'Canada') \right\}$ x could be also 'Canada' or 'female' or ...

 $\{(x,y) | \exists z [Spouse(x,z) \land y=z] \}$

 $\{ (x,y) | \exists z [Spouse(x,z) \land y \neq z] \}$

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Not DI

Example fixes: ... $\land \exists y, z. \operatorname{Person}(x, y, z)$... $\land \exists y. \operatorname{Person}(x, y', Canada')$ $\{ (x) \mid \neg \operatorname{Person}(x, 'female', 'Canada') \}$ $x \operatorname{could} be also 'Canada' or 'female' or ...$

$$\left\{ (x,y) | \exists z [Spouse(x,z) \land y=z] \right\}$$
same as $\{(x,y) | Spouse(x,y)\} = Spouse(x,y)$

 $\left\{ (\mathbf{x}, \mathbf{y}) | \exists z [Spouse(\mathbf{x}, z) \land \mathbf{y} \neq z] \right\}$

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Not DI

DI

Example fixes: ... $\Lambda \exists y, z. Person(x, y, z)$... $\Lambda \exists y. Person(x, y, 'Canada')$ { (x) | ¬Person(x, 'female', 'Canada') }

x could be also 'Canada' or 'female' or ...

 $\left\{ (x,y) | \exists z [Spouse(x,z) \land y=z] \right\}$ same as $\{(x,y) | Spouse(x,y)\}$

 $\left\{ (\mathbf{x}, \mathbf{y}) | \exists z [Spouse(\mathbf{x}, z) \land \mathbf{y} \neq z] \right\}$

D: Spouse('Alice','Bob') Dom₁={'Alice','Bob'} Dom₂={'Alice','Bob','Charly'}

 $Dom \supseteq ADom$

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Not DI

Not DI

DI

Example fixes: ... $\Lambda \exists y, z. \operatorname{Person}(x, y, z)$... $\Lambda \exists y. \operatorname{Person}(x, y, 'Canada')$ $\{(x) \mid \neg \operatorname{Person}(x, 'female', 'Canada')\}$

x could be also 'Canada' or 'female' or ...

 $\{ (x,y) | \exists z [Spouse(x,z) \land y=z] \}$ same as $\{ (x,y) | Spouse(x,y) \}$

 $\left\{ (\mathbf{x}, \mathbf{y}) | \exists z [Spouse(\mathbf{x}, z) \land \mathbf{y} \neq z] \right\}$

Dom ⊇ ADom

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

$\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \exists y [\neg \operatorname{Likes}(x, y)] \}$ $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \}$

 $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \land \exists y [\neg \operatorname{Likes}(x, y)] \}$

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Person('Alice', 'female', 'Canada') Person('Beate', 'female', 'Canada') Person('Cecile', 'female', 'Canada')

Likes('Alice', 'Beate') Likes('Alice', 'Cecile') Likes('Alice', 'Alice')

ADom = ?

 $\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

 $\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

 $\{(\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Likes('Alice', 'Beate') Person('Alice', 'female', 'Canada') Person('Beate', 'female', 'Canada') Likes('Alice', 'Cecile') Person('Cecile', 'female', 'Canada') Likes('Alice', 'Alice')

ADom = {'Alice', 'Beate', 'Cecile', 'female', 'Canada')

$\{(\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

 $\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

 $\{(\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

Person('Alice', 'Alice', 'Alice') Person('Beate', 'Beate', 'Beate') Person('Cecile', 'Beate', 'Beate')

D

ADom = ?

Likes('Alice', 'Beate')

Likes('Alice', 'Cecile')

Likes('Alice', 'Alice')

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

 $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \exists y [\neg \operatorname{Likes}(x, y)] \}$

 $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \}$

 $\{(\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

Person('Alice', 'Alice', 'Alice') Person('Beate', 'Beate', 'Beate') Person('Cecile', 'Beate', 'Beate')

D

Likes('Alice', 'Beate')

Likes('Alice', 'Cecile')

Likes('Alice', 'Alice')

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

ADom = {'Alice', 'Beate', 'Cecile') = {'Alice', 'Beate', 'Cecile', 'Dora') Dom

 $\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

 $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \}$

 $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \land \exists y [\neg \operatorname{Likes}(x, y)] \}$

 $\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$

 $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \}$

Person('Alice', 'Alice', 'Alice')
Person('Beate', 'Beate', 'Beate')
Person('Cecile', 'Beate', 'Beate')

D

Likes('Alice', 'Beate')

Likes('Alice', 'Cecile')

Likes('Alice', 'Alice')

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

ADom = {'Alice', 'Beate', 'Cecile')
Dom = {'Alice', 'Beate', 'Cecile', 'Dora')

Not DI

 $\left\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \right\}$

Example fix: ?

Alice is in the output if $Dom \supset ADom$ (Dora is in Dom)

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Person('Alice', 'Alice', 'Alice') Person('Beate', 'Beate', 'Beate') Person('Cecile', 'Beate', 'Beate')

D

Likes('Alice', 'Beate') Likes('Alice', 'Cecile') Likes('Alice', 'Alice')

ADom = {'Alice', 'Beate', 'Cecile')
Dom = {'Alice', 'Beate', 'Cecile', 'Dora')

 $\left\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \right\}$

 $\left\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \right\}$

Not DI

= {'Alice', 'Beate', 'Cecile', 'Dora')

Person('Alice', 'Alice', 'Alice') Person('Beate', 'Beate', 'Beate') Person('Cecile', 'Beate', 'Beate')

ADom = {'Alice', 'Beate', 'Cecile')

D

Dom

Likes('Alice', 'Beate')

Likes('Alice', 'Cecile')

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

 $\left\{ \begin{array}{l} (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \right\} \\ x \text{ never occurs in Likes}(x, _): Beate, Cecile \\ \end{array} \right.$

 $\left\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \forall y [\neg \operatorname{Likes}(\mathbf{x}, y)] \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \right\}$

Not DI

= {'Alice', 'Beate', 'Cecile', 'Dora')

Person('Alice', 'Alice', 'Alice') Person('Beate', 'Beate', 'Beate') Person('Cecile', 'Beate', 'Beate')

ADom = {'Alice', 'Beate', 'Cecile')

D

Dom

Likes('Alice', 'Beate')

Likes('Alice', 'Cecile')

Person(id, gender, country) Likes(person1, person2) Spouse(person1, person2)

Example fix: ... $\Lambda \exists u, v [Person(y, u, v)]$ $\{ (\mathbf{x}) | \exists z, w \operatorname{Person}(\mathbf{x}, z, w) \land \exists y [\neg \operatorname{Likes}(\mathbf{x}, y)] \}$ Not DI Alice is in the output if $Dom \supset ADom$ (Dora is in Dom) $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \}$ D x never occurs in Likes(x,_): Beate, Cecile $\{ (x) | \exists z, w \operatorname{Person}(x, z, w) \land \forall y [\neg \operatorname{Likes}(x, y)] \land \exists y [\neg \operatorname{Likes}(x, y)] \}$ D implication (absorption) if Dom $\neq \emptyset$, which is necessary for there to be Person(x,_,_

?

- $\left\{ \mathbf{x} \mid \exists \mathbf{y}. R(\mathbf{x}) \right\}$
- $\left\{ \mathbf{x} \mid \mathbf{x} \ge 10 \right\}$?
- $\left\{ \mathbf{x} \mid \forall \mathbf{y} \, \mathbf{R}(\mathbf{x}, \mathbf{y}) \right\}$?

- $\left\{ x \mid \exists y. R(x) \right\} \quad \text{logically equivalent to } \left\{ x \mid R(x) \right\} = R(x)$
- $\left\{ \mathbf{x} \mid \mathbf{x} \ge 10 \right\}$
- $\left\{ \mathbf{x} \mid \forall \mathbf{y} \, \mathbf{R}(\mathbf{x}, \mathbf{y}) \right\}$?

 $\left\{ \begin{array}{l} x \mid \exists y. R(x) \right\} & \text{logically equivalent to } \left\{ \begin{array}{l} x \mid R(x) \right\} = R(x) \\ \left\{ \begin{array}{l} x \mid x \ge 10 \right\} & \text{what if Dom} = \mathbb{N}? \end{array} & \left\{ \begin{array}{l} x \mid A(x) \land x \ge 10 \right\} \\ \left\{ \begin{array}{l} x \mid \forall y R(x,y) \right\} & ? \end{array} \right\} \end{array}$

 $\left\{ \begin{array}{l} x \mid \exists y. R(x) \right\} \quad \text{logically equivalent to } \left\{ \begin{array}{l} x \mid R(x) \right\} = R(x) \\ \left\{ \begin{array}{l} x \mid x \geq 10 \right\} & \text{what if Dom}=N? & \left\{ \begin{array}{l} x \mid A(x) \land x \geq 10 \right\} \\ \left\{ \begin{array}{l} x \mid \forall y R(x,y) \right\} & D: R(a',a') \\ ADom = \left\{ a' \right\} \\ Dom = \left\{ a', Chile' \right\} & \text{what if relation } A \text{ is empty}? \end{array} \right\} \end{array}$

 $\begin{aligned} & \log (x) \leq \log (x) < \log (x) <$

 $\left\{ \mathbf{x} \mid \forall \mathbf{y} \ \mathbf{R}(\mathbf{x},\mathbf{y}) \right\}$

 $\left\{ \mathbf{x} \mid \exists \mathbf{y}. \mathbf{R}(\mathbf{x}) \right\}$

 $\left\{ \mathbf{x} \mid \mathbf{x} \ge 10 \right\}$

D: R('a', 'a') $ADom = \{'a'\}$ $Dom = \{'a', 'Chile'\}$ $\left\{ \mathbf{x} \mid \forall \mathbf{y} \left[\mathbf{A}(\mathbf{y}) \rightarrow \mathbf{R}(\mathbf{x}, \mathbf{y}) \right] \right\}$

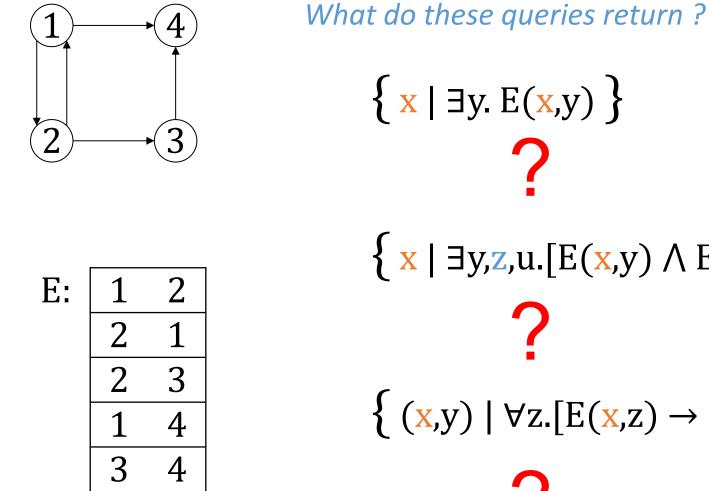
what if relation A is empty?

1. always true for
$$A=\emptyset$$

[x | $\forall y \neg A(y) \lor R(x,y)$]

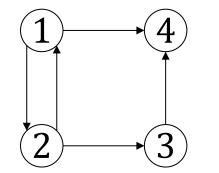
 $\left\{ \mathbf{x} \mid \exists \mathbf{y}. \mathbf{R}(\mathbf{x}) \right\}$ logically equivalent to $\{x \mid R(x)\} = R(x)$ $\left\{ \mathbf{x} \mid \mathbf{x} \ge 10 \right\}$ $\left\{ \mathbf{x} \mid \mathbf{A}(\mathbf{x}) \land \mathbf{x} \ge 10 \right\}$ what if Dom=N? $\left\{ \mathbf{x} \mid \forall \mathbf{y} \left[\mathbf{A}(\mathbf{y}) \rightarrow \mathbf{R}(\mathbf{x}, \mathbf{y}) \right] \right\}$ $\left\{ \mathbf{x} \mid \forall \mathbf{y} \, \mathbf{R}(\mathbf{x}, \mathbf{y}) \right\}$ \mathcal{D} : $\mathbb{R}(a',a')$ $ADom = \{a'\}$ what if relation A is empty? Dom={'a','Chile'} Neutral element for \forall is true 1. always true for $A=\emptyset$ $\Sigma: 0 + x = x$ $\left\{ x \mid \forall y \left(\neg A(y) \lor R(x,y) \right] \right\}$ $\prod: 1 \cdot \mathbf{x} = \mathbf{x}$ V: FALSE V x = x \exists : $x_1 \lor x_2 \lor \dots \lor FALSE$ ← 2. alternative way \forall : $x_1 \land x_2 \land \dots \land TRUE$ Λ : TRUE $\Lambda x = x$ to see that MIN: $MIN(\infty, x) = x$

79



E encodes the directed edges of a graph

 $\left\{ \begin{array}{l} x \mid \exists y, z, u. [E(x, y) \land E(y, z) \land E(z, u)] \right\} \\ \left\{ \begin{array}{l} \\ (x, y) \mid \forall z. [E(x, z) \rightarrow E(y, z)] \right\} \\ \end{array} \right\}$



What do these queries return ?

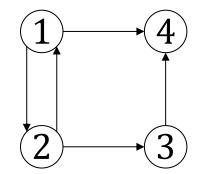
$$\left\{ \mathbf{x} \mid \exists \mathbf{y} \in (\mathbf{x}, \mathbf{y}) \right\}$$

Nodes that have at least one child: {1,2,3}

E:	1	2
	2	1
	2	3
	1	4
	3	4

E encodes the directed edges of a graph

$$\left\{ \begin{array}{l} x \mid \exists y, z, u. [E(x, y) \land E(y, z) \land E(z, u)] \right\} \\ \end{array} \\ \left\{ \begin{array}{l} (x, y) \mid \forall z. [E(x, z) \rightarrow E(y, z)] \right\} \\ \end{array} \right\}$$



What do these queries return ?

$$\left\{ \mathbf{x} \mid \exists \mathbf{y} \in (\mathbf{x}, \mathbf{y}) \right\}$$

Nodes that have at least one child: {1,2,3}

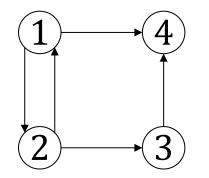
E:	1	2	
	2	1	
	2	3	
	1	4	
	3	4	

E encodes the directed edges of a graph

$$\left\{ \mathbf{x} \mid \exists \mathbf{y}, \mathbf{z}, \mathbf{u}. [\mathbf{E}(\mathbf{x}, \mathbf{y}) \land \mathbf{E}(\mathbf{y}, \mathbf{z}) \land \mathbf{E}(\mathbf{z}, \mathbf{u})] \right\}$$

Nodes that have a great-grand-child: {1,2}

$$\left\{ (\mathbf{x},\mathbf{y}) \mid \forall \mathbf{z}.[\mathbf{E}(\mathbf{x},\mathbf{z}) \to \mathbf{E}(\mathbf{y},\mathbf{z})] \right\}$$



What do these queries return ?

$$\left\{ \mathbf{x} \mid \exists \mathbf{y} \in (\mathbf{x}, \mathbf{y}) \right\}$$

Nodes that have at least one child: {1,2,3}

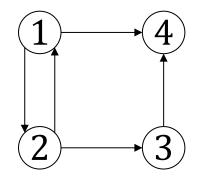
E:	1	2
	2	1
	2	3
	1	4
	3	4

E encodes the directed edges of a graph

$$\left\{ \mathbf{x} \mid \exists \mathbf{y}, \mathbf{z}, \mathbf{u}. [E(\mathbf{x}, \mathbf{y}) \land E(\mathbf{y}, \mathbf{z}) \land E(\mathbf{z}, \mathbf{u})] \right\}$$

Nodes that have a great-grand-child: {1,2}

 $\begin{cases} (\mathbf{x}, \mathbf{y}) \mid \forall \mathbf{z}.[\mathbf{E}(\mathbf{x}, \mathbf{z}) \rightarrow \mathbf{E}(\mathbf{y}, \mathbf{z})] \} & \text{which of the} \\ \text{Every child of x is a child of y.} & (1,1) & (4,4) & (1,3) & (3,1) & (4,1) \end{cases}$



What do these queries return ?

$$\left\{ \mathbf{x} \mid \exists \mathbf{y} \in (\mathbf{x}, \mathbf{y}) \right\}$$

Nodes that have at least one child: {1,2,3}

E:	1	2
	2	1
	2	3
	1	4
	3	4

E encodes the directed edges of a graph

$$\left\{ \mathbf{x} \mid \exists \mathbf{y}, \mathbf{z}, \mathbf{u}. [E(\mathbf{x}, \mathbf{y}) \land E(\mathbf{y}, \mathbf{z}) \land E(\mathbf{z}, \mathbf{u})] \right\}$$

Nodes that have a great-grand-child: {1,2}

 $\begin{array}{c} \nexists z.[\exists (x,z) \land \neg \exists (x,z)] \\ \{ (x,y) \mid \forall z.[E(x,z) \rightarrow E(y,z)] \} \\ \text{Every child of x is a child of y.} \\ \hline (1,1) (4,4) (1,3) (3,1) (4,1) \\ \hline (1,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,3) \} \end{array}$

84

The person/bar/drinks schema

Likes(person, drink) Frequents(person, bar) Serves(bar, drink)

What does this query compute?

$$\{ x \mid \forall y. [Frequents(x,y) \rightarrow \exists z. [Serves(y,z) \land Likes(x,z)] \}$$

The person/bar/drinks schema

Likes(person, drink) Frequents(person, bar) Serves(bar, drink)

What does this query compute?

$$\{x \mid \forall y. [Frequents(x,y) \rightarrow \exists z. [Serves(y,z) \land Likes(x,z)]\}$$

Find drinkers that frequent <u>only</u> bars that serves <u>some</u> beer they like.

Careful! This query is not domain independent. Why? Challenge: write this query without the \forall quantifier!

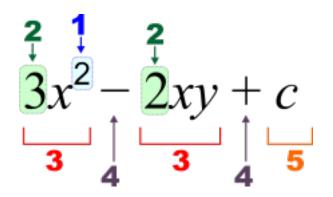
Schema adapted from Jeff Ullman's drinkers/bars/beers example to avoid attributes with same first letters

Queries and the connection to logic and algebra

- Why logic?
 - A crash course on FOL
- Relational Calculus
 - Syntax and Semantics
 - Domain Independence and Safety
- Relational Algebra
 - Operators
 - Independence
 - Power of algebra: optimizations
- Equivalence RC and RA

Algebra

- Algebra is the study of mathematical symbols and the rules for manipulating these symbols
- e.g., Linear Algebra
- e.g., Relational Algebra
- e.g., Boolean Algebra
- e.g., Abstract algebra (groups, rings, fields, ...)
- e.g., Elementary algebra



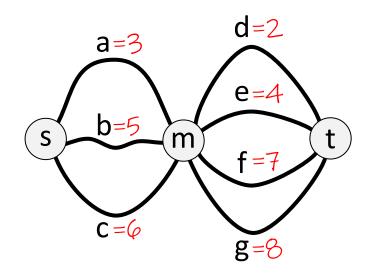
What is "Algebra"?

- An *abstract algebra* consists of:
 - A class of *elements*
 - A collection of *operators*
- Each operator:
 - Has an *arity* d
 - Has a *domain* of sequences (e₁,...,e_d) of elements
 - Maps every sequence in its domain to an element e
- The definition of an operator allows for composition:

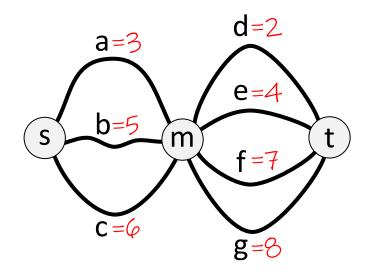
 $o_1(o_2(x), o_1(y, o_4(x, z)))$

- Examples:
 - Ring of integers: $(\mathbb{Z}, \{+, \cdot\})$
 - Boolean algebra: ({true,false},{∧,∨,¬})
 - Relational algebra

set equipped with two binary operations with certain properties like distributivity of multiplication over addition

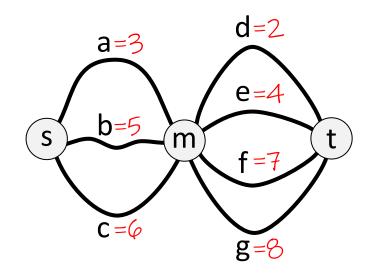


what is the shortest path from s to t?



what is the shortest path from s to t?

Answer: 5 = 3 + 2



what is the shortest path from s to t?

Answer: 5 = 3 + 2

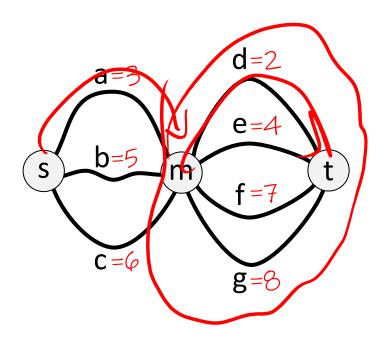
min [a + d, a + e, a + f, a + g, ..., c + g] min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

 $= \min[a, b, c] + \min[d, e, f, g]$ $\min[3,5,6] + \min[2,4,7,8]$

min[x,y]+z = min[(x+z), (y+z)](+ distributes over min)

(Tropical semiring)

• Semiring (\mathbb{R}^{∞} ,min,+, ∞ ,0)



what is the shortest path from s to t?

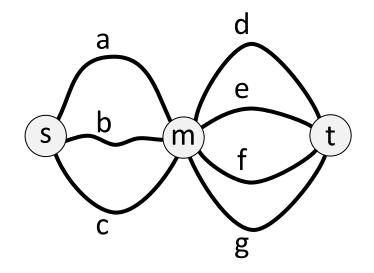
Answer: 5 = 3 + 2

Principle of optimality from Dynamic Programming: *irrespective of the initial state and decision, an optimal solution continues optimally from the resulting state*

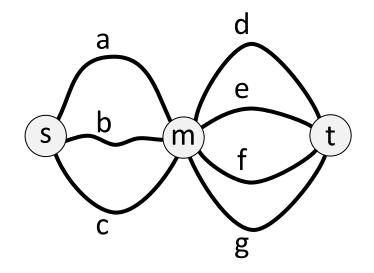
> min [a + d, a + e, a + f, a + g, ..., c + g] min[3+2, 3+4, 3+7, 3+8, ..., 6+8]

 $= \min[a, b, c] + \min[d, e, f, g]$ $\min[3,5,6] + \min[2,4,7,8]$

min[x,y]+z = min[(x+z), (y+z)](+ distributes over min)



How many paths are there from s to t?

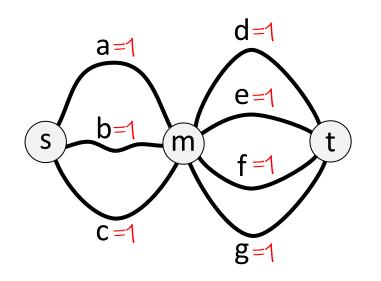


How many paths are there from s to t?

Answer: $12 = 3 \cdot 4$

(Ring of real numbers)

• Semiring $(\mathbb{R},+,\cdot,0,1)$



How many paths are there from s to t?

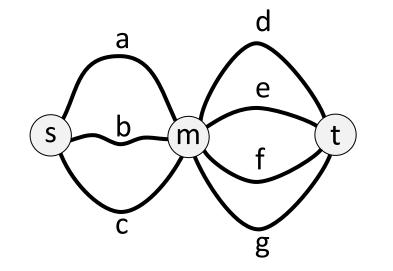
Answer: $12 = 3 \cdot 4$

count [a·d, a·e, a · f, a · g, ..., c · g] count[1·1, 1·1, 1·1, 1·1, ..., 1·1]12 = count [a, b, c] · count [d, e, f, g] $count[1,1,1] \cdot count[1,1,1]$

+ $[X,Y] \cdot z = +[X \cdot z, Y \cdot z]$ (• distributes over +)

• Semiring $(S, \bigoplus, \bigotimes, 0, 1)$

Semirings generalize this idea

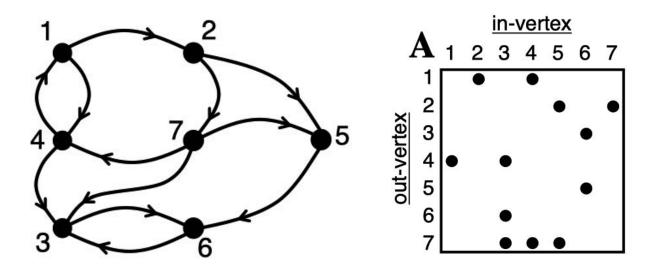


 \bigoplus [a \otimes d, a \otimes e, a \otimes f, a \otimes g, ..., c \otimes g]

 $= \bigoplus$ [a, b, c] $\otimes \bigoplus$ [d, e, f, g]

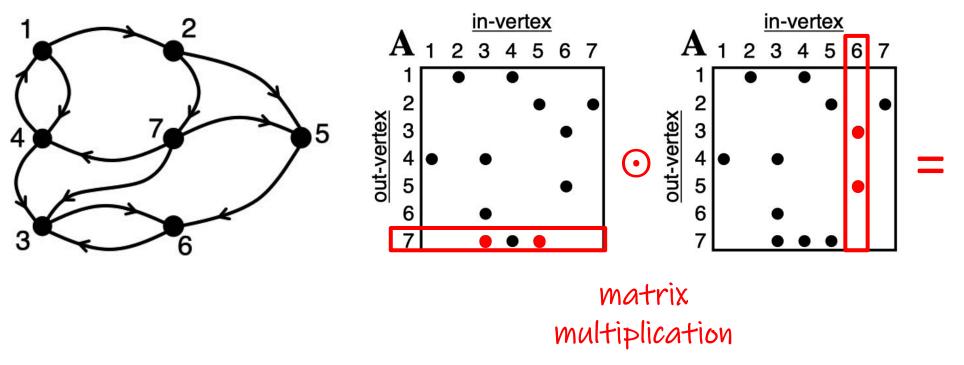
 $\bigoplus [X,Y] \otimes z = \bigoplus [X \otimes z,Y \otimes z]$ (\$\overline\$ distributes over \$\overline\$)

Matrix multiplication



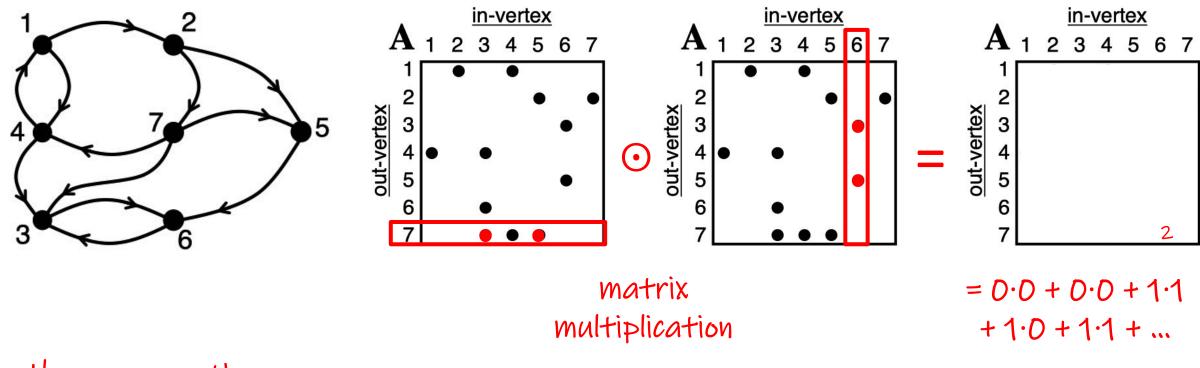
How many paths are there from 7 to 6?

Matrix multiplication

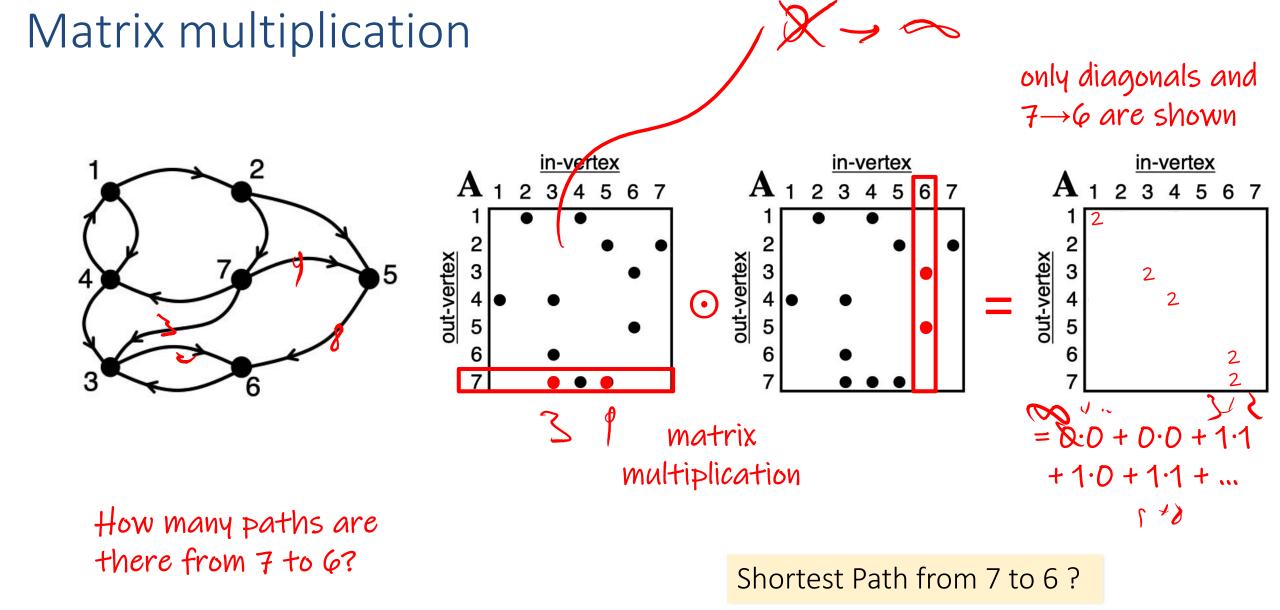


How many paths are there from 7 to 6?

Matrix multiplication



How many paths are there from 7 to 6?



The Relational Algebra

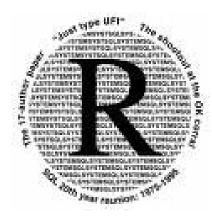
- In the relational algebra (RA) the elements are relations
 - Recall: pairs (s,r)
- RA has 6 *primitive operators*:
 - Unary: projection, selection, renaming
 - Binary: union, difference, Cartesian product
- Each of the six is essential (*independent*)—we cannot define it using the others
 - We will see what exactly this means and how this can be proved
- In practice, we allow many more useful operators that can be defined by the primitive ones
 - For example, intersection via union and difference

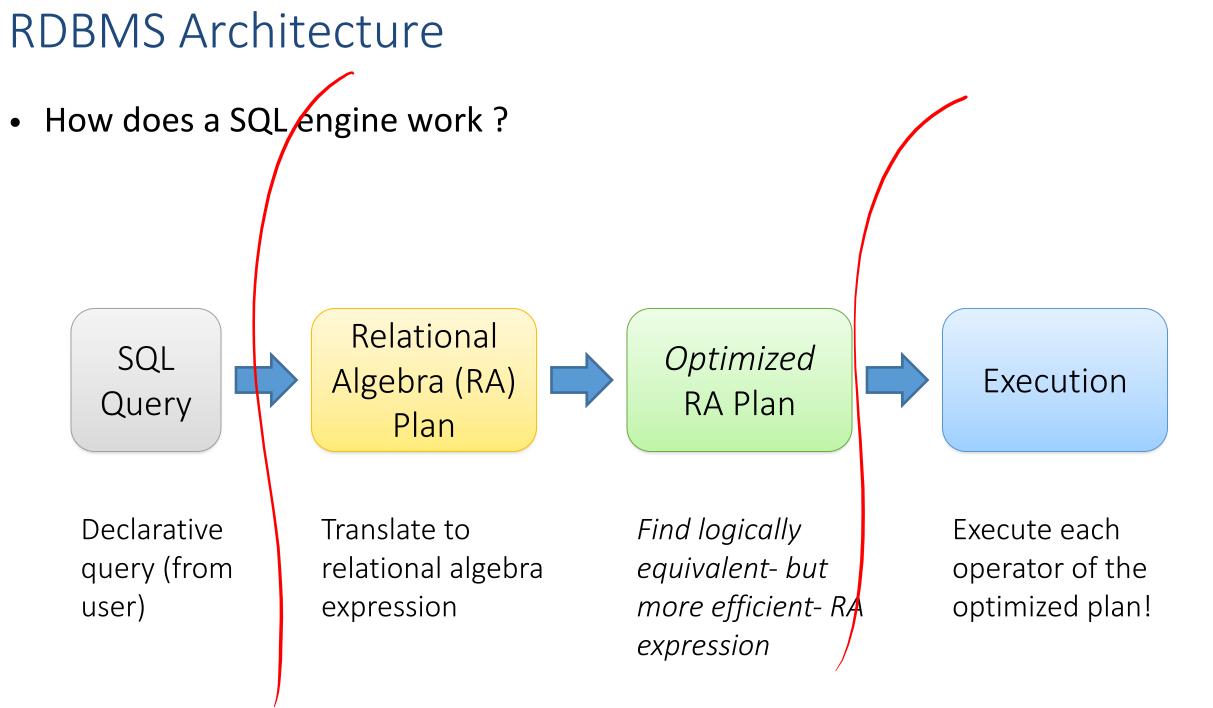
RA vs Other QLs

- Some subtle (yet important) differences between RA and other languages
 - Can tables have duplicate records?
 - (RA vs. SQL)
 - Are missing (NULL) values allowed?
 - (RA vs. SQL)
 - Is there any order among records?
 - (RA vs. SQL)
 - Is the answer dependent on the domain from which values are taken (not just the DB)?
 - (RA vs. RC)

Recall: Virtues of the relational model

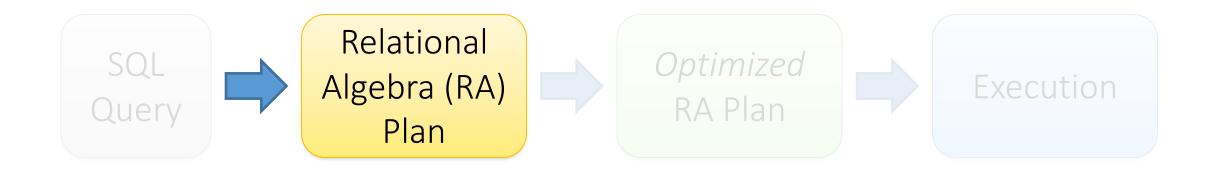
- Physical independence (logical too), Declarative
- Simple, elegant clean: Everything is a relation
- Why did it take multiple years?
 - Doubted it could be done efficiently.





RDBMS Architecture

• How does a SQL engine work ?



Relational Algebra allows us to translate declarative (SQL) queries into precise and optimizable expressions!

Queries and the connection to logic and algebra

- Why logic?
 - A crash course on FOL
- Relational Calculus
 - Syntax and Semantics
 - Domain Independence and Safety
- Relational Algebra
 - Operators
 - Independence
 - Power of algebra: optimizations
- Equivalence RC and RA

Relational Algebra (RA)

- Five basic operators:
 - 1. Selection: σ
 - 2. Projection: Π
 - 3. Cartesian Product: ×
 - 4. Union: U
 - 5. Difference*: –
- Auxiliary operators (sometimes counted as basic):
 - 6. Renaming: ρ \bigcirc
- Derived
 - 7. Intersection / complement
 - 8. Joins ⋈ (natural,equi-join, theta join, semi-join)
 - 9. Division

- Extended RA
 - 1. Duplicate elimination δ
 - 2. Grouping and aggregation **y**
 - 3. Sorting **τ**

All operators take in 1 or more relations as inputs and return another relation

* Relational difference – is also sometimes written as \ like set difference.

- is used by [Ramakrishnan+'03] and [Garcia-Molina+2014] and [Elmasri+'15]

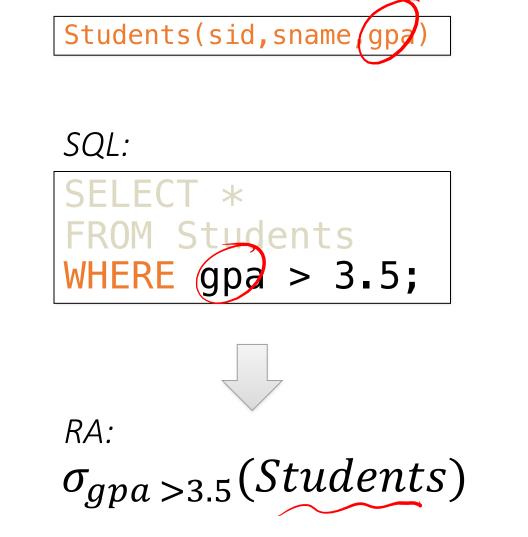
Keep in mind: RA operates on sets!

- RDBMSs use <u>multisets</u>, however in relational algebra formalism we will consider <u>sets</u>!
 k (\$\$\vec{x}\$\$\vec{y}\$) k \vec{x}\$
- Also: we will consider the <u>named perspective</u>, where every attribute must have a <u>unique name</u>
 - \rightarrow attribute order does not matter...

Now on to the basic RA operators...

1. Selection (σ)

- Returns all tuples which satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{name = "Smith"}$ (Employee)
- The condition c can be =, <, ≤, >, ≥,
 <> combined with AND, OR, NOT



SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

 $\sigma_{\text{Salary} > 40000}$ (Employee)

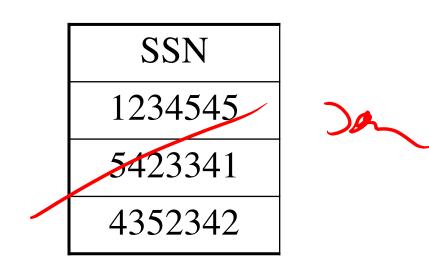
SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

2. Projection (Π)

- Eliminates columns, then removes duplicates (set perspective!)
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Output schema: Answer(SSN, Name)

\checkmark	
	<pre>Students(sid,sname,gpa)</pre>
	SQL: D_D.N
	SELECT DISTINCT
	sname,
	gpa
	FROM Students;
	RA:
	$\Pi_{sname,gpa}(Students$

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000



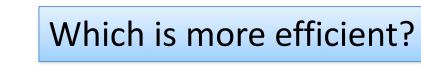
SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

 $\Pi_{\text{Name,Salary}}$ (Employee)

Name	Salary
John	20000
John	60000

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

$$\Pi_{\text{Name,Salary}}$$
 (Employee)



Bag semantics

Name	Salary
John	20000
John	60000
John	20000

Set	sema	ntics
-----	------	-------

Name	Salary
John	20000
John	60000

Composing RA Operators

"commuting operators"

Patier	nt		Z	-dileon	π _{zip,dis}	(Patient)
no	name	zip	disease		zip	disease
1	p1	98125	flu		98125	flu
2	p2	98125	heart		98125	heart
3	p3	98120	lung		98120	lung
4	_					
4	p4	98120	heart		98120	heart
	∣p4 _{se='heart'} (F		heart	disease	='healt' (Πzip,disea	
	Ţ.		heart disease	disease		
σ _{disea}	se='heart'(F	Patient)		disease	='healt' (Πzip,disea	ase (Patient))

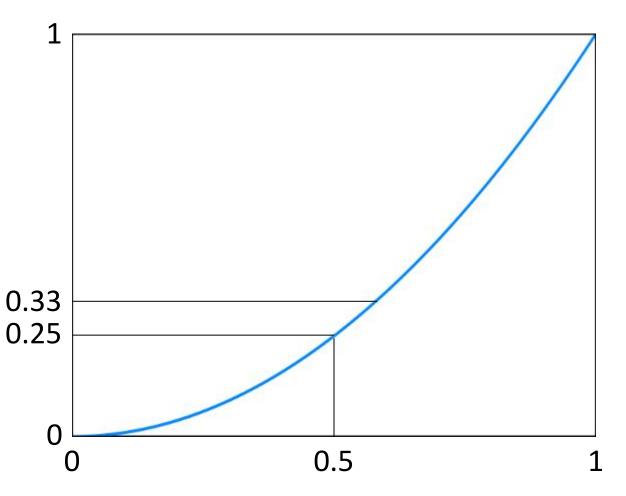
116

Logical Equivalece of RA Plans

- Given relations R(A,B) and S(B,C):
 - Here, projection & selection commute:
 - $\sigma_{A=5}(\Pi_A(R)) = \Pi_A(\sigma_{A=5}(R))$
 - What about here?
 - $\sigma_{A=5}(\Pi_{\mathcal{B}}(R)) := \Pi_B(\sigma_{A=5}(R))$

Commuting functions: a digression

- Do functions commute with taking the expectation?
 - E[f(x)] = f(E[x])?
- Only for linear functions
 - Thus f(x)=ax + b
 - E[ax+b] = a E[x] + b
- Jensen's inequality for convex f
 - $E[f(x)] \ge f(E[x])$
- Example $f(x) = x^2$
 - Assume $0 \le x \le 1$
 - f(E[x]) = f(0.5) = 0.25 - E[f(x)] = $\frac{\int_0^1 f(x)}{1-0} = \frac{x^3}{3} \Big|_0^1 = 0.33$



Ratio of averages != average of ratios

5=115 7 112

RA Operators are Compositional!

Students(sid,sname,gpa)

```
SELECT DISTINCT
    sname,
    gpa
FROM Students
WHERE gpa > 3.5;
```

How do we represent this query in RA?

 $\square \qquad \Pi_{sname,gpa}(\sigma_{gpa>3.5}(Students))$

$\sigma_{gpa>3.5}(\Pi_{sname,gpa}(Students))$

Are these logically equivalent?

3. Cross-Product (X)

- Each tuple in R1 with each tuple in R2
- Notation: $R1 \times R2$
- Example:
 - Employee × Dependents
- Rare in practice; mainly used to express joins

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:

SELECT *
FROM Students, People;

Another example: People

ssn	pname	address
1234545	John	216 Rosse
5423341	Bob	217 Rosse

Students

sid	sname	gpa
001	John	3.4
002	Bob	1.3

Students × People

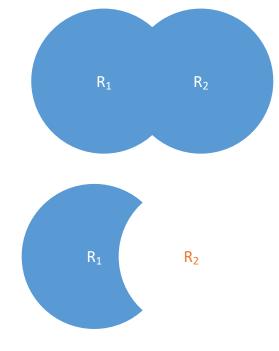
X

ssn	pname	address	sid	sname	gpa
1234545	John	216 Rosse	001	John	3.4
5423341	Bob	217 Rosse	001	John	3.4
1234545	John	216 Rosse	002	Bob	1.3
5423341	Bob	216 Rosse	002	Bob	1.3

4. Union (U) and 5. Difference (–)

Students (<u>neuid</u>, fname, lname) Faculty (<u>neuid</u>, fname, lname, college)

- Examples:
 - ActiveEmployees U RetiredEmployees
 - AllEmployees RetiredEmployees



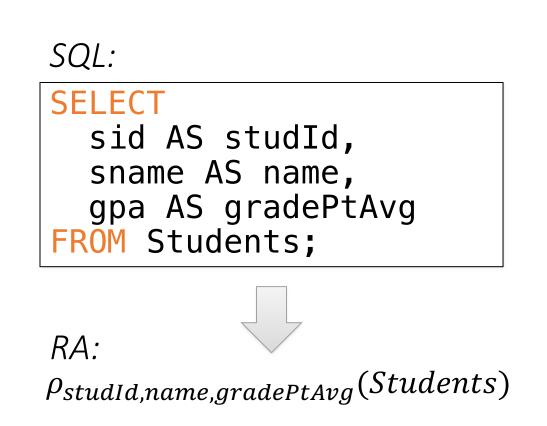
Only make sense if R1, R2 have the same schema

What do they mean over bags ?

6. Renaming (ρ)

- Changes the schema, not the instance
- A 'special' operator- neither basic nor derived
- Notation: $\rho_{B1,...,Bn}$ (R)
- Note: this is <u>shorthand</u> for the proper form (since <u>names, not</u> <u>order</u> matters!):
 - − $ρ_{A1 \rightarrow B1,...,An \rightarrow Bn}$ (R)

Students(sid,sname,gpa)



We care about this operator *because* we are working in a *named perspective*

Another example:

Students

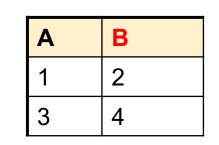
sid	sname	gpa
001	John	3.4
002	Bob	1.3

 $\rho_{studId,name,gradePtAvg}(Students)$

Students

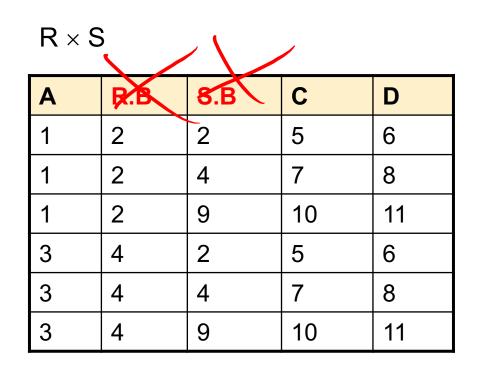
studId	name	gradePtAvg
001	John	3.4
002	Bob	1.3

Why renaming



В	С	D
2	5	6
4	7	8
9	10	11

S



 $\rho_{B \to E}(\mathsf{R}) \times \mathsf{S}$

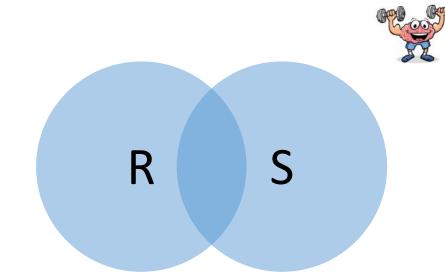
Α	Е	В	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

What if we have $R \times R$?

Implied Operators

- Derived relational operators
 - Not among the 5 basic operators (sometimes 6 if renaming counted)
 - Can be expressed in RA (implied)
 - Very common in practice
- Enhancing the available operator set with the implied operators is a good idea!
 - Easier to write queries
 - Easier to understand/maintain queries
 - Easier for DBMS to apply specialized optimizations

• As derived operator using union and minus



• As derived operator using union and minus

$$R \cap S = ((R \cup S) - (R - S)) - (S - R)$$

• Derived operator using minus only!



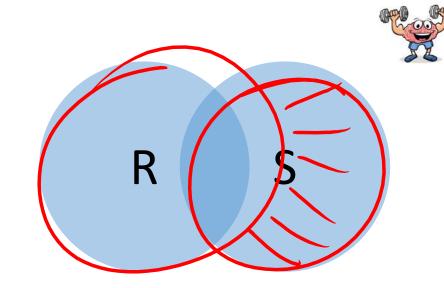
• As derived operator using union and minus

$$R \cap S = ((R \cup S) - (R - S)) - (S - R)$$

• Derived operator using minus only!

$$R \cap S = R - (S - R)$$

• Derived using join



• As derived operator using union and minus

$$R \cap S = ((R \cup S) - (R - S)) - (S - R)$$

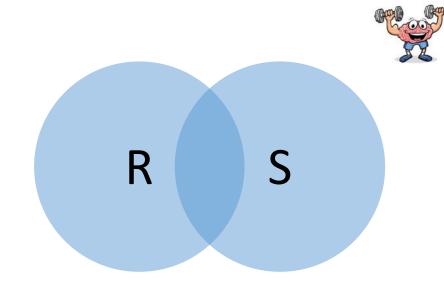
• Derived operator using minus only!

$$R \cap S = R - (S - R)$$

• Derived using join

$$\mathsf{R} \cap \mathsf{S} = \mathsf{R} \bowtie \mathsf{S}$$

- Example
 - UnionizedEmployees \cap RetiredEmployees



8 Joins: Overview

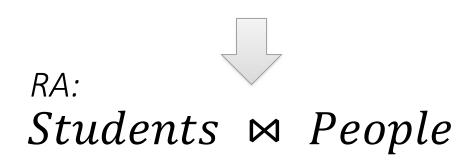
- Natural join
- Theta-join
- Equi-join (most important)

8a. Natural Join (⋈)

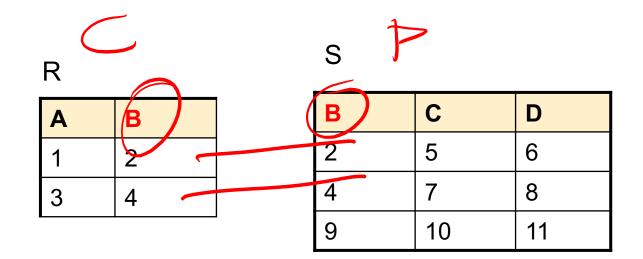
- Notation: $R_1 \bowtie R_2$
- Joins R₁ and R₂ on equality of all shared attributes
 - If R_1 has attribute set A, and R_2 has attribute set B, and they share attributes $A \cap B = C$, can also be written: $R_1 \bowtie_C R_2$
- Our first example of a derived RA operator:
 - Meaning: $R_1 \bowtie R_2 = \prod_{A \cup B} (\sigma_{R1.C=R2.C}(R_1 \times R_2))$
 - Meaning: $R_1 \bowtie R_2 = \prod_{A \cup B} (\sigma_{C=D}(\rho_{C \to D}(R_1) \times R_2))$
 - Where:
 - The rename $\rho_{C \rightarrow D}$ renames the shared attributes in one of the relations
 - The selection $\sigma_{\text{C=D}}$ checks equality of the shared attributes
 - The projection $\Pi_{\text{A}\,\text{U}\,\text{B}}$ eliminates the duplicate common attributes

Students(sid,name,gpa)
People(ssn,name,address)

```
SQL:
SELECT DISTINCT
ssid, S.name, gpa,
ssn, address
FROM
Students S,
People P
WHERE S.name = P.name;
```



An example

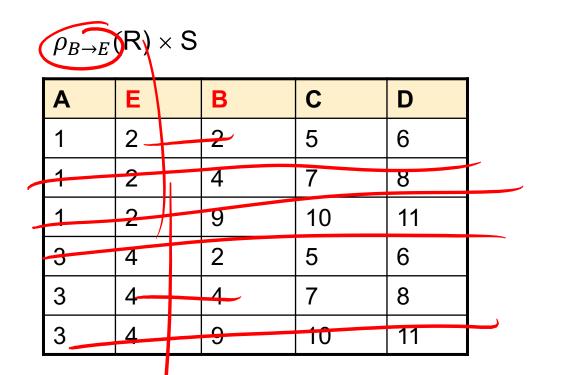


 $\mathsf{R}\bowtie\mathsf{S}$

Α	В	С	D
1	2	5	6
3	4	7	8

R ⋈ S =

$$\begin{split} &\Pi_{\mathsf{ABC}}(\sigma_{\mathsf{R}.\mathsf{B}=\mathsf{S}.\mathsf{B}}(\mathsf{R}\,\times\,\mathsf{S})) = \\ &\Pi_{\mathsf{AR}.\mathsf{BC}}(\sigma_{\mathsf{R}.\mathsf{B}=\mathsf{S}.\mathsf{B}}(\mathsf{R}\,\times\,\mathsf{S})) = \\ &\Pi_{\mathsf{ABC}}(\sigma_{\mathsf{B}=\mathsf{E}}(\rho_{B\to E}(\mathsf{R})\times\mathsf{S})) \end{split}$$



Natural Join practice

• Given schemas R(A, B, C, D), S(A, C/E), what is the schema of R \bowtie S?

• Given R(A, B, C), S(D, E), what is $R \bowtie S$?

• Given R(A, B), S(A, B), what is $R \bowtie S$?

8b. Theta Join (\bowtie_{θ})

• A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 X R2)$$

- Here $\boldsymbol{\theta}$ can be any condition
- No projection in this case!
- Example

AnonPatient (age, zip, disease) Voters (name, age, zip) Students(sid,sname,gpa) People(ssn,pname,address) SQL: FROM Students, People WHERE A! RA: Students \bowtie_{θ} People

```
P \bowtie P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V
Note that natural join is a theta join + a projection.
```

8c. Equi-join (⋈ _{A=B})

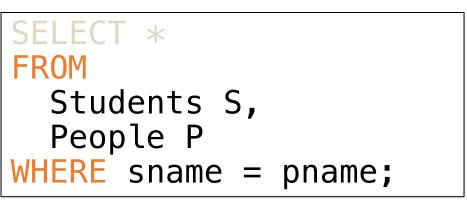
- A theta join where q is an equality
- R1 $\bowtie_{A=B}$ R2 = $\sigma_{A=B}$ (R1 × R2)
- Example:
 - Employee ⋈ _{SSN=SSN} Dependents

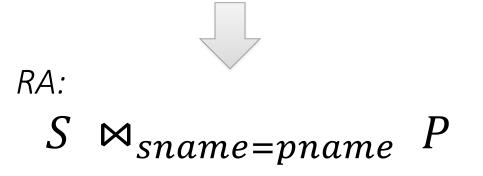
Most common join in practice!

What is the connection with natural join?

Students(sid,sname,gpa)
People(ssn,pname,address)

SQL:





Join Summary

- Theta-join: $R \Join_{\theta} S = \sigma_{\theta} (R \times S)$
 - Join of R and S with a join condition $\boldsymbol{\theta}$
 - Cross-product followed by selection θ
 - No projection
- Equijoin: $R \Join_{\theta} S = \sigma_{\theta} (R \times S)$
 - Join condition θ consists only of equalities
 - No projection
- Natural join: $R \bowtie S = \pi_A (\sigma_{\theta} (R \times S))$
 - Equality on **all** fields with same name in R and in S
 - Projection π_A drops all redundant attributes

Supplier(<u>sno</u>,sname,scity,sstate) Part(<u>pno</u>,pname,psize,pcolor) Supply(<u>sno,pno</u>,qty,price)

Name of supplier of parts with size greater than 10

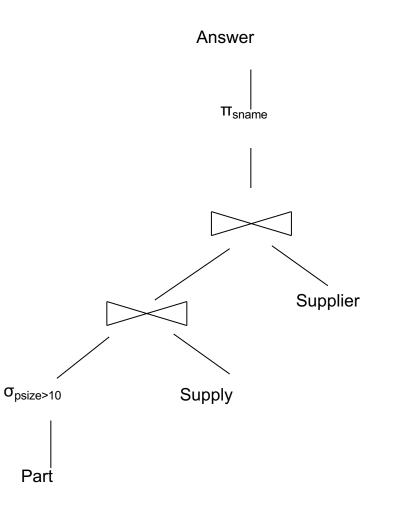
 π_{sname} (Supplier \bowtie Supply \bowtie ($\sigma_{psize>10}$ (Part))

Name of supplier of red parts or parts with size greater than 10 π_{sname} (Supplier \bowtie Supply \bowtie ($\sigma_{psize>10}$ (Part) $\cup \sigma_{pcolor='red'}$ (Part))) π_{sname} (Supplier \bowtie Supply \bowtie ($\sigma_{psize>10} \lor pcolor='red'$ (Part)))

Can be represented as trees as well

Representing RA Queries as Trees

Supplier(<u>sno</u>,sname,scity,sstate) Part(<u>pno</u>,pname,psize,pcolor) Supply(<u>sno,pno</u>,qty,price)



 π_{sname} (Supplier \bowtie Supply \bowtie ($\sigma_{psize>10}$ (Part))

Example: Converting SFW Query -> RA

Students(sid,name,gpa)
People(ssn,name,address)

SELECT DISTINCT
gpa,
address
FROM Students S,
People P
WHERE gpa > 3.5 AND
$S_name = P_name;$

 $\Pi_{gpa,address}(\sigma_{gpa>3.5}(S \bowtie P))$

How do we represent this query in RA?

9. Division

- Consider two relations R(X,Y) and S(Y)
 - Here, X and Y are tuples of attributes
- R ÷ S is the relation T(X) that contains all the Xs that occur with every Y in S

Formal Definition

- Legal input: (R,S) such that R has all the attributes of S
- R÷S is the relation T with:
 - The header of R, with all attributes of S removed
 - Tuple set {t[X] | $t[X,Y] \in R$ for every $s[Y] \in S$ }
 - This is an abuse of notation, since the attributes in X need not necessarily come before those of Y

	Studies			Course		
sid	student	course	•	course		2
1	Alice	AI	•	ML		•
1	Alice	DB				
2	Bob	DB				
2	Bob	ML	•	course		0
3	Charly	AI	•	AI	_	
3	Charly	DB		DB		
3	Charly	ML		ML		

	Studies			Course	re	call set	- semantics	for RA
sid	student	course	•	course		sid	student	
1	Alice	AI	•	ML	_	2	Bob	
1	Alice	DB				3	Charly	
2	Bob	DB						
2	Bob	ML	•	course		sid	student	
3	Charly	AI	•	AI		3	Charly	
3	Charly	DB		DB				
3	Charly	ML		ML				

$$(RxS)$$
÷S = ?

(RxS)÷R = ?

COL CAN
- Good
R R

		Studies			Course	re	call set	-semantics	forRA
	sid	student	course	•	course		sid	student	
	1	Alice	AI	•	ML		2	Bob	
	1	Alice	DB				3	Charly	
ſ	2	Bob	DB						
	2	Bob	ML	•	course		sid	student	
	3	Charly	AI	•	AI	_	3	Charly	
	3	Charly	DB		DB				
	3	Charly	ML		ML				

R,S have disjoint attribute sets (RxS) \div S = R

 $(RxS) \div R = S$

Q: If R has 1000 tuples and S has 100 tuples, how many tuples can be in R÷S?

Q: If R has 1000 tuples and S has 1001 tuples, how many tuples can be in R÷S?

Studies

sid	student	course
1	Alice	AI
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	AI
3	Charly	DB
3	Charly	ML

CourseType course type

AI	elective
DB	core
ML	core

Who took all core courses in RA?

Studies

sid	student	course
1	Alice	AI
1	Alice	DB
2	Bob	DB
2	Bob	ML
3	Charly	AI
3	Charly	DB
3	Charly	ML

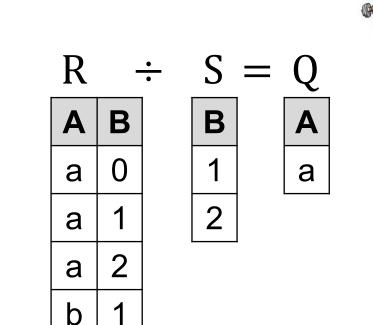
CourseType

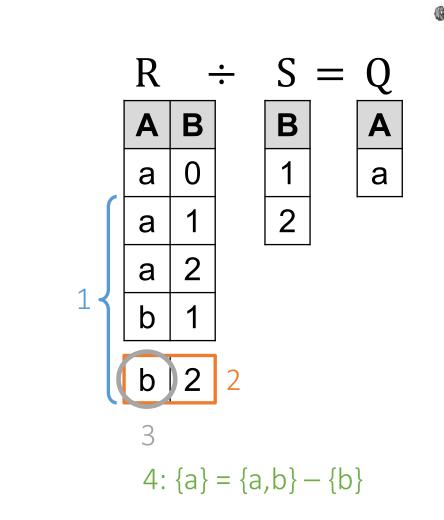
course	type	
AI	elective	
DB	core	
ML	core	

Who took all core courses in RA?

Studies + $\pi_{course}\sigma_{type='core'}$ CourseType

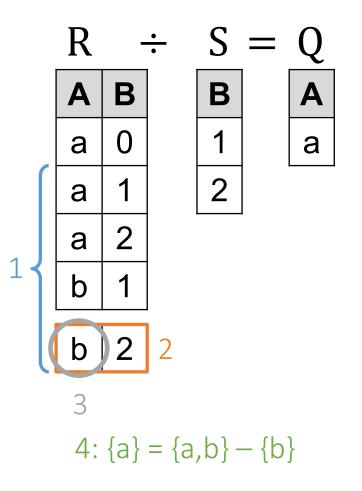
$$R(X,Y) \div S(Y)$$





$$R(X,Y) \div S(Y)$$

 $R(X,Y) \div S(Y)$

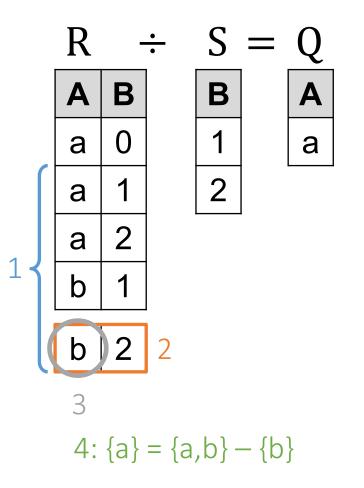


$$R(X,Y) \div S(Y)$$

$$(\pi_X R \times S) - R$$

Each X of R w/ each Y of S

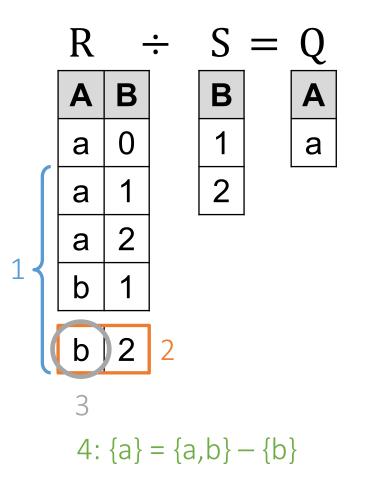
(X,Y) s.t. X in R, Y in S, but (X,Y) not in R



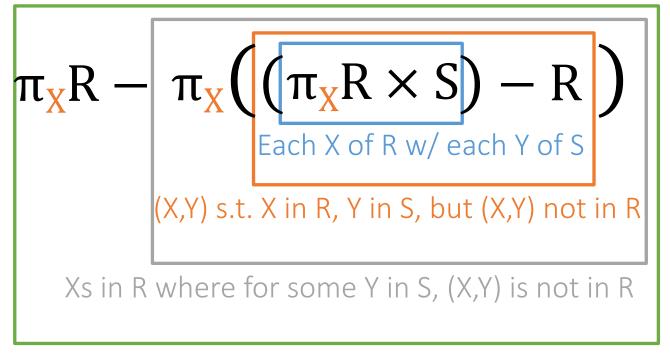
$$R(X,Y) \div S(Y)$$

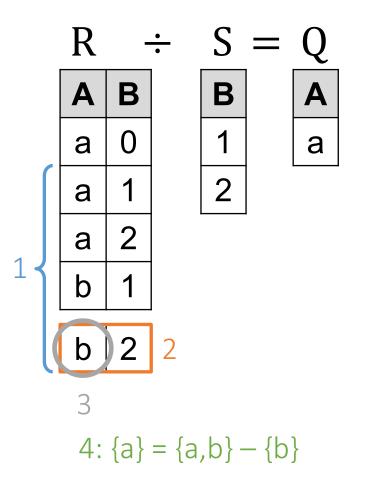
$$\pi_{X}((\pi_{X}R \times S) - R))$$
Each X of R w/ each Y of S
(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R



$$R(X,Y) \div S(Y)$$





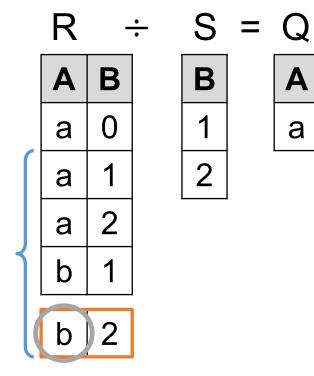
R÷S in Primitive RA vs. RC

$$R(X,Y) \div S(Y)$$

In RA:

$$\pi_X R - \pi_X ((\pi_X R \times S) - R))$$

IN DRC: ?



$\frac{\text{InRA:}}{\pi_{X}R} - \pi_{X}((\pi_{X}R \times S) - R)$

In DRC: what if $S(Y) = \emptyset$? $\left\{ X \mid \exists Z.[R(X,Z)] \land \forall Y.[S(Y) \rightarrow R(X,Y)] \right\}$

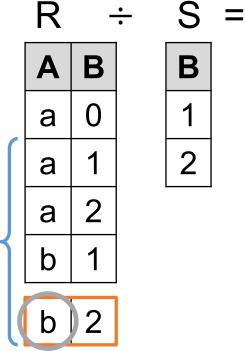
? without universal quantification

R÷S in Primitive RA vs. RC

 $R(X,Y) \div S(Y)$

Α

а

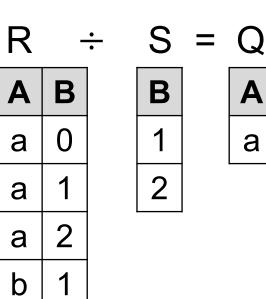


In DRC: what if S(Y)=Ø? $\left\{ X \mid \exists Z. [R(X,Z)] \land \forall Y. [S(Y) \rightarrow R(X,Y)] \right\}$ $\{X \mid \exists Z.[R(X,Z)] \land \exists Y.[S(Y) \land \neg R(X,Y)]\}$

$$\pi_{\mathbf{X}}^{\mathrm{EnRA:}} = \pi_{\mathbf{X}} \left(\left(\pi_{\mathbf{X}}^{\mathrm{R}} \times S \right) - R \right)$$

$$R(X,Y) \div S(Y)$$

IN TRC:



R÷S in Primitive RA vs. RC

h what if $S(Y) = \emptyset$? In DRC: $\left\{ X \mid \exists Z.[R(X,Z)] \land \forall Y.[S(Y) \rightarrow R(X,Y)] \right\}$ $\{X \mid \exists Z.[R(X,Z)] \land \nexists Y.[S(Y) \land \neg R(X,Y)]\}$ in SQL IN TRC: $\{ \mathbf{r}.\mathbf{A} \mid \exists \mathbf{r} \in \mathbf{R}. [\nexists \mathbf{s} \in \mathbf{S}. [\nexists \mathbf{r}_2 \in \mathbf{R}. [\mathbf{r}_2 \cdot \mathbf{B} = \mathbf{s}. \mathbf{B} \land \mathbf{r}_2 \cdot \mathbf{A} = \mathbf{r}. \mathbf{A} \}$

S = Q

Α

a

B

1

2

•

Β

 $\mathbf{0}$

2

a

a

а

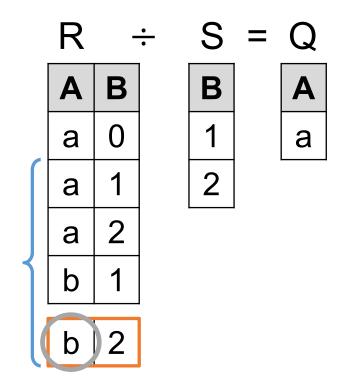
$$In RA: = \pi ((\pi R \times S) - R)$$

$$R(X,Y) \div S(Y)$$

R÷S in Primitive RA vs. RC

R÷S in Primitive RA vs. RC In SQL

> SELECT DISTINCT R.A FROM R WHERE not exists SELECT * FROM S WHERE not exists (SELECT * FROM R AS R2 WHERE R2_B=S_B AND R2.A=R.A))



 $\{ \mathbf{r}.\mathbf{A} \mid \exists \mathbf{r} \in \mathbf{R}. [\nexists \mathbf{s} \in \mathbf{S}. [\nexists \mathbf{r}_2 \in \mathbf{R}. [\mathbf{r}_2 \cdot \mathbf{B} = \mathbf{s}.\mathbf{B} \land \mathbf{r}_2 \cdot \mathbf{A} = \mathbf{r}.\mathbf{A})] \}_{16}$