
42

T1: Data models and query languages
L2: SQL (continued)

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Version 1/10/2020

Updated 1/11/2020

https://northeastern-datalab.github.io/cs7240/sp20/

43

44

45

46

Outline: SQL (a refresher)

• SQL
– Schema and keys
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Understanding nested queries

47

Subqueries = Nested queries

• We can nest queries because SQL is compositional:
- Everything (inputs / outputs) is represented as multisets
- the output of one query can thus be used as the input to another (nesting)
- Subqueries return relations

• This is extremely powerful!

SELECT ...
FROM ...
WHERE ...

(SELECT ...
FROM ...
WHERE ...)

Outer block

Inner block

We only focus on nestings
in the WHERE clause,
which is the most
expressive type of nesting

48

Subqueries in WHERE
What do these queries compute?

SELECT a
FROM R
WHERE a IN

(SELECT * from U)
?

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT * from U)

SELECT a
FROM R
WHERE a < ALL

(SELECT * from U)

U
a
2
3
4

?

?

49

Subqueries in WHERE
What do these queries compute?

SELECT a
FROM R
WHERE a IN

(SELECT * from U)

Since 2 is in the set (bag)
(2, 3, 4)

a
2

R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT a from U)

a
1
2

SELECT a
FROM R
WHERE a < ALL

(SELECT * from U)

a
1

U
a
2
3
4

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

305

50

Correlated subqueries

• In previous cases, the nested subquery in the inner select block
could be entirely evaluated before processing the outer select block.

• This is no longer the case for correlated nested queries.
• Whenever a condition in the WHERE clause of a nested query

references some column of a table declared in the outer query, the
two queries are said to be correlated.

• The nested query is then evaluated once for each tuple (or
combination of tuples) in the outer query.

53

Correlated subquery (existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (1, 2)

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

54

Correlated subquery (existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 25)

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Set membership"

315

55

Correlated subquery (existential)

Existential quantifiers $

Using EXISTS:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid

and P.price < 25)

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Test for empty relations"

Correlated subquery

EXISTS is true iff the subquery's result is not empty

315

56

Correlated subquery (existential)

Existential quantifiers $

Using ANY (also some):

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ANY (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Set comparison"

Correlated subquery

315

57

Correlated subquery (existential)

Existential quantifiers $

Now, let's unnest:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid

and P.price < 25

Existential quantifiers are easy ! J

Product (pname, price, cid)
Company (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

58

Correlated subquery (universal)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Q: Find all companies for which all products have price < 25!

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

same as:

Product (pname, price, cid)
Company (cid, cname, city)

315

59

Correlated subquery (exist not -> universal)

2. Find all companies s.t. all their products have price < 25!

1. Find the other companies: i.e. they have some product ³ 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 25)

Q: Find all companies that make only products with price < 25!
315

60

Correlated subquery (exist not -> universal)

Using NOT EXISTS:

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *

FROM Product P
WHERE C.cid = P.cid

and P.price >= 25)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Product (pname, price, cid)
Company (cid, cname, city)

315

61

Correlated subquery (exist not -> universal)

Using ALL:

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

SELECT DISTINCT C.cname
FROM Company C
WHERE 25 > ALL (SELECT price

FROM Product P
WHERE P.cid = C.cid)

Product (pname, price, cid)
Company (cid, cname, city)

SQLlite does not support "ALL" L

315

62

A natural question

• How can we unnest the universal quantifier query ?

63

Queries that must be nested

• Definition: A query Q is monotone if:
- Whenever we add tuples to one or more of the tables…
- … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
- Proof: using the "nested for loops" semantics

• Fact: Query with universal quantifier is not monotone
- Add one tuple violating the condition. Then "all" returns fewer tuples

• Consequence: we cannot unnest a query with a universal quantifier

64

Outline: SQL (a refresher)

• SQL
– Schema and keys
– Joins
– Aggregates and grouping
– Nested queries (Subqueries)
– Understanding nested queries

65

The sailors database

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

66

More nested Queries 1

Q: Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

67

More nested Queries 2

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

They must have reser-
ved at least one boat in
another color

68

Once more: 3

Q: Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

They can have reserved 0 or more
boats in another color, but must
not have reserved any red boat

69

More nested Queries 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

70

SELECT S.sname
FROM Sailors S
WHERE not exists

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Once more: 5

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by him.

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

To understand semantics of
nested queries, think of a
nested loops evaluation: For
each Sailors tuple, check the
qualification by computing the
subquery

71

Once more: 1

Q: Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

72

Once more: 2

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Dashed lines represent
not exists ∄

They must have reser-
ved at least one boat in
another color

73

Once more: 3

Q: Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

They can have reserved 0 or more
boats in another color, but must
not have reserved any red boat

74

Once more: 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

75

Once more: 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Double lines represent
for all ∀

76

SELECT S.sname
FROM Sailors S
WHERE not exists

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Once more: 5

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by him.

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

77

SELECT S.sname
FROM Sailors S
WHERE not exists

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Once more: 5

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by him.

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

78

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

http://queryviz.com

http://queryviz.com/online

http://www.youtube.com/watch?v=kVFnQRGAQls

http://queryviz.com/online
http://www.youtube.com/watch%3Fv=kVFnQRGAQls

79

The person/bar/drinks example (formerly
drinkers/bars/beers, courtesy Jeff Ullman)

Find persons that frequent some bar that serves some drink they like.

Find persons that frequent only bars that serve some drink they like.

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

Find persons that frequent some bar that serves only drinks they like.

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Challenge: write these in SQL.
Solutions: http://queryviz.com/online/

331

http://queryviz.com/online/

80

The person/bar/drinks example (formerly
drinkers/bars/beers, courtesy Jeff Ullman)

Find persons that frequent some bar that serves some drink they like.

Find persons that frequent only bars that serve some drink they like.

Find persons that frequent only bars that serve only drinks they like.
(= Find persons who like all drinks that are served in all the bars they visit.)
(= Find persons for which there does not exist a bar they frequent that serves a drink they do not like.)

x: $y. $z. Frequents(x, y)ÙServes(y,z)ÙLikes(x,z)

x: "y. Frequents(x, y)Þ ($z. Serves(y,z)ÙLikes(x,z))

x: "y. Frequents(x, y)Þ "z.(Serves(y,z) Þ Likes(x,z))
x: ∄y. Frequents(x, y) Ù ($z.Serves(y,z) Ù ∄z2. Likes(x,2z))

Find persons that frequent some bar that serves only drinks they like.
x: $y. Frequents(x, y)Ù"z.(Serves(y,z) Þ Likes(x,z))

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink)

Challenge: write these in SQL.
Solutions: http://queryviz.com/online/

331

http://queryviz.com/online/

81

Revisiting our question
from last time

82

How to deal with cut-offs when binning

• These are the true points that you
would get if you could run the
experiments long enough.
- Assume loglog scale

• However, we can't and thus in
practice cut-off the experiments after
some time.

• There is an overall trend, yet some
variation for each experiment. We
would still like to capture the trend
with some smart aggregations

Time
cut-off

Size

Time

83

How to deal with cut-offs when binning

• Here is what the aggregate would
look like like if we could get all points
and then aggregated for each size

Time
cut-off

Size

Time

84

How to deal with cut-offs when binning

• Here is what happens if we throw
away all those points that take longer
than the cut-off, and only average
over the "seen points"

• What would you do?
Time
cut-off

Size

Time

85

How to deal with cut-offs when binning

• Here is what happens if we cut the
points off and still use the points, and
then average

Time
cut-off

Size

Time

86

How to deal with cut-offs when binning

• Only use those sizes for which all
experiments finish in time

Time
cut-off

Size

Time

87

How to deal with cut-offs when binning

• Here is what happens if we take the
median over all seen and cut-off
points

Time
cut-off

Size

Time

88

How to deal with cut-offs when binning

• Here is what happens if we take the
median over all seen and cut-off
points, as long as there are fewer
cut-off points than actual points

Time
cut-off

Size

Time

89

Some	type	of	error	guaran-
tees	(smaller	is	better)

101 102 103 104

Lineage Size

10�3

10�2

10�1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [Van der Heuvel+ SIGMOD 2019]

notice	the	log	scale!

MB	(prior):	model-based
10	random	bounds

90

101 102 103 104

Lineage Size

10�3

10�2

10�1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [Van der Heuvel+ SIGMOD 2019]

notice	the	log	scale!

MB	(prior):	model-based
10	random	bounds

Some	type	of	error	guaran-
tees	(smaller	is	better)

91

101 102 103 104

Lineage Size

10�3

10�2

10�1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [Van der Heuvel+ SIGMOD 2019]

notice	the	log	scale!

MB	(prior):	model-based
10	random	bounds

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

Some	type	of	error	guaran-
tees	(smaller	is	better)

92

101 102 103 104

Lineage Size

10�3

10�2

10�1

100

101

102

103

T
im

e
(s

ec
)

MB: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [Van der Heuvel+ SIGMOD 2019]

Median	time	to	
reach	a	certain	
error	guarantee	
for	fixed	lin.	size

MB	(prior):	model-based
10	random	bounds

93

101 102 103 104

Lineage Size

10�3

10�2

10�1

100

101

102

103

T
im

e
(s

ec
)

PGD: relative epsilon-approximation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Example: Experiments figures from [Van der Heuvel+ SIGMOD 2019]

PGD (our):	projected	
gradient	descent

94

101 102 103 104

Lineage Size

10�3

10�2

10�1

100

101

102

103

T
im

e
(s

ec
)

399x faster

MB and PGD: relative epsilon-approximation

MB 0.0
MB 0.2
MB 0.4
PGD 0.0
PGD 0.2
PGD 0.4

Example: Experiments figures from [Van der Heuvel+ SIGMOD 2019]

PGD (our):	projected	
gradient	descent

MB	(prior):	model-based
10	random	bounds

Take-away
• considerable	
speed-ups	
possible	J

median	>100	sec	(timed	out)

>	1000	x	faster

100	msec

