
1

T1: Data models and query languages
L2: Logic, relational calculus

Wolfgang Gatterbauer
CS7240 Principles of scalable data management (sp20)
https://northeastern-datalab.github.io/cs7240/sp20/
Version 1/10/2020

Updated 2/8/2020

https://northeastern-datalab.github.io/cs7240/sp20/

2

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

3

Logic in Computer Science and Databases
• Logic has had an immense impact on CS
• Computing has strongly driven one particular branch of logic: finite model theory

- That is, First-order logic (FOL) restricted to finite models
- Very strong connections to complexity theory
- The basis of various branches in Artificial Intelligence

• It is a natural tool to capture and attack fundamental problems in database management
- Relations as first-class citizens
- Inference for assuring data integrity
- Inference for question answering (queries)

• It has been used for developing and analyzing the relational model from the early days
(Codd, 1972)

7

Why has Logics turned out to be so powerful?

• Basic Question: What on earth does an obscure, old intellectual discipline
have to do with the youngest intellectual discipline?

• Cosma R. Shalizi, CMU:
- “If, in 1901, a talented and sympathetic outsider had been called upon (say, by a

granting-giving agency) to survey the sciences and name the branch that would be least
fruitful in century ahead, his choice might well have settled upon mathematical logic, an
exceedingly recondite field whose practitioners could all have fit into a small
auditorium. It had no practical applications, and not even that much mathematics to
show for itself: its crown was an exceedingly obscure definition of cardinal numbers.”

Source: Moshe Vardi: Database Queries - Logic and Complexity

8

Back to The Future

• M. Davis (1988): Influences of Mathematical Logic on Computer Science:
- “When I was a student, even the topologists regarded mathematical logicians as living in

outer space. Today the connections between logic and computers are a matter of
engineering practice at every level of computer organization.”

• Question: Why on earth?

Source: Moshe Vardi: Database Queries - Logic and Complexity

9Source: Moshe Vardi: Database Queries - Logic and Complexity

Birth of Computer Science: 1930s

• Church, Gödel, Kleene, Post, Turing: Mathematical proofs have to
be “machine checkable” - computation lies at the heart of
mathematics!
- Fundamental Question: What is “machine checkable”?

• Fundamental Concepts:
- algorithm: a procedure for solving a problem by carrying out a precisely

determined sequence of simpler, unambiguous steps
- distinction between hardware and software
- a universal machine: a machine that can execute arbitrary programs
- a programming language–notation to describe algorithms

10

Leibniz’s Dream

An Amazing Dream: a universal mathematical language, lingua
characteristica universalis, in which all human knowledge can be
expressed, and calculational rules, calculus ratiocinator, carried out by
machines, to derive all logical relationships
• “If controversies were to arise, there would be no more need of

disputation between two philosophers than between two
accountants. For it would suffice to take their pencils in their hands,
and say to each other: Calculemus–Let us calculate.”

Source: Moshe Vardi: Database Queries - Logic and Complexity

12

Example: Aristotle’ Syllogisms

• “All men are mortal”

• “For all x, if x is a man, then x is mortal”

• (∀x)(Man(x) → Mortal(x))

Source: Moshe Vardi: Database Queries - Logic and Complexity

13

Logic and Databases

Two main uses of logic in databases:

• Logic is used as a database query language to express questions
asked against databases.

• Logic is used as a specification language to express integrity
constraints in databases.

We will discuss mainly the first: query languages

Source: Phokion Kolaitis

14

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

15

First-Order Logic

• A formalism for specifying properties of mathematical structures,
such as graphs, partial orders, groups, rings, fields, . . .

• Mathematical Structure:
- A = (D, R1, . . . , Rk, f1, . . . , fl),
- D is a non-empty set – universe, or domain
- Ri is an m-ary relation on D, for some m (that is, Ri ⊆ Dm)
- fj is an n-ary function on D, for some n (that is, fi: Dn → n)

Source: Moshe Vardi: Database Queries - Logic and Complexity

17

First-Order Logic on Graphs

Syntax:
• First-order variables: x, y, z, . . . (range over nodes)
• Atomic formulas: E(x, y), x = y
• Formulas: Atomic Formulas + Boolean Connectives (∨, ∧, ¬) + First-

Order Quantifiers (∃x, ∀x)

Source: Moshe Vardi: Database Queries - Logic and Complexity

18

Examples

• “node x has at least two distinct neighbors”

• “each node has at least two distinct neighbors”

Source: Moshe Vardi: Database Queries - Logic and Complexity

19

Examples

• “node x has at least two distinct neighbors”
- (∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z))
- Concept: x is free in the above formula, which expresses a property of nodes.

• “each node has at least two distinct neighbors”

Source: Moshe Vardi: Database Queries - Logic and Complexity

20

Examples

• “node x has at least two distinct neighbors”
- (∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z))
- Concept: x is free in the above formula, which expresses a property of nodes.

• “each node has at least two distinct neighbors”
- (∀x)(∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z))
- Concept: The above is a sentence, that is, a formula with no free variables; it expresses

a property of graphs.

Source: Moshe Vardi: Database Queries - Logic and Complexity

We will sometimes use ∃x,y,z as short form for ∃x∃y∃z

21

Semantics of First-Order Logic

Semantics:
• First-order variables range over elements of the universes of

structures
• To evaluate a formula ϕ, we need a graph G and a binding α that

maps the free variables of ϕ to nodes of G
Notation: G ⊧α ϕ(x1, . . . , xk)

24

Relational Databases

Codd’s Two Fundamental Ideas:

• Tables are relations: a row in a table is just a tuple in a relation;
order of rows/tuples does not matter!

• Formulas are queries: they specified the what rather then the how
declarative programming!

Source: Moshe Vardi: Database Queries - Logic and Complexity

27

3 Components of FOL

1. Syntax (or language)
- What are the allowed syntactic expressions?
- DB world: schema, constraints, query language

2. Interpretation
- Mapping symbols to an actual world
- DB world: database

3. Semantics
- When is a statement “true” under some interpretation?
- DB world: meaning of constraint satisfaction and query results

28

• Alphabet: symbols in use
- Variables, constants, function symbols, predicate symbols, connectives, quantifiers, punctuation symbols

• Term: expression that stands for an element or object
- Variable, constant
- Inductively f(t1,…,tn)	where ti are terms, f a function symbol

• (Well-formed) formula: parameterized statement
- Atom p(t1,…,tn) where p is a predicate symbol, ti terms (atomic formula, together with predicates t1=t2)
- Inductively, for formulas F, G, variable X:

F⋀G F⋁G ¬F F⟶G F⟷G ∀𝑋F ∃𝑋F

• A first-order language refers to the set of all formulas over an alphabet

Components of FOL: (1) Syntax

relation b/w objects

MotherOf(MotherOf(x))

terms

vocabulary

Also see ch 3.7.1 of Fagin et al: Reasoning about knowledge, 2003.

29

Components of FOL: (2) Interpretation

• An interpretation INT for an alphabet consists of:
- A non-empty set Dom, called domain

• {Alice, Bob, Charly}

- An assignment of an element in Dom to each constant symbol
• Alice

- An assignment of a function Domn⟶Dom to each n-ary function symbol
• Alice = MotherOf(Bob)

- An assignment of a function Domn⟶{true,	false} (i.e., a relation) to each n-ary
predicate symbol
• Friends(Bob, Charly) = TRUE

30

Components of FOL: (3) Semantics
• A variable assignment to a formula in an interpretation INT assigns to each free variable X

a value from Dom
- A free variable is one used without quantification

• Truth value for formula F under interpretation INT and variable assignment V:
- Atom p(t1,…,tn): q(s1,…,sn) where q is the interpretation of the predicate p and si the interpretation of ti
- F⋀G F⋁G ¬F F⟶G F⟷G: according to truth table

- ∃𝑋𝐹: true iff there exists d∈Dom such that if V assigns d to X then the truth value of F is true;
otherwise false

- ∀𝑋𝐹: true iff for all d∈Dom, if V assigns d to X then the truth value of F is true; otherwise false

• If a formula has no free vars (closed formula or sentence), we can simply refer to its truth
value under INT

Person(X) ∃Y Married(X,Y)

∀X: Person(X) ⟶	Mortal(X)

31

Operator precedence

Source: http://intrologic.stanford.edu/glossary/operator_precedence.html

http://intrologic.stanford.edu/glossary/operator_precedence.html

34

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

35

Entire Story in One Slide

1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on
the domain from which values are taken [domain dependence]

3. We cannot test whether an RC query is “good,” but we can use a ”good”
subset of RC that captures all “good” queries [safety]

4. “Good” RC and RA can express the same queries! [equivalence]

36

Relational Calculus (RC)

• RC is, essentially, first-order logic (FO) over the schema relations
- A query has the form “find all tuples (x1,...,xk) that satisfy an FO condition”

• RC is a declarative query language
- Meaning: a query is not defined by a sequence of operations, but rather by

a condition that the result should satisfy

37

Queries and the connection to logic and algebra

• Why logic?
– A crash course on FOL

• Relational Calculus
– Syntax and Semantics
– Domain Independence and Safety

• Relational Algebra
– Operators
– Independence
– Power of algebra: optimizations

• Equivalence RC and RA

39

RC Query

{ (x,u)	|	Person(u,	'female',	'Canada')	⋀
∃y,z[Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	}

Which relatives does
this query find?

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

x

y

z

w u
ParentParent

Parent Spouse

assume symmetric relation
(a,b)∊Spouse ⇔ (b,a)∊Spouse

Example by Benny Kimelfeld

40

RC Symbols

• Constant values: a, b, c, female, Canada, ...
- Values that may appear in table cells

• Variables: x, y, z, ...
- Range over the values that may appear in table cells

• Relation symbols: R, S, T, Person, Parent, ...
- Each with a specified arity
- Will be fixed by the relational schema at hand
- No attribute names, only attribute positions!

• Unlike general FOL, no function symbols!

41

Atomic RC Formulas

• Atomic formulas:
- R(t1,...,tk)

• R is a k-ary relation
• Each ti is a variable or a constant
• Semantically it states that (t1,...,tk) is a tuple in R

Example: Person(x, 'female', 'Canada')

- x op u
• x is a variable, u is a variable/constant, op is one of >, <, =, ≠
• Simply binary predicates, predefined interpretation

Example: x=y, y≠w, z>5, z='female'

42

RC Formulas

• Formula:
- Atomic formula
- If φ and ψ are formulas then these are formulas:

φ ⋀	ψ φ ⋁	ψ φ → ψ φ → ψ ¬φ ∃x	φ ∀x	φ

Person(u,	'female',	'Canada')	⋀
∃y,z[Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]

43

Free Variables

• Intuitively: free variable are not bound to quantifiers
• Formally:

- A free variable of an atomic formula is a variable that occurs in the atomic formula

- A free variable of φ ⋀	ψ,φ ⋁	ψ,	φ ⟶ ψ is a free variable of either φ or ψ

- A free variable of ¬φ is a free variable of φ

- A free variable of ∃x φ and ∀x φ is a free variable y of φ such that y≠x
• We write φ(x1,...,xk) to state that x1,...,xk are the free variables of φ (in some

order)

44

What Are the Free Variables?

Person(u,	'female',	'Canada')	⋀
∃y,z[Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

x

y

z

w u
ParentParent

Parent Spouse

Example by Benny Kimelfeld

45

What Are the Free Variables?

Person(u,	'female',	'Canada')	⋀
∃y,z[Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

x

y

z

w u
ParentParent

Parent Spouse Notation:

φ(x,u) / CanadianAunt(u,x)
Example by Benny Kimelfeld

46

RC query

Person(u,	'female',	'Canada')	⋀
∃y,z[Parent(z,y)	⋀	Parent(y,x)	⋀	

∃w [Parent(z,w)	⋀	y≠w ⋀		(u=w ⋁	Spouse(u,w))]]	

x

y

z

w u
ParentParent

Parent Spouse

{ (x,u)	|

}

{	(x1,...,xk)	| φ(x1,...,xk)	}

φ(x,u) / CanadianAunt(u,x)
Example by Benny Kimelfeld

47

Relation Calculus Query

• An RC query is an expression of the form

{	(x1,...,xk)	|	φ(x1,...,xk)	}
where φ(x1,...,xk) is an RC formula

• An RC query is over a relational schema S if all the relation symbols
belong to S (with matching arities)

some condition on the variables
COND(x1,...,xk)

48

DRC vs. TRC

• There are two common variants of RC:
- DRC: Domain Relational Calculus (what we're doing)
- TRC: Tuple Relational Calculus

• DRC applies vanilla FO: terms interpreted as attribute values, relations have
arity but no attribute names

• TRC is more “database friendly”: terms interpreted as tuples with named
attributes

• There are easy conversions between the two formalisms (nothing deep)

49

Our Example in TRC

{ t | ∃a [a∈ Person ⋀ a.gender = 'female' ⋀ a.country = 'Canada'] ⋀
∃p,q [p∈ Parent⋀ p.child = t.nephew ⋀ q∈ Parent ⋀ q.child = p.parent] ⋀

∃w [w∈ Parent ⋀ w.parent = q.parent ⋀ w.child ≠ q.child ⋀
((t.aunt = w.child ⋀ t.aunt = a.id) ⋁ ∃s [s∈ Spouse ⋀
s.person1 = w.child ⋀ s.person2 = t.aunt ⋀ t.aunt = a[id]])]]]}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

p

q w
s

Notice we prefer and follow here the notation of [Ramakrishnan, Gehrke' 03] and [Elmasri, Navathe'15] of using a.gender = 'female' instead of the alternative notation a[gender]='female'
used by [Silberschatz, Korth, Sudarshan 2010]

50

Our Example in TRC

{ t | ∃a ∈ Person [a.gender = 'female' ⋀ a.country = 'Canada'] ⋀
∃p,q ∈ Parent [p.child = t.nephew ⋀ q.child = p.parent] ⋀

∃w∈ Parent [w.parent = q.parent ⋀ w.child ≠ q.child ⋀
((t.aunt = w.child ⋀ t.aunt = a.id) ⋁ ∃s [s∈ Spouse ⋀
s.person1 = w.child ⋀ s.person2 = t.aunt ⋀ t.aunt = a[id]])]]]}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

p

q w
s

Notice we prefer and follow here the notation of [Ramakrishnan, Gehrke' 03] and [Elmasri, Navathe'15] of using a.gender = 'female' instead of the alternative notation a[gender]='female'
used by [Silberschatz, Korth, Sudarshan 2010]

often used short forms:
∀x∊R[φ] same as ∀x[x∊R ⇒ φ]
∃x∊R[φ] same as ∃x[x∊R ⋀ φ]

51

Our Example in TRC

{ t | ∃a ∈ Person [a.gender = 'female' ⋀ a.country = 'Canada'] ⋀
∃p,q ∈ Parent [p.child = t.nephew ⋀ q.child = p.parent] ⋀

∃w∈ Parent [w.parent = q.parent ⋀ w.child ≠ q.child ⋀
((t.aunt = w.child ⋀ t.aunt = a.id) ⋁ ∃s [s∈ Spouse ⋀
s.person1 = w.child ⋀ s.person2 = t.aunt ⋀ t.aunt = a[id]])]]]}

Person(id, gender, country)
Parent(parent, child)
Spouse(person1, person2)

tuple variables like in SQL instead of
domain variables: {t | COND(t)}

p

q w
s

Notice we prefer and follow here the notation of [Ramakrishnan, Gehrke' 03] and [Elmasri, Navathe'15] of using a.gender = 'female' instead of the alternative notation a[gender]='female'
used by [Silberschatz, Korth, Sudarshan 2010]

