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Outline: Acyclic conjunctive queries

» Acyclic conjunctive queries
— The semijoin operator
— Join trees & Yannakakis algorithm
— Query hypergraphs & GYO reduction
— A detailed Yannakakis example
— Full semijoin reductions
» Cyclic conjunctive queries
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Semijoin Reducer
Q(xyz) = R(x,y) P S(y,z) > T(z, w)

A full reducer is
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Semijoin Reducer

Qxyz) = R(x,y) > S(y, z) M T(z, w)

A full reducer is

R(x,y)

S(y,z)

T(z,w)
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Semijoin Reducer
Q(xyz) = R(x,y) P S(y,z) > T(z, w)

A full reducer is

R(x,y)

S(y,z)

T(z,w)

S1(y,2) =S(y,z) X R(X,y)

T1(z,y) =T(zy) X S5:(y,2)
SZ(ZJ Y) — Sl(Y} Z) X Tl(Zi Y)
Ri(x,¥) =R(x,y) X S,(y,z)

The rewritten query is

?
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Semijoin Reducer
Q(xyz) = R(x,y) P S(y,z) > T(z, w)

A full reducer is

RO%Y) =1 S(y,2) —(T(z,W)

S1(y,2) =S(y,z) X R(X,y)

T1(z,y) =T(zy) X S5:(y,2)
SZ(ZJ Y) — Sl(Y} Z) X Tl(Zi Y)
Ri(x,¥) =R(x,y) X S,(y,z)

The rewritten query is

Q(x,y,z) = Ri(x,y) D<IS,(y,z) > Ty(z, w)
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Semi-join reducers GYO ear removal
* remove isolated nodes (variables)

* remove consumed or empty edges (atoms)

Q(X,y,Z) . R(le)) S(y,Z), T(X,Z)

Join tree Query hypergraph
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Semi-join reducers GYO ear removal
* remove isolated nodes (variables)

* remove consumed or empty edges (atoms)

Q(X,y,Z) . R(le)) S(y,Z), T(X,Z)

Join tree R ]
?
2/ N\
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Semi-join reducers GYO ear removal
* remove isolated nodes (variables)

* remove consumed or empty edges (atoms)

Q(X,y,Z) . R(le)) S(y,Z), T(X,Z)

T(x,z)
R S
S(y,z)
I ; L/ N\
N
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Semi-join reducers GYO ear removal
* remove isolated nodes (variables)

* remove consumed or empty edges (atoms)

Q(X,y,Z) . R(le)) S(y,Z), T(X,Z), W(X,y,Z)

Join tree Query hypergraph
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Semi-join reducers GYO ear removal
* remove isolated nodes (variables)

* remove consumed or empty edges (atoms)

Q(X,y,Z) . R(le)) S(y,Z), T(X,Z), W(lelz)

Jon tree

?
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Semi-join reducers GYO ear removal
* remove isolated nodes (variables)

* remove consumed or empty edges (atoms)

Q(X,y,Z) . R(le)) S(y,Z), T(X,Z), W(lelz)

W(x,y,z)

Full reducer

R(x,y) S(yz) T(x,2)

112



Semi-join reducers

Q(X,y,Z) . R(le)l S(y,Z), T(XIZ)I

(X,y,2)

R(x,y)

S(y,z)

T(x,z)

GYO ear removal
* remove isolated nodes (variables)
* remove consumed or empty edges (atoms)

(x,y,2)

Xy,2) =W(xYy,2) XR(XY)

X y,2) = Wi(xy,2) XS(,2)

xy,z) =W,(xy,2) X T(x,2)
Ri(x,y) =R(x,y) X Ws(X,y,2)
S1(y,z) =S(y,z) x W;(x,y,2)
Ti(x,z) =T(x,z) x W;(X,V,27)

Q(xy,z) = Ri(x,y)>S,(y, )T (X, 2) DAV (X, Y, 2)

?
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Semi-join reducers GYO ear removal
* remove isolated nodes (variables)

* remove consumed or empty edges (atoms)

Q(X,y,Z) . R(le)l S(y,Z), T(X,Z), (XIyIZ)

Xy,2) =W(xYy,2) XR(XY)
X y,2) = Wi(xy,2) XS(,2)
(x,y,2z) = W,(xV,z) X T(x,z)

x|ylz
LA I Ri(xy) = R(x,y) % W.(x,y,2)
S1(y,z) =S(y,z) x W;(x,y,2)
Ti(x,z) =T(x,z) x W;(X,V,27)
R(x,y) S(y2) Tx2)|  Q(xyz) = Ri(x, ; X, Z)D>}IW;(X,y, Z)
1[5 a1 11
2| a al 2 212 Q®Yz) = Ri(x y)XIWs(X,y, 2)>S,(y, 2) T, (%, 2)
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Semi-join reductions can be extremely powerful

429 - # minimal plans (right axis) cot0 6. Deterministic semi-join reduction

The most expensive operations in probabilistic query plans
are the group-bys for the probabilistic project operations.
These are often applied early in the plans to tuples which
are later pruned and do not contribute to the final query re-
04 sult. Our third optimization is to first apply a full semi-join
reduction on the input relations before starting the proba-
bilistic evaluation from these reduced input relations.

Opj1-2
‘ 720

N~

120

Query time [sec]

. Standard SQL
| | | | |

g : Standard SQL
Y | S S S e— We like to draw here an important connection to [54],
Size of query (k) Size of query (k) which introduces the idea of “lazy plans” and shows orders
(a) k-chain queries (b) k-star queries of magnitude performance improvements for safe plans by
computing confidences not after each join and projection,
Fig. 16 While the query complexity is exponential (number of min- but rather at the very end of the plan. We note that our semi-
imal plans are shown on the right side), our optimizations can even join reduction serves the same purpose with similar perfor-
evaluate a very large number of minimal plans (here shown up to 429 mance improvements and also apply for safe queries. The
for a 8-chain query and 5040 (!) for a 7-star query). advantage of semi-join reductions, however, is that we do

not require any modifications to the query engine.

Source: Gatterbauer, Suciu. Dissociation and propagation for approximate lifted inference with standard relational database management systems, VLDBJ 2017. https://arxiv.org/pdf/1310.6257
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Outline: Cyclic conjunctive queries

» Acyclic conjunctive queries
 Cyclic conjunctive queries evcles make everything
— 2SAT (a detour) more complicated ®
— Tree decompositions
— AGM bound (join processing of cyclic queries)
— Duality in Linear programming (a quick primer)
— Worst-case optimal joins
— Hypertree & other decompositions
— Optimal joins
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Why cyclic queries (other than social networks)

Likes(person, drink)
Frequents(person, bar)
Serves (bar, drink, cost)

2. Specify or choose a Query Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like. H

Source: http://queryviz.com/online/
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Why cyclic queries (other than social networks)

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink, cost)

2. Specify or choose a Query Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like. (v

Serves

bar
bar
peErson person
N\\\\\ drink
person

Source: http://queryviz.com/online/
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Why cyclic queries (other than social networks)

Likes(person, drink)
Frequents(person, bar)
Serves(bar, drink, cost)

2. Specify or choose a Query Supported grammar

104 Bars: Persons who frequent some bar that serves some drink they like. [T |

SELECT Fl.person

FROM Frequents F1
WHERE exists
(SELECT *
FROM Serves S2
WHERE S2.bar = Fl.bar
AND exists
(SELECT =*
FROM Likes L3

WHERE L3.person = Fl.person
AND S2.drink = L3.drink))

Source: http://queryviz.com/online/
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Joins in databases: one-at-a-time

Efficient multi-way join processing
Qx,y,2) - R(xy), Sly,2), T(x,2) ‘/Q

Three plans <

e RXS)XT X=X
¢ (SaT) ™R N/Z'Z T

. y=y
(TMR) NS s \S

Can we do better for cyclic queries? ©
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Outline: Cyclic conjunctive queries

» Acyclic conjunctive queries
» Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— AGM bound (join processing of cyclic queries)
— Duality in Linear programming (a quick primer)
— Worst-case optimal joins
— Rypertree & other decompositions
— Optimal joins
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2SAT P = (X\/y)/\(—|y\/Z)/\(—|X\/—IZ)/\(Z\/y)

e Instance: A 2-CNF formula ¢
e Problem: To decide if ¢ is satisfiable

« Theorem: 2SAT is polynomial-time decidable.

— Proof: We’ll show how to solve this problem efficiently using path searches
in graphs...

e Background: Given a graph G=(V,E) and two vertices s,teV, finding if
there is a path from s to tin G is polynomial-time decidable. Use
some search algorithm (DFS/BFS).
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Vertex for each variable and a negation of a variable

e Edge (—x—v) iff there exists a clause equivalent to (x\vy)
- Recall (xvvy) same as (—x=v) and (—y=x), thus also (—y—>x)
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Claim: a 2-CNF formula ¢ is unsatisfiable iff there exists a variable x,
such that:

— there is a path from x to —x in the graph, and

— there is a path from —x to x in the graph
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2SAT: Graph Construction g = (xvy)A(—yvz)A(=xv—z)A(zvy)

e Claim: a 2-CNF formula ¢ is unsatisfiable iff there exists a variable x,
such that:

— there is a path from x to —x in the graph, and

— there is a path from —x to x in the graph

not evough,
needs both directions!
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Correctness (1) O = (XVY)A(=yVZ)A(=xv—z)A(zVvY)

e Suppose there are paths x..—x and —x..x for some variable x, but
there’s also a satisfying assighment
- If
D—> . —@

— Similarly for

recall, needs +o hold 1 both directions!
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Correctness (2) O = (XVY)A(=yVZ)A(=xv—z)A(zVvY)

e Suppose there are no such paths.
e Construct an assignment as follows:

1. pick an unassigned literal o, with no
path from o to —a, and assign it T

2. assign T to all
reachable vertices

3. assign F to their
negations

4. Repeat until all vertices are
assigned
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Outline: Cyclic conjunctive queries

» Acyclic conjunctive queries
» Cyclic conjunctive queries
— 2SAT (a detour)
— Tree decompositions
— AGM bound (join processing of cyclic queries)
— Duality in Linear programming (a quick primer)
— Worst-case optimal joins
— Hypertree & other decompositions
— Optimal joins
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Definition of an attribute-connected tree (also running

intersection property or coherence)

AB

BC

CD

AE

EF

EN

NK

A tree is attribute-connected if
the sub-tree induced by each
attribute is connected
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Tree decomposition

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one
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Tree decomposition ... of a tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

?
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Tree decomposition ... of a tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) : Every vertex of G is assigned least one vertexin T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The is the size of its largest set minus one

O—®

{a,b} {b,c}

That's why defined as max cardinality - 1
139



Tree decomposition example

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

C © 3

Source: https://en.wikipedia.org/wiki/Tree _decomposition
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Tree decomposition example

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one
(1)
\ o /

E
Ny <2 & \_,___5
O—E—0) o \EG\.
|' | | |
| D E | H |
\—/ Treewidth =2 \—/
Source: https://en.wikipedia.org/wiki/Tree decomposition Notice running intersection property
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Tree decomposition example

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

g h

e
. tree decomposition
- - ?
0'0

(2

]
Source: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures past/\WWS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pdf

142


https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures_past/WS0910/V____Discrete_Mathematics_for_Bioinformatics__P1/material/scripts/treedecomposition1.pdf

Tree decomposition example

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T
(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

Source: https://www.mi.fu-berlin.de/en/inf/groups/abi/teaching/lectures/lectures past/\WWS0910/V Discrete Mathematics for Bioinformatics P1/material/scripts/treedecomposition1.pdf
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Tree decomposition of a cycle

A tree decomposition of graph G(N, E) is a tree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) Coherence: The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

/@ b
ORI 2
\ /

4
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Tree decomposition of a cycle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

P

o
= Y BHEOOE

& @
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Tree decomposition of a triangle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

tree decomposition

?
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Tree decomposition of a triangle

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

LN FeF
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Tree decomposition of a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) Node coverage: Every vertex of G is assigned least one vertexin T

(2) Edge coverage: For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The width of a tree decomposition is the size of its largest set minus one

e tree decomposition
0200 :
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Tree decomposition of a longer tree

A of graph G(N, E) is atree T(V, F) and a subset
N, € N assignhed to each vertex v € V s.t.:

(1) : Every vertex of G is assigned least one vertexin T

(2) : For every edge e of G, there is a vertex in T that contains both ends of e
(3) : The tree is "attribute-connected"

The is the size of its largest set minus one

©
D :
Y00 e
af* D
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Tree decomposition

Source: 2017 - Marx - Graphs, hypergraphs, and the complexity of conjunctive database queries
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Tree decomposition

Source: 2017 - Marx - Graphs, hypergraphs, and the complexity of conjunctive database queries
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Tree decomposition

A subtree communicates with the outside world
only via the root of the subtree.

Source: 2017 - Marx - Graphs, hypergraphs, and the complexity of conjunctive database queries
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Outline: Cyclic conjunctive queries

— AGM bound (join processing of cyclic queries)



Background: MAX independent (vertex) set < MIN edge cover

Independent Set Minimum Edge Cover

Maximal Independent Set Maximum Independent Set Edge Cover Edge Cover

« Assume graph G is connected. Thus, every vertex has at least one edge (unless just one vertex)
e Suppose Sis an independent set and E is an edge cover.

e« Then for each vertex vES there exists at least one edge e€E incident with v.

e By definition of independent set no two u,vES, have a common edge in E.

e Therefore |S|<|E|

Source of figures: http://www.csie.ntnu.edu.tw/~u91029/Domination.html 169
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What do we know about
bounding the size of the
answer

(...and enumerating all solutions)

Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf 171
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Upper bound

Observation: If the hypergraph has edge cover number p and
every relation has size at most N, then there are at most N? tuples
in the answer.

Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf 172
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Upper bound

Observation: If the hypergraph has edge cover number p and
every relation has size at most N, then there are at most N? tuples
in the answer.

Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf 173
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Lower bound

Observation: If the hypergraph has independence number «, then
one can construct an instance where every relation has size N at
the answer has size N“.

Definition of the relations:
@ If variable A is in the independent set, then it can take any
value in [N].

@ Otherwise it is forced to 1.
Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf 174



http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

Which is tight: the upper bound or the lower bound?

Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf 175
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Example: triangles

0%

-

Two kind of values for Aj:

o Light: can be extended to at most /N ways to As.
= < N -+/N answers with light A;

o Heavy: can be extended to at least v/ ways to As.
= < +/N heavy values = < /N - N answers with heavy A;

— At most 2 - N3/2 answers.

Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf

Upper bound
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Example: triangles

%

(oammy

Allow every variable to be any value from [v/N] = N3/2 answers.

Lower bound

The correct bound N3/2 is between
N = N and NP = N?.

Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf 177
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Fractional values

@ «: independence number

@ a”: fractional independence number
(max. weight of vertices s.t. each edge contains weight < 1)

@ p*: fractional edge cover number
(min. weight of edges s.t. each vertex receives weight > 1)

@ p: edge cover number

LP duality!

1
2
< -
(o ey VOARERN )Y
> ;
=] o =33 g=31 p=2

Source: Daniel Marx. Graphs, hypergraphs, and the complexity of conjunctive database queries. ICDT 2017: http://edbticdt2017.unive.it/marx-icdt2017-talk.pdf 178
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Outline: Cyclic conjunctive queries

— Duality in Linear programming (a quick primer)



Dual Optimization Problem

e A maximization problem M and a minimization problem N,
defined on the same instances (such as graphs) such that:

1. for every candidate solution M to M and every candidate solution N to N,
the value of M is less than or equal to the value of N

2. obtaining candidate solutions M and N that have the same value proves
that M and N are optimal solutions for that instance.
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A quick primer on Duality in Linear Programming

max i1 + 6x9
z1 < 200
ro < 300
1 + o < 400

X1, T2 Z 0

optimum solution to be (z1,z2) = (100, 300)

objective value 1900

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf 183
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A quick primer on Duality in Linear Programming

max i1 + 6x9

r1 <200 x1

Ty <300 X6

T1 + 10 <400 X0
5 By 2 ()

r1 + 6z < 2000

upper bound!

optimum solution to be (z1,z2) = (100, 300)

objective value 1900

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf 184
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A quick primer on Duality in Linear Programming

max i1 + 6x9

r1 <200 xO0

Ty < 300 X3

1+ 1o <400 X1
5 By 2 ()

r1 + 622 < 1900

(0,5,1)... certificate of optimiality

optimum solution to be (z1,z2) = (100, 300)

objective value 1900

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf 185
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A quick primer on Duality in Linear Programming

max i1 + 6x9
z1 < 200
ro < 300
1 + o < 400

X1, T2 Z 0

non-negative!

Multiplier Inequality
x0 Y1 x1 < 200
X5 Y2 e < 300
¥ 1 Y3 r1 + x2 < 400

r1 + 622 < 1900

(0,5,1)... certificate of optimiality
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non-negative!

max i+ 6x2 Multiplier Inequality
z1 < 200 Y1 21 < 200
0 < 300 Yo x9 < 300
s i 2 0 Y3 r1 + z2 < 400
5 By 2 ()

(y1 +y3)z1 + (y2 + y3)ze <| 200y; + 300y, + 400y3

right side upper bound yi+ys>1
for (x, + 6x,) if Y, +Yy326
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Primal : (z1,z2) = (100,300); Dual: (y1,42,y3) = (0,5,1)

max i1 + 6x9
r1 < 200
ro < 300
1 + o < 400

X1, T2 Z 0

min 200y; + 300y2 4+ 400y3

y1+ys =1
y2+y3 > 6
ylny%ySZO

1

(y1 +y3)z1 + (y2 + y3)ze <| 200y; + 300y, + 400y3

right side upper bound yi+ys>1
for (x, + 6x,) if Y, +Yy326

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

188


http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

A quick primer on Duality in Linear Programming

Figure 7.10 A generic primal LP in matrix-vector form, and its dual.

Primal LP: Dual LP:
max ¢’ x min yTb
Ax<b y A >ct
x20 y >0
Primal LP: Dual LP:
max ¢121 + -+ ¢hln min b1y; + -+ 4+ bmYm
11 + -+ @intny, < b; foriel ajjy1 +- -+ amjym > ¢; for jeEN
a1 Ty ++apr, =b; forie E ay; +or + iy =cj forjg N
x; >0 forjeN ;>0 foriel
Primal Dual
* Primal feasible ﬂ[):t 0=pt Dual feasible . Objective
value

| |
This duality gap is zero
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https://doi.org/10.1145/2902251.2902280 (see also SIGMOD record 2017).
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