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Absorption (or the challenge with self-joins)

a

b
c

f = ∃x,y. x ∧ y ∧ (x,y) ∈ E
f is true if there is an edge

e1
e2

f = ?
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Absorption (or the challenge with self-joins)

a

b
c

f = ab ∨ ac

f = ∃x,y. x ∧ y ∧ (x,y) ∈ E
f is true if there is an edge

a

b
c

f = 

e1
e2 e1

e2

e3

?
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Absorption (or the challenge with self-joins)

a

b
c

f = ab ∨ ac

f = ∃x,y. x ∧ y ∧ (x,y) ∈ E
f is true if there is an edge

a

b
c

absorption

(𝜑1 ∨ 𝜑2) ∧ (𝜑1⇒𝜑2)
ac ∨ a

e1
e2 e1

e2

e3

f = a = ab ∨ ac ∨ aa

∧ (ac⇒a)
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Absorption

(A ∨ B) ∧ A = A

Absorption

(A min B) max A = A

~ A ∧ B = A(A min B) = A, if A ≤ B

Two binary operations, ∨ and ∧, are said to be connected by the absorption law if: 
a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

A set equipped with two commutative, associative and idempotent binary operations 
∨ ("join") and ∧ ("meet") that are connected by the absorption law is called a lattice. 
Examples of lattices include Boolean algebras, the set of sets with union and 
intersection operators, and ordered sets with min and max operations. 
https://en.wikipedia.org/wiki/Absorption_law

(A ∨ B) ∧ (A⇒B) = A

A ≤ B ⟺ A min B = A

https://en.wikipedia.org/wiki/Absorption_law
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Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries
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Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

Order of subgoals in the query 
does not matter (thus ~sets)

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation 
between these queries

Example by Andreas Pieris
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Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)} q3: {E(x,y),E(y,x)}

q5: {E(x,x)}q4: {E(x,y),E(y,x),E(y,y)}

?
What is the containment relation 
between these queries

x y z w

x

y

z

x y

xx y

Example by Andreas Pieris
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x y z w

Exercise: Find the Homomorphisms
q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)}

x

y

z

q3: {E(x,y),E(y,x)}
x y

q5: {E(x,x)}
x

q4: {E(x,y),E(y,x),E(y,y)}
x y

{x⟶x, y⟶y, z⟶x, w⟶y}
or {x⟶y, y⟶z, z⟶x, w⟶y}, etc.

{x⟶x, y⟶y, z⟶z, w⟶x}

Example by Andreas Pieris
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x y z w

Exercise: Find the Homomorphisms

{x⟶x, y⟶y, z⟶z, w⟶x}

q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)}

x

y

z

q3: {E(x,y),E(y,x)}
x y

{x⟶x, y⟶y, z⟶x, w⟶y}

q5: {E(x,x)}
x

q4: {E(x,y),E(y,x),E(y,y)}
x y

{x⟶y, y⟶x, z⟶y}
{x⟶y, y⟶y}

{x⟶x, y⟶x}

{x⟶y}

or {x⟶y, y⟶z, z⟶x, w⟶y}, etc.

or {x⟶y, y⟶y, z⟶y}, etc.

Example by Andreas Pieris
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x y z w

Exercise: Find the Homomorphisms

{x⟶x, y⟶y, z⟶z, w⟶x}

q1: {E(x,y),E(y,z),E(z,w)}

q2: {E(x,y),E(y,z),E(z,x)}

x

y

z

q3: {E(x,y),E(y,x)}
x y

{x⟶x, y⟶y, z⟶x, w⟶y}

q5: {E(x,x)}
x

q4: {E(x,y),E(y,x),E(y,y)}
x y

{x⟶y, y⟶x, z⟶y}
{x⟶y, y⟶y}

or {x⟶y, y⟶z, z⟶x, w⟶y}, etc.

or {x⟶y, y⟶y, z⟶y}, etc.

Example by Andreas Pieris
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Query Homeomorphism Practice

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

?Are these queries equivalent

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}
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Query Homeomorphism Practice

var(q1) = {x, u, v, y}

var(q2) = {x, u, v, w, t, y}

q1(x,y) :- R(x,u),R(v,u),R(v,y)

q2(x,y) :- R(x,u),R(v,u),R(v,w),R(t,w),R(t,y)

Thus q1 Í q2
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Minimizing Conjunctive Queries

• Goal: minimize the number of joins in a query
• Definition: A conjunctive query Q is minimal if there is no 

conjunctive query Q’ such that: 
1.  Q ≡ Q’
2.  Q’ has fewer atoms than Q

• The task of CQ minimization is, given a conjunctive query Q, to 
compute a minimal one that is equivalent to Q
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Minimization by Deletion

Theorem: Consider a conjunctive query Q1(x1,…,xk) :- body1.

If Q1 is equivalent to a conjunctive query Q2(y1,…,yk) :- body2  

where |body2| < |body1|, then Q1 is equivalent to a query 

Q3(x1,…,xk) :- body3 such that body3  ⊆ body1

The above theorem says that to minimize a conjunctive query Q1(x)  :-

body we simply need to remove some atoms from body

Can we shown by exploiting the homomorphism theorem…
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Conjunctive query minimization algorithm

• Repeat {
• Choose an atom α ∈ body
• Remove α from Q; let Q’ be the new query
• If there is a homomorphism from Q’ to Q, 

then body := body ∖ {α}
• Until no atom can be removed}

Minimize(Q(x) :- body)

Notice: the order in which we inspect subgoals doesn’t matter

Q Í Q’

Q’ Í Q
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Minimization Procedure: Example

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

a,b,c,d are constants

?Is this query minimal
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Minimization Procedure: Example

{y⟶b}

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

a,b,c,d are constants

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

?Is this query minimal
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Minimization Procedure: Example

{y⟶b}

{v⟶c}

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

a,b,c,d are constants

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x) :- R(x,b), R(a,b), R(u,c), S(a,c,d)

?Is this query minimal
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Minimization Procedure: Example

{y⟶b}

{v⟶c}

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

a,b,c,d are constants

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x) :- R(x,b), R(a,b), R(u,c), S(a,c,d)

Q(a) :-

{x⟶a}

R(a,b), R(u,c), S(a,c,d)

?Is this query minimal
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Minimization Procedure: Example

Minimal query

{y⟶b}

{v⟶c}

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

a,b,c,d are constants

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Q(x) :- R(x,b), R(a,b), R(u,c), S(a,c,d)

Mapping x⟶a is not valid since x is a distinguished variable

Q(a) :-

{x⟶a}

R(a,b), R(u,c), S(a,c,d)
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Uniqueness of Minimal Queries

Natural question: does the order in which we remove atoms from the 
body of the input conjunctive query matter?

Theorem: Consider a conjunctive query Q. Let Q1 and Q2 be minimal 
conjunctive queries such that Q1 ≡ Q and Q2 ≡ Q. Then, Q1 and Q2 are 
isomorphic (i.e., they are the same up to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization(Q) is 
unique (up to variable renaming) and is called the core of Q
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Query Minimization for Views Employee(name, university, manager)

CREATE VIEW NeuMentors

SELECT DISTINCT E1.name,E1.manager
FROM Employee E1, Employee E1 
WHERE E1.manger = E2.name
AND E1.university = ‘Northeastern’
AND E2.university= ‘Northeastern’

SELECT DISTINCT N1.name
FROM NeuMentors N1, NeuMentors N1 
WHERE N1.manger = N2.name

SELECT DISTINCT E1.name
FROM Employee E1, Employee E2, Employee E3, Employee E4
WHERE E1.manger = E2.name AND E1.manger = E3.name AND E3.manger = E4.name 
AND E1.university = ‘Northeastern’ AND E2.university = ‘Northeastern’
AND E3.university = ‘Northeastern’ AND E4.university = ‘Northeastern’

E1

View expansion (when you run a SQL query on a view)

E2
E3 E4

This query is no longer redundant!

This query is minimal

This query is minimal

Example adopted from Dan Suciu
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Outline: Complexity of Query Equivalence

• Query equivalence and query containment
– Graph homomorphisms
– Homomorphism beyond graphs
– CQ containment
– Beyond CQs
– CQ equivalence under bag semantics
– CQ minimization
– Nested queries
– Tree pattern queries
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Equivalence of nested queries

• Query equivalence is one of the foundational questions in database 
theory (and practice?)
- touches on logics and decidability
- what modifications allow tractability

• Lots of work (and open questions) on query equivalence
- But not so much on nested queries!

• Related to QueryViz project (http://queryviz.com) and two 
foundational questions on visual formalism: 
1. When can visual formalism unambiguously express logical statements?
2. When can equivalent logical statements be transformed to each other by 

a sequence of visual transformations? (Query equivalence)

http://queryviz.com/
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Diagrammatic reasoning systems and their expressiveness
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328 Volume 6, no. 3 (July 1996)

systems of logic diagrams make use of either closed curves or lines to
represent sets. Information about objects is taken to be information about
relations among sets of objects. Those relations are modelled by
appropriate geometric relations among the closed curves or lines of the
diagrams. So the key concept for successful systems of logic diagrams is
containment. Intuitively, members and subsets are contained in sets;
surfaces determined by closed curves are contained in other surfaces
determined by closed curves, and line segments are contained in longer line
segments. Leibniz struggled to bring out the pivotal role of containment
for reasoning, especially in his "General Inquiries About the Analysis of
Concepts and of Truth" [Parkinson 1966, 47 87]. Leibniz's goal for logic
was the unification of all kinds of inference (including those involving
categoricals, truth functions, relationale, and singular sentences). He says
([Parkinson 1966, 66]): "If, as I hope, I can conceive all propositions as
terms, and hypotheticals as categoricals, and if I can treat all propositions
universally, this promises a wonderful ease in my symbolism and analysis
of concepts, and will be a discovery of the greatest importance." Taking
categoricals as having the general logical form: subject contains predicate,
he went on to construe conditionals (hypotheticals) as having a similar
form: antecedent contains consequent. Indeed, valid arguments can be
viewed as: premises contain conclusion. One who, like Leibniz, takes
containment to be the key logical concept, and who recognizes the obvious
way in which lines and closed curves literally contain lines and closed
curves, could not ignore Shin's call to the view that diagrams can
constitute a viable medium for logical reckoning.

Still, not all relations can be viewed as membership or inclusion. Shin
has been careful throughout her book to restrict herself to monadic
systems. Relations per se (polyadic predicates) are not considered. And
while it may be true that the formation of a system (such as Venn  ) that
is provably both sound and complete would help mitigate the prejudice
among logicians against diagrams, it will not eliminate that prejudice.
What is still required is a system of logic diagrams that can, like the first 
order predicate calculus with identity, handle categoricals, truth functions,
relationale, and singulars. (For an attempt to do this using linear diagrams
see Englebretsen 1992], for a nonlinear system see [Rybak & Rybak 1976;
1984; 1984a].)

I have, as well, a less important reservation about this book. In
establishing her claim that Venn   offers more perspicuous representations
of set relations, conjunctive information, tautologies and contradictions
when compared with the language LO, Shin relies on the fact that
diagrams, while sharing some features with linguistic representations, also
share important features with pictures. Indeed, these latter features, as we
have seen, account for our ability to make perceptive inferences. But, of
course, the concept of perceptive inference rests on the concept of
perception. In her discussion of perception she shows that disjunctive

Diagrammatic reasoning systems and their expressiveness

MODERN LOGIC 327

perceptual inferences. We could think of a photograp as a representation
that requires virtually no conventions for inferring information. Suppose I
view a photograph of Clinton standing to the left of his wife. I need heed
no particular conventions in making the (perceptual) inferences that she is
to the right of him and that he is taller than her. On the other hand, having
been told that Clinton is standing to the left of his wife, I can make no
such perceptual inferences (all I perceive are a few sounds). The inferences I
can make are those governed by linguistic and logical conventions (e.g.,
that Clinton is not to the right of his wife). Pictures, photographs, etc.,
tend to have a fairly high degree of resemblance to their objects. Diagrams
have a smaller degree of resemblance to their objects. Consequently, their
use tends to require more conventions. Linguistic systems enjoy no degree
of resemblance to their objects; they depend very heavily upon conventions
for their use. In comparing diagrammatic and linguistic systems of
representation, Shin tries to show that the former can, with the aid of no or
few conventions, provide the foundations for perceptual inferences similar
to those made given immediate perceptions of reality. In this sense,
diagrammatic representation is more natural than linguistic representation.
Thus, relations among objects (especially geometric ones) are more
naturally represented by diagrams, which, by trading on our geometric
intuitions, use the spacial arrangements of symbols to map those of
objects. Conjunctive information is more naturally represented by diagrams
than by linguistic formulae. For example, a single Venn diagram can
convey the information that all S are M and that all M are P, while two
separate formulae are required. As well, the perceptual inferences made in
such cases are more immediate and direct than the logical inferences
depending on formal conventions. Thus, for example, a single diagram can
represent the information that x is to the left of y, which, in turn, is to the
left of z- The inference, based on perception, that x is to the left of z is
natural and immediate. A first-order language can conjoin the two formulae
into a single conjunctive formula, but the inference will require familiarity
with the syntactic and semantic conventions governing the conjunctive
device. Finally, diagrammatic systems can represent tautologies and
contradictions more perspicuously than can linguistic systems. Since
contradictions convey conflicting pieces of information, the capacity of
diagrammatic systems to represent conjunctions of information more
naturally than linguistic systems do gives diagrammatic systems a greater
degree of naturalness. Consider the Venn diagram of 'there is no A and
something is an A'. This is simply diagrammed by both shading and *-
inscribing the A region. Tautologies can only be represented linguistically
by an appropriate string of symbols, but since they convey, in effect, no
information, diagrams can represent them simply by not depicting any fact
at all.

Needless to say, there are limits on systems of diagrams. Virtually all

MODERN LOGIC 329

information is not representable in any system. In doing so she relies on
Barwise and Perry's [1983] distinction between the "primary secondary
senses of 'show'." Since I take their distinction to be flawed, I take her
exploitation of it to be unproductive. Briefly, my complaint with the
distinction turns on Barwise and Perry's demonstration of the distinction
with the following example. In the sentence 'I saw that the tree was
whipping around, so I saw that the wind was blowing', the first token of
'saw' is supposed to be used in its primary (perceptual) sense; the second
token is used in its secondary sense. The secondary sense seems to be
something like what is known by virtue of perceptual inference from what
is perceived (i.e., seen in the primary sense). Now the object expression for
the first token of 'saw' is prepositional, 'that the tree was whipping
around'. This is an expression for the sort of things Barwise and Perry call
"situations" (they have often been called 'states', 'states of affairs',
'circumstances', etc.). One who admits that we can perceive trees, clouds,
cats, and cupboards, but not situations or states, will shy away from this
version of how to distinguish senses of perception and will question theses
depending upon it. (I, of course, do not make the stronger (false) claim that
there is no way to draw distinctions among different senses of perception.)

Finally, one, even less important, complaint. Throughout the book
Shin shifts back and forth between T and 'we'. Either one will do. But
just one.

I will conclude by offering general praise for a work that really does
deserve praise. Even more, it deserves to be read by those mathematicians
and logicians who adhere to the general prejudice against diagrams. Shin
has gone much farther than anyone in showing how a diagrammatic system
can hold its own as a medium for reasoning. For the most part, this book
is clear and convincing. And, though I have omitted most of the technical
aspects of her work, I should say that Shin's mastery and manipulation of
her technical tools is always thorough and lucid. All in all, this is a very
impressive, valuable piece of work.
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systems of logic diagrams make use of either closed curves or lines to
represent sets. Information about objects is taken to be information about
relations among sets of objects. Those relations are modelled by
appropriate geometric relations among the closed curves or lines of the
diagrams. So the key concept for successful systems of logic diagrams is
containment. Intuitively, members and subsets are contained in sets;
surfaces determined by closed curves are contained in other surfaces
determined by closed curves, and line segments are contained in longer line
segments. Leibniz struggled to bring out the pivotal role of containment
for reasoning, especially in his "General Inquiries About the Analysis of
Concepts and of Truth" [Parkinson 1966, 47 87]. Leibniz's goal for logic
was the unification of all kinds of inference (including those involving
categoricals, truth functions, relationale, and singular sentences). He says
([Parkinson 1966, 66]): "If, as I hope, I can conceive all propositions as
terms, and hypotheticals as categoricals, and if I can treat all propositions
universally, this promises a wonderful ease in my symbolism and analysis
of concepts, and will be a discovery of the greatest importance." Taking
categoricals as having the general logical form: subject contains predicate,
he went on to construe conditionals (hypotheticals) as having a similar
form: antecedent contains consequent. Indeed, valid arguments can be
viewed as: premises contain conclusion. One who, like Leibniz, takes
containment to be the key logical concept, and who recognizes the obvious
way in which lines and closed curves literally contain lines and closed
curves, could not ignore Shin's call to the view that diagrams can
constitute a viable medium for logical reckoning.

Still, not all relations can be viewed as membership or inclusion. Shin
has been careful throughout her book to restrict herself to monadic
systems. Relations per se (polyadic predicates) are not considered. And
while it may be true that the formation of a system (such as Venn  ) that
is provably both sound and complete would help mitigate the prejudice
among logicians against diagrams, it will not eliminate that prejudice.
What is still required is a system of logic diagrams that can, like the first 
order predicate calculus with identity, handle categoricals, truth functions,
relationale, and singulars. (For an attempt to do this using linear diagrams
see Englebretsen 1992], for a nonlinear system see [Rybak & Rybak 1976;
1984; 1984a].)

I have, as well, a less important reservation about this book. In
establishing her claim that Venn   offers more perspicuous representations
of set relations, conjunctive information, tautologies and contradictions
when compared with the language LO, Shin relies on the fact that
diagrams, while sharing some features with linguistic representations, also
share important features with pictures. Indeed, these latter features, as we
have seen, account for our ability to make perceptive inferences. But, of
course, the concept of perceptive inference rests on the concept of
perception. In her discussion of perception she shows that disjunctive

The logical status of diagrams, Sun-Joo Shin, Cambridge university press 1994. https://doi.org/10.1017/CBO9780511574696
Sun-Joo Shin at Yale: https://philosophy.yale.edu/people/sun-joo-shin

https://doi.org/10.1017/CBO9780511574696
https://philosophy.yale.edu/people/sun-joo-shin
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QueryViz

• Motivation: Can we create an automatic system that:
- unambiguously visualizes the logical intent of a SQL query (thus no two 

different queries lead to an “identical” visualization; with “identical” to be 
formalized correctly)

- for some important subset of nested queries
- with visual diagrams that allow us to reason about SQL design patterns

• Related:
- Lot’s of interest on conjunctive queries equivalence. Now: For what 

fragment of nested queries is equivalence decidable (under set semantics)?
• Suggestion:
- nested queries, with inequalities, without any disjunctions
- Strict superset of conjunctive queries



200

SELECT L1.drinker
FROM Likes L1
WHERE NOT EXISTS

(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND NOT EXISTS

(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND NOT EXISTS

(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))  

AND NOT EXISTS
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS

(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

What is the intend of this query? 2019/10/21

Likes
drinker
beer
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SELECT L1.drinker
FROM Likes L1
WHERE NOT EXISTS

(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND NOT EXISTS

(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND NOT EXISTS

(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))  

AND NOT EXISTS
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS

(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Nesting 
Depth

0

1

2

3

2

3

Likes
drinker
beer

What is the intend of this query? 2019/10/21
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SELECT L1.drinker
FROM Likes L1
WHERE NOT EXISTS

(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND NOT EXISTS

(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND NOT EXISTS

(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))  

AND NOT EXISTS
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS

(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Nesting 
Depth

0

1

2

3

2

3

Unique set query: "Find drinkers that like a unique set of beers."

Likes
drinker
beer

2019/10/21
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Likes
drinker

Likes
drinker

SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer Likes

beer
drinker

<>

L1 L2

L6

L5

L4
L3

Unique set query: "Find drinkers that like a unique set of beers." 2019/10/21
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“Return any drinker, s.t. there does not exist any other drinker, s.t. there does 
not exist any beer liked by that other drinker that is not also liked by the 
returned drinker and there does not exist any beer liked by the returned 
drinker that is not also liked by the same other drinker.”

Let x be a drinker, and S(x) be the set of liked beers by drinker x. 
Find any drinker x, s.t. there does not exist another drinker x ʹ , x for which: 
S(x ʹ ) ⊆ S(x) and S(x ʹ ) ⊇ S(x)

Unique set query: "Find drinkers that like a unique set of beers." 2019/10/21
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T: {L1}
P: {}

Selection Attributes: {d}

Nesting Depth

3

T: {L2}
P: {(L1.d, <>, L2.d)}

Q: ∄

T: {L3}
P: {(L3.d, =, L1.d)}

Q: ∄

T: {L5}
P: {(L5.d, =, L2.d)}

Q: ∄

T: {L4}
P: {(L4.d, =, L2.d),

(L4.b, =, L3.b)}
Q: ∄

T: {L6}
P: {(L6.d, =, L1.d),

(L6.b, =, L5.b)}
Q: ∄

2

1

0

{ L1.d | ∃L1 ∈ Likes ∧
∄L2 ∈ Likes [L2.d <> L1.d ∧
∄L3 ∈ Likes [L3.d = L1. d ∧
∄L4 ∈ Likes [L4.d = L2.d ∧ L4.b = L3.b]] ∧

∄L5 ∈ Likes [L5.d = L2.d ∧
∄L6 ∈ Likes [L6.d = L1.d ∧ L6.b = L5.b]]]}

Likes
drinker
beer

Likes
d
b

Notice how the logic tree portrays the nesting 
hierarchy shown in the FOL (TRC) 
representation of the SQL query.

Each node in the LT represents the root of a 
scope in the FOL representation. The predicates 
in each node are the predicates in the root of the 
scope of a given node (thus the predicates 
which do not use any additionally quantified 
variables).

Unique set query: "Find drinkers that like a unique set of beers."
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local (all C are 
local)

connecting (one 
C is local, another 
one is foreign

type

selection p. join p.

scope C O C

C O CC O V

Our simple rule: every predicate needs to 
have at least one local table identifier.

Allowed:
local op value (local selection pred.)
local op local (local join pred.)
local op ancestor (connecting join pred.)

Not allowed:
ancestor op value (foreign selectio pred.)
ancestor op ancestor (foreign join pred.)

foreign (all C are 
foreign)

Atomic predicate  classification 2019/5/30
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Focus: one single nesting level

• We first restrict ourselves to
- equi-joins (no inequalities like T.A < T.B)
- paths (no siblings = every node can have only one nested child)
- one single nesting level
- Boolean queries
- no foreign predicates
- only binary relations (thus can be represented as graphs)
- only one single relation R
- (and as before only conjunctions) 

• Given two such queries, what is a generalization of the 
homomorphism procedure that works for that fragment? 207
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Simplifying notation

SELECT TRUE
FROM R R1, R R2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS

(SELECT *
FROM R R4, R R5, R R6
WHERE R4.B = R5.A
AND R5.B = R6.A
AND R4.A = R1.A
AND R6.A = R2.B)

Schema: R(A,B)

What will become handy, is a short convenient notation for queries

q0 :- R(x,y), R(y,z), R(z,w)

q1(s,t):- R(s,u), R(u,v), R(v,t), s=x, t=y

y z

x

q0

y

v t

su

¬q1

s=x, t=y

∃ R1, R2, R3 ∈ R 
(R1.B=R2.A ∧ R2.B=R3.A ∧
∄ R4, R5, R6 ∈ R 

(R4.B=R5.A ∧ R5.B=R6.A ∧
R4.A=R1.A ∧ R6.A = R2.B) 

)

q0 :- R(x,y), R(y,z), R(z,w), ¬q1(x,z)
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Simplifying notation

SELECT TRUE
FROM R R1, R R2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS

(SELECT *
FROM R R4, R R5, R R6
WHERE R4.B = R5.A
AND R5.B = R6.A
AND R4.A = R1.A
AND R6.A = R2.B)

Schema: R(A,B)

What will become handy, is a short convenient notation for queries

q0 :- R(x,y), R(y,z), R(z,w)

¬q1 :- R(x,u), R(u,v), R(v,y)

v y

xu

¬q1

∃ R1, R2, R3 ∈ R 
(R1.B=R2.A ∧ R2.B=R3.A ∧
∄ R4, R5, R6 ∈ R 

(R4.B=R5.A ∧ R5.B=R6.A ∧
R4.A=R1.A ∧ R6.A = R2.B) 

)

y z

x

q0

y
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Simplifying notation Schema: R(A,B)

What will become handy, is a short convenient notation for queries

y z

xy

v

u

SELECT TRUE
FROM R R1, R R2, R R3
WHERE R1.B = R2.A
AND R2.B = R3.A
NOT EXISTS

(SELECT *
FROM R R4, R R5, R R6
WHERE R4.B = R5.A
AND R5.B = R6.A
AND R4.A = R1.A
AND R6.A = R2.B)

q0 :- R(x,y), R(y,z), R(z,w)

∃ R1, R2, R3 ∈ R 
(R1.B=R2.A ∧ R2.B=R3.A ∧
∄ R4, R5, R6 ∈ R 

(R4.B=R5.A ∧ R5.B=R6.A ∧
R4.A=R1.A ∧ R6.A = R2.B) 

)

¬q1 :- R(x,u), R(u,v), R(v,y)

Cartesian product: R'(x,y,z,w)=
R(x,y), R(y,z), R(z,w)? 
can be expressed in guarded 
fragment of FOL (with negation)? 
But single join already not guarded

See Barany, Cate, Segoufin, 
”Guarded negatation ”, JACM 2015

guardeness
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Exercise Schema: R(A,B)

y z

xy

v

u

d f

ac

e

b

Query q

Database D

Does the query below evaluate to 
true on above database?



212

Exercise

e d

ab

-

-

d f

ac

e

b

Query q

Database D

Schema: R(A,B)
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Question

• Find two such nested queries (somehow leveraging the example 
below) that are equivalent (based on some simple reasoning)

• What is then the *structured* procedure to prove equivalence?

Example
q1(x) :- R(x,y), R(y,y), R(y,z)
q2(s) :- R(s,u), R(u,w), R(s,v), R(u,w), R(u,v)

y z

x
q1(x)

v

u

w

s

q2(x)

h2→1: {(s,x),(u,y),(v,y),(w,z)} 

h1→2: {(x,s),(y,v),(z,w)} 

, R(v,v)

q1 ⊆ q2

q1 ⊈ q2



216

Undecidability L

• Unfortunately, the following problem is already undecidable
- Consider the class of nested queries with maximal nesting level 2, no 

disjunctions, our safety restrictions from earlier, set semantics, arbitrary 
number of siblings

- Deciding whether any given query is finitely satisfiable is undecidable.
• This follows non-trivially from from following Arxiv paper: 
- “Undecidability of satisfiability in the algebra of finite binary relations 

with union, composition, and difference” by Tony Tan, Jan Van den 
Bussche, Xiaowang Zhang, Corr 1406.0349. 
https://arxiv.org/abs/1406.0349

https://arxiv.org/abs/1406.0349


217

SELECT

A

B

R
A

B

R
A

B

R
A

B

aaa − ((aa − b)a ∪ ba) = aaa − (aa − b)a − ba X − (Y ∪ Z) = X − Y − Z

R
A

B

R
A

B

R
A

B

S
A

B

S
A

B

R
A

B

= aaa − (aa − b)a − ba
= aef − (ae − b)f − bf
= aef − aef ∪ bf − bf

See “Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference” by Tan, Van den Bussche, Zhang. https://arxiv.org/abs/1406.0349

https://arxiv.org/abs/1406.0349
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SELECT

A

B

R
A

B

R
A

B

R
A

B

a(aa ∩ a) − (aa − a)a 

R
A

B

R
A

B

R
A

B

R
A

B

R
A

B

See “Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference” by Tan, Van den Bussche, Zhang. https://arxiv.org/abs/1406.0349

https://arxiv.org/abs/1406.0349
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Open question
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