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Absorption (or the challenge with self-joins)

fis true if there is an edge

f=3axy.xANyA(xy) EE
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Absorption (or the challenge with self-joins)

fis true if there is an edge

f=3axy.xANyA(xy) EE

f=a=abVacVaa absorption

7

Wl V @) A (@p1=>¢,)
gcva Alac=a)
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Absorption

Absorption
(AVB)AA=A (A min B) max A=A A<BS AmnB=A
(AV B) A (A=B)=A (AminB)=A,ifA<B ~AANB=A

Two binary operations, V and A, are said to be connected by the absorption law if:
aV(aAb)=aA(aVDb)=a.

A set equipped with two commutative, associative and idempotent binary operations

V ("join") and A ("meet") that are connected by the absorption law is called a lattice.

Examples of lattices include Boolean algebras, the set of sets with union and

intersection operators, and ordered sets with min and max operations.

https://en.wikipedia.org/wiki/Absorption_law
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Outline: Complexity of Query Equivalence

« Query equivalence and query containment
— Graph homomorphisms
— Homomorphism beyond graphs
— CQ containment
— Beyond CQs
— (CQ equivalence under bag semantics
— CQ minimization
— Nested queries
— Tree pattern queries
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ExerCise: Flnd the HOmOmorphismS Order of subgoals in the query

does not matter (thus ~sets)
ql: {E(le)/E(y/Z)/E(Z/W)}

qy: 1E(xY),E(y,2),E(z,X)} g3 1E(xy),E(y,x)}

What is the containment relation
between these dqueries 2

da: {E(x,¥),E(y,x),E(y,y)} as: {E(x,x)}

Example by Andreas Pieris 175



Exercise: Find the Homomorphisms

> > ql: {E(XIV)IE(VIZ)IE(Z;W)}

ds- {E(X/y)/ E(y,X)}

Xd—by

What is the containment relation
between these dqueries 2

q4: {E(le)lE(yIX)IE(yly)} q5: {E(XIX)}
><—’V X
O 0

Example by Andreas Pieris 176



Exercise: Find the Homomorphisms

a,: {E(x,y),E

X—>y——>72——> W

{x—x, y—>V, z—27, w—X}
{X—Xx, y—>Y, z—X, w—v}
or {x—y, y—1z, z—X, W—V}, et

a,: {E(x,y),E as: {E(x,y),E

/ \ X V
X ——— 7

da: {E(x,¥),E(y,x),E(y,y)} as: {E(x,x)}
) )

Example by Andreas Pieris
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Exercise: Find the Homomorphisms

a,: {E(x,y),E

X—>y——>72——> W

{x—x, y—>V, z—27, w—X}
{X—Xx, y—>Y, z—X, w—v}
or {x—y, y—1z, z—X, W—V}, et

a,: {E(x,y),E as: {E(x,y),E

/ \ X V
X ——— 7

{x—y, y—x, z—v}

{x—y, y—v}

or {x—y, y—y,

qa: {E(Y)E(VX),E(vy)} ——"—— qs: {E(x,X)}

T S >

Example by Andreas Pieris 178




Exercise: Find the Homomorphisms

a,: {E(x,y),E

X—>y——>72——> W

{x—x, y—>V, z—27, w—X}
{X—Xx, y—>Y, z—X, w—v}
or {x—y, y—1z, z—X, W—V}, et

a,: {E(x,y),E as: {E(x,y),E

/ \ X V
X ——— 7

{x—y, y—x, z—v}

{x—y, y—v}

or {x—y, y—y, z—v}, etc.

da: {E(x,¥),E(y,x),E(y,y)} as: {E(x,x)}
) )

Example by Andreas Pieris
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Query Homeomorphism Practice

d1(x,y) - R(x,u),R(v,u),R(v,y) var(g,) = {x, u, v, y}

a,(x,y) - R(x,u),R(v,u),R(v,w),R(t,w),R(t,y) var(g,) =1{x, u, v, w, t, v}

Are these dueries equivalent 2
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Query Homeomorphism Practice m E/*

1 & T
(X, yl R(x var(q,) =1{x, u, v, v}
(X v) R R(t,w),R(t,y)  var(qg,) = {x,JL;, CVL%V}
| —> 2
C
A \
d; € Q; 23
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Minimizing Conjunctive Queries

e Goal: minimize the number of joins in a query

o Definition: A conjunctive query Q is if there is no
conjunctive query Q’ such that:
1. Q=Q
2. Q' has fewer atoms than Q
« The task of IS, given a conjunctive query Q, to

compute a minimal one that is equivalent to Q
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Minimization by Deletion

Theorem: Consider a conjunctive query Qi(x,...,Xx) :- body1.
If Q1is equivalent to a conjunctive query Qx(vs,...,yk) :- body>
where |bodyz| < |body1]|, then Q1 is equivalent to a query

Qs(x1,...,Xk) :- bodys such that bodys € body1

The above theorem says that to minimize a conjunctive query Q1(x) :-

body we simply need to remove some atoms from body

Can we shown by exploiting the homomorphism theorem...
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Conjunctive query minimization algorithm

@\ SRS (V Q)
Minimize(Q(x) :- body) ()] > ¢> \)/(
* Repeat { '
e Choose an atom o € body /Q cQ

* Remove a from Q; let Q' be the new query «~

* Ifthereisahomomorphismfrom Q' to O, -~ Q <Q
then body :=body \ {a} —

e Until no atom can be removed}

Notice: the order in which we inspect subgoals doesn’t matter
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Minimization Procedure: Example

a,b,c,d are constants

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Ts this query mivimal P
188



Minimization Procedure: Example

a,b,c,d are constants

Qlx) @ ROGBTNR(a,b), R(u.c), R(u,v), S(a,c.d)
| DN S S B

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

Ts this query mivimal P
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Minimization Procedure: Example

a,b,c,d are constants

X) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

( ,b) b

N | oo
Q(x) :- R(x,b), R(a,b), R S(a,c,d)

| N

(

X) :- R(x,b), R(a,b), R(u,c), S(a,c,d)

Ts this duery mivimal

?
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Minimization Procedure: Example

Q

@

@

Q

(
|
(
|
(
|
(

X) -

X) :-

X) :-

a) -

a,b,c,d are constants

R(X,v), R(xb R(a,b), R(u,c), R(u,v), S(a,c,d)

R

R(xb R(a,b), R(u,c), R(u,v), S(a,c,d)

IR N B

X,b), R(a,b), R(u,c), S(a,c,d)
<l | o
R(a,b), R(u,c), S(a,c,d)

Ts this duery mivimal
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Minimization Procedure: Example

a,b,c,d are constants

Q(x) :- R(x,y), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)
| L] e

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)
| T N

Q(x) :- R(x,b), R(a,b), R(u,c), S(a,c,d) WMivimal duery
| N T

Q(a) :- —RE-€)- _S(a,c,d)

Mapping x—a is not valid since x is a distivguished variable
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Unigueness of Minimal Queries 0 S

Natural question: does the order in which we remove atoms from the
body of the input conjunctive query matter? L - 5 by
(N y ) /

C

Theorem: Consider a conjunctive query Q. Let Q1 and Q; be minimal
conjunctive queries such that Q1= Q and Qo= Q. Then, Q1and Qy are
isomorphic (i.e., they are the same up to variable renaming)

Therefore, given a conjunctive query Q, the result of Minimization(Q) is
unique (up to variable renaming) and is called t
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Query Minimization for Views Employee(name, university, manager)
‘\_/

This guery 1s minimal
CREATE VIEW NeuMentors

-
J
SELECT DISTINCT El.name,El.manager

FROM Employee E1, Employee E1

WHERE El.manger = E2.name J/
AND El.university = ‘Northeastern’

AND E2.university= ‘Northeastern’ /‘\

This guery 1s minimal E3 E4
SELECT DISTINCT N1.name T
FROM NeuMentors N1, NeuMentors N1 //EEL//”\:ggag\*
WHERE N1l.manger = N2.name

View expausion (when you run a SQL query on a View)
SELECT DISTINCT El.name

FROM Employee E1, Employee E2, Employee E3, Employee E4

WHERE “Ef=meamger—=FE2+name AND El.manger = E3.name AND E3.manger = E4.name
AND El.university = ‘Northeastern’ AND E27uﬁéveﬁsét¥_=-4Ne¥%heastETﬁ"

AND E3.university ‘Northeastern’ AND E4.university = ‘Northeastern’

This query is vo longer redundant!

Example adopted from Dan Suciu 194



Outline: Complexity of Query Equivalence

« Query equivalence and query containment
— Graph homomorphisms
— Homomorphism beyond graphs
— CQ containment
— Beyond CQs
— (CQ equivalence under bag semantics
— CQ minimization
— Nested queries
— Tree pattern queries
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Equivalence of nested queries

is one of the foundational questions in database

theory (and practice?)

— touches on logics and decidability

— what modifications allow tractability

e Lots of work (and open questions) on query equivalence

— But not so much on !

« Related to QueryViz project (http://queryviz.com) and two
foundational questions on visual formalism:

1. W
2. W

nen can visual formalism unambiguously express logical statements?

nen can equivalent logical statements be transformed to each other by

a sequence of visual transformations? (Query equivalence)
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Diagrammatic reasoning systems and their expressiveness
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Diagrammatic reasoning systems and their expressiveness

THE | OGICAL STATUS

OFD _ objects. Conjunctive information is more naturally represented by diagrams
IAGRAMS than by linguistic formula. For example, a single Venn diagram can

Still, not all relations can be viewed as membership or inclusion. Shin
has been careful throughout her book to restrict herself to monadic
systems. Relations per se (polyadic predicates) are not considered. And
while it may be true that the formation of a system (such as Venn-II) that
is provably both sound and complete would help mitigate the prejudice

perception. In her discussion of perception she shows that disjunctive
information is not representable in any system. In doing so she relies on

The logical status of diagrams, Sun-Joo Shin, Cambridge university press 1994. https://doi.org/10.1017/CB09780511574696
Sun-Joo Shin at Yale: https://philosophy.yale.edu/people/sun-joo-shin 198
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QueryViz

« Motivation: Can we create an automatic system that:

— unambiguously visualizes the logical intent of a SQL query (thus no two
different queries lead to an “identical” visualization; with “identical” to be
formalized correctly)

— for some important subset of nested queries
— with visual diagrams that allow us to reason about

e Related:

— Lot’s of interest on conjunctive queries equivalence. Now: For what
fragment of nested queries is equivalence decidable (under set semantics)?

e Suggestion:

— nested queries, with inequalities, without any disjunctions
— Strict superset of conjunctive queries 199



What is the intend of this query?

SELECT L1.drinker
FROM Likes L1

WHERE NOT EXISTS

(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND NOT EXISTS
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND NOT EXISTS
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))
AND NOT EXISTS
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS
(SELECT *

FROM Likes L6
WHERE L6.drinker = L2.drinker

AND L6.beer= L5.beer)))

2019/10/21

drinker
beer

200



2019/10/21

What is the intend of this query?

SELECT L1.drinker
O | FROM  Likes L1
WHERE NOT EXISTS
(SELECT * ] :
1 [ FROM  Likes L2 drinker
WHERE L1.drinker <> L2.drinker beer
AND NOT EXISTS
(SELECT * ]
2 [ FROM Likes L3
_ WHERE  L3.drinker = L2.drinker
Nesting AND NOT EXISTS
Depth " (SELECT * m
FROM Likes L4
3 WHERE L4.drinker = L1.drinker
. AND L4.beer = L3.beer)) _
AND NOT EXISTS _
(SELECT *
2 [ FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS
(SELECT *
FROM Likes L6
3 WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer))) 201




2019/10/21

Unique set query: "Find drinkers that like a unique set of beers."

SELECT L1.drinker
O | FROM  Likes L1
WHERE NOT EXISTS
(SELECT * ] :
1 [ FROM  Likes L2 drinker
WHERE L1.drinker <> L2.drinker beer
AND NOT EXISTS
(SELECT * ]
2 [ FROM Likes L3
_ WHERE  L3.drinker = L2.drinker
Nesting AND NOT EXISTS
Depth " (SELECT * m
FROM Likes L4
3 WHERE L4.drinker = L1.drinker
. AND L4.beer = L3.beer)) _
AND NOT EXISTS _
(SELECT *
2 [ FROM Likes L5
WHERE L5. drinker = L1. drinker
AND NOT EXISTS
(SELECT *
FROM Likes L6
3 WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer))) 202




Unigque set query: "Find drinkers that like a unique set of beers." 2019/10/21

<

drinker 7 L3
7 AN
=N
5 | beer
L1 o= —- - drinker

-/

:

drinker drinker =

————————— L6

-
7 D drinker
drinker
beer P
\ Yy,
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Unigue set query: "Find drinkers that like a unique set of beers." 2019/10/21

“Return any drinker, s.t. there does not exist any other drinker, s.t. there does
not exist any beer liked by that other drinker that is not also liked by the
returned drinker and there does not exist any beer liked by the returned
drinker that is not also liked by the same other drinker.”

Let x be a drinker, and S(x) be the set of liked beers by drinker x.

Find any drinker x, s.t. there does not exist another drinker x ', x for which:
S(x') €5(x) and S(x ") 25(x)

204



Unique set query: "Find drinkers that like a unique set of beers."

{L1.d|3L1 € Likes A
AL2 € Likes [L2.d <> L1.d A
AL3 € Likes [L3.d =L1.d A
AL4 € Likes [L4.d = L2.d A L4.b = L3.b]] A
AL5 € Likes [L5.d = L2.d A
2 [L6.d=L1.dALGb=L5b]]

Notice how the logic tree portrays the nesting
hierarchy shown in the FOL (TRC)
representation of the SQL query.

Each node in the LT represents the root of a
scope in the FOL representation. The predicates
in each node are the predicates in the root of the
scope of a given node (thus the predicates
which do not use any additionally quantified
variables).

drinker d

beer b

T {L1}
P: {}

Selection Attributes: {d}

;

T {L2)

P: {(L1.d, <>, L2.d)}
Q: 7

Nesting Depth

0

1
T: {L3)

2 P: {(L3.d, =, L1.d)}
Q: ﬂ
T: {L4)

; P: {(L4.d, =, L2.d),

(L4.b, =, L3.b)}

Q: 4

4/\

T: {L5}
P: {(L5.d, =, L2.d)}
Q2
T: {L6
P{(L6d= 1.d),
(L6.b, =, L5.b)}
Q;ﬂ
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Atomic predicate classification

scope

local (all C are
local)

connecting (one
C is local, another
one is foreign

foreign (all C are
foreign)

type
selection p. join p.
coyv cocC
cocC

2019/5/30

Our simple rule: every predicate needs to
have at least one local table identifier.

Allowed:
local op value (local selection pred.)
local op local (local join pred.)
local op ancestor (connecting join pred.)
Not allowed:
ancestor op value (foreign selectio pred.)
ancestor op ancestor (foreign join pred.)

206



Focus: one single nesting level

« We first restrict ourselves to
— equi-joins (no inequalities like T.A < T.B)
— paths (no siblings = every node can have only one nested child)
— onhe single nesting level
— Boolean queries
— no foreign predicates
— only binary relations (thus can be represented as graphs)
— only one single relation R
— (and as before only conjunctions)

« Given two such queries, what is a generalization of the

homomorphism procedure that works for that fragment? 207
207



Simplitying notation

Schema: R(A,B)

What will become handy, is a short convenient notation for queries

SELECT TRUE

FROM RR1,RR2, RR3

WHERE R1.B=R2.A

AND R2.B = R3.A

NOT EXISTS
(SELECT *
FROM RR4, RR5, RR6
WHERE R4.B =R5.A
AND R5.B = R6.A
AND R4.A=R1A
AND R6.A = R2.B)

3 R1,R2,R3 ER
(R1.B=R2.A A R2.B=R3.A A
A R4, R5,R6 ER
(R4.B=R5.A A R5.B=R6.A A
R4.A=R1.A A R6.A =R2.B)

4o - R(X,y), R(ylz)l R(Z,W)
q1(s,t):- R(s,u), R(u,v), R(v,t), s=x, t=

do - R(X,y), R(ylz)l R(Z,W), —'ql(X,Z)

do ~{q1
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Simplitying notation

Schema: R(A,B)

What will become handy, is a short convenient notation for queries

SELECT TRUE

FROM RR1,RR2, RR3

WHERE R1.B=R2.A

AND R2.B = R3.A

NOT EXISTS
(SELECT *
FROM RR4, RR5, RR6
WHERE R4.B =R5.A
AND R5.B = R6.A
AND R4.A=R1A
AND R6.A = R2.B)

3 R1,R2,R3 ER
(R1.B=R2.A A R2.B=R3.A A
A R4, R5,R6 ER
(R4.B=R5.A A R5.B=R6.A A
R4.A=R1.A A R6.A =R2.B)

qO .~ R(X,y), R(y,Z), R(Z,W)

~qq - R(X,U), R(U,V), R(v,y)

0

do

209



Simplitying notation Schema: R(A,B)

What will become handy, is a short convenient notation for queries

SELECT TRUE

FROM RR1, RR2, RR3 .

WHERE R1B=R2A qO . R(X;y)/ R(ylz)l R(Z, W)
AND R2.B =R3.A

NOT EXISTS
RO R R4, RR5, R R6 -q, - R(x,u), R(u,v), R(v,y)

WHERE R4.B=R5.A
AND R5.B = R6.A

mg Eg-ﬁf g;-g Cartesian product: R (x,y,z,w)=
AmReB Rl), R(y2), R(zw)7

com be expressed in guarded
3 (RRll’ I;%’RZBAE/\RRZ Ra AN s y) >@ fragment of FOL (with vegation)?
4 RA RE RG € R 7 But sivigle join already ot guarded
(R4.B=R5.A A R5.B=R6.A A @
R4.A=R1.A A R6.A = R2.B) See Barawy, Cate, Segoufin,
)

Q "Guarded neaatation ”, JACM 2015
X

i ,,,,,,,, auardevess
210
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Exercise Schema: R(A,B)

Database D

Does the gquery below evaluate to
true on above database?

Query g O
O 211
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Exercise Schema: R(A,B)

Database D

Query q

©
\
\
©

-
-
-
-
-
-
-
-
-
-
-
-
-



Question

e Find two such nested queries (somehow leveraging the example
below) that are equivalent (based on some simple reasoning)

« What is then the *structured™ procedure to prove equivalence?

Example

ql(X) .~ R(le)I R(yly)l R(y,Z)
q,(s) :- R(s,u), R(u w), R(s,v), R(u,w), R(u,v) , R(v,v)

M} W a
g,(x)
g1(x) hysq:{(s,x),(u,y),(v,y),(w,2)} g, < q, u s) 213
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Undecidability ®

« Unfortunately, the following problem is already undecidable

— Consider the class of nested queries with maximal nesting level 2, no
disjunctions, our safety restrictions from earlier, set semantics, arbitrary
number of siblings

— Deciding whether any given query is finitely satisfiable is undecidable.

e This follows non-trivially from from following Arxiv paper:

- “Undecidability of satisfiability in the algebra of finite binary relations
with union, composition, and difference” by Tony Tan, Jan Van den
Bussche, Xiaowang Zhang, Corr 1406.0349.
https://arxiv.org/abs/1406.0349
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A — RA N
/F\” J/C‘nb)
—

=aaa - (aa - b)a - ba

=gef - (ae - b)f - bf
= aef — aef U bf — bf

&
N|
Sr
14
P
\

A

B B
\ﬂ {

A

B

R
LB
SELECT ﬂ)
A

|
S [ ) ) i _
: A : consider a pair (z,y) that would belong to the result of evaluating this ex-
I B |  Pression in some structure (for brevity we are omitting explicit reference to this
| I structure). Then (z,y) € aaa so there exist a-edges (z, x1), (z1,z2), and (x2,y).
: R I Since (z,y) ¢ (aa—b)a, the b-edge (z, x2) must be present. But then (z,y) € ba,
A : which is in contradiction with the last part of the expression. [
|
VLBl
|

U ba) = aaa < (aa - b)g/~ ba X-(Yu2)=X-Y-Z

See “Undecidability of satisfiability in the algebra offinite binary relations with union, composition, and difference” by Tan, Van den Bussche, Zhang. https://arxiv.org/abs/1406.0349 2 17
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y

SELECT

R
A
B

R

A

=
e

A

B

a(aa N a) - (aa - a)a

A

B

\ﬂ
A
B

To see that e cannot be satisfied by any series-parallel graph, suppose (z,y)
belongs to the result of evaluating e on some structure. Since (z,y) € a(aNaa),
there exist edges * — u; — ups — y and u; — y (we omit the labels on the
edges which are all a). Since (z,y) ¢ (aa — a)a, there must be an edge x — us.
If at least two of the four elements x, u;, us and y are identical, the graph
contains a cycle and is not series-parallel. If all four elements are distinct, we
have a subgraph isomorphic to W above, so the structure is not series-parallel

/’\

l—2—3—4

\_/

See “Undecidability of satisfiability in the algebra of finite binary relations with union, composition, and difference” by Tan, Van den Bussche, Zhang. https://arxiv.org/abs/1406.0349 2 18
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Open question

\/
r (S/’BL/~53)~Oor>>66k ¢
bty | 2 3
B —
D /CQ/ —
%
\, >
> 7

St
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Pointers to related work

« Kolaitis. Logic and Databases. Logical Structures in Computation Boot Camp, Berkeley
2016. https://simons.berkeley.edu/talks/logic-and-databases

« Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995.
http://webdam.inria.fr/Alice/, Ch 2.1: Theoretical background, Ch 6.2: Conjunctive queries
& homomorphisms & query containment, Ch 6.3: Undecidability of equivalence for
calculus.

« Chandra, Merlin. Optimal implementation of conjunctive queries in relational data bases.
STOC 1977. https://doi.org/10.1145/800105.803397

« Tan, Van den Bussche, Zhang. Undecidability of satisfiability in the algebra of finite binary

relations with union, composition, and difference. Corr 1406.0349.
https://arxiv.org/abs/1406.0349

« Gatterbauer. Databases will visualize queries too. PVLDB 2011.
http://www.vldb.org/pvidb/vol4/p1498-gatterbauer.pdf

223


https://simons.berkeley.edu/talks/logic-and-databases
http://webdam.inria.fr/Alice/
https://doi.org/10.1145/800105.803397
https://arxiv.org/abs/1406.0349
http://www.vldb.org/pvldb/vol4/p1498-gatterbauer.pdf

