

DATA SCIENCE OVER DATA LAKES Renée J. Miller miller@northeastern.edu

What is a data lake?

- A data lake is a system or repository of data stored in its natural format [Wikipedia].
- Why a lake vs. DBMS or Warehouse?
 - Cheaper (lower cost of ownership)
 - *Storing as files on HDFS or cloud has lower cost, compared with storing data in DBMS
 - Quick start
 - *Skip schema design to ingest data directly in its original format
 - CSV, JSON, YAML, ...
 - *Data lakes are natural platforms for ML and big data processing engines (e.g., Apache Spark)

Two Example Data Lakes¹

A data science research institution (~100 employees). 1000-10k datasets.

- Mostly machine learning tasks
- Data is scattered and dumped into HDFS
- Use file directories, no centralized portal
- Duplicates are common; many versions of the same datasets
- Prefer simpler tools (similar to git) over enforced workflows
- Little integration

A global investment bank (>10k employees). More than 100k datasets.

- Operates a dedicated data lake portal
- Internal browser and DSL for querying
- Datasets are backed by pipelines for updates
- Complexity arises from assigning access control policies to roles
- Missing schema standardization across departments
- Integrating new data sets difficult

Example Data Lake Stats

	Avg #Attr	#Attr	<u>MaxSize</u>	<u>AvgSize</u>	<u>AvgStrSize</u>	#UniqVal
OpenData	16	3,367,520	22,075,531	465	1,504	609,020,645
WebTable	5	252,766,759	17,033	10	11	193,071,505
Enterprise - 7%	12	2,032	859,765	4,011		3,902,604

167 table subset of MIT's 2400 table data warehouse [Deng et al., CIDR 2017]

Data lakes

- Can be massive
- Maintaining join graphs can be expensive/inpractical
- Data scientists may not know/understand all data available

Data Science Over Data Lakes

In data science, it is increasingly the case that the main challenge is not in *integrating known data*, rather it is in *finding the right data to solve a given data science problem*.

How can we facilitate data science over data lakes?

Datos Argentina

پایگاه داده <mark>باز</mark> ایران IRANOPENDATA

Institutional Transparency

Proponents: advocates for government and institutional transparency, data science

- For improved governance & citizen engagement
- For inclusive development and innovation

Open Data:

data published in the public domain that is free to use, modify, and redistribute

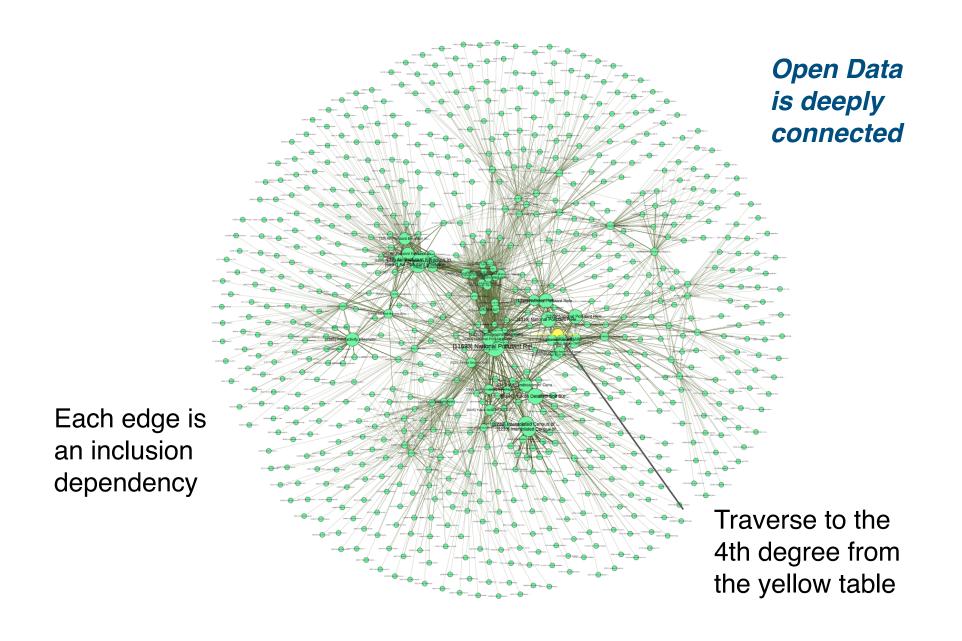
Critics: the cost of data publishing and the limited benefit to the general public

Cost of ownership still too high

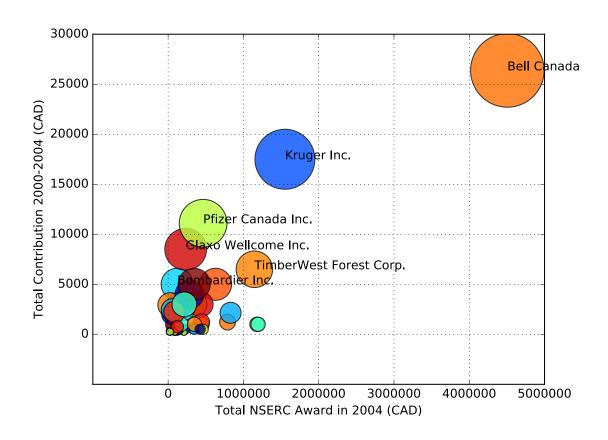
Open Data Principles

- Timely & Comprehensive
- Accessible and Usable
- Complete
 - All public data is made available. Public data is data that is not subject to valid privacy, security or privilege limitations
- Primary
 - Including the original data & metadata on how it was collected

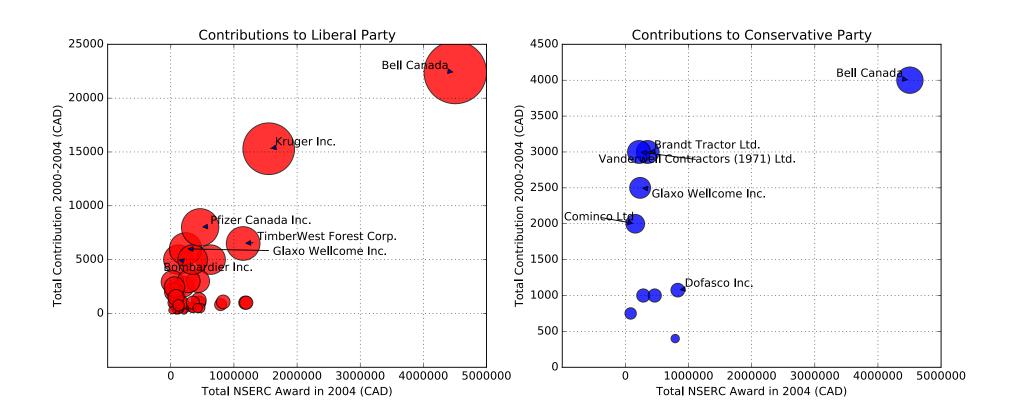
Invaluable for data science



Goal: Enable Data Science



Goal: Enable Data Science



Data Discovery Example

data.gov.sg

Opening up Government

Open Government

				₩	AIA.	Ч
Fuel Type	Borough	Sector	KWh	Year		
Electricity	Barnett	Domestic	62688	2015		e Eu
Gas	Barnett	Domestic	206438	2015		
Railway Diesel	City of London	Transport	2730044	2014		
Oil	City of London	Domestic	430078	2015		

One example table

- Greenhouse gas emissions in/around London
- May have many attributes and tens/hundreds of thousands of tuples

Table Join Search

Data Science Question: How can I find more features for my model C02 emission?

Sector

Domestic

Domestic

Transport

Domestic

Data Management Task: Find tables that can be joined with a query table.

Table Repository KWh Borough Population Unemp F.Unem 62688 Barnett 38900 Low 20 206438 Camden 40000 Low 14 2730044 City of 888000 Medium 20 London 430078

Candidate Table

Query Table

Borough

Barnett

Barnett

City of

London

City of

London

Fuel Type

Electricity

Gas

Railway

Diesel

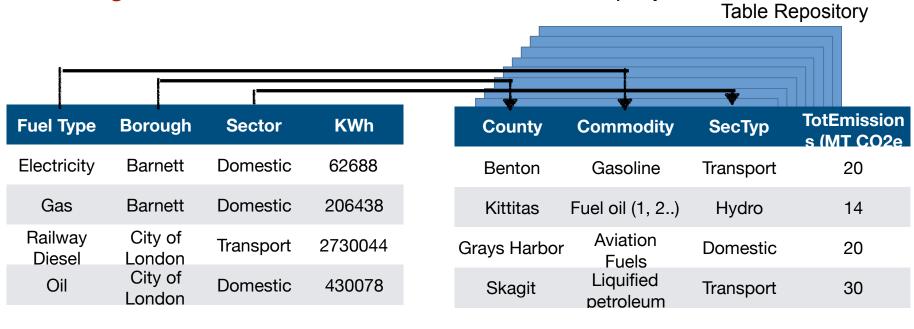
Oil

13

Table Union Search

Data Science Question: Does my analysis generalize? To new regions, new sectors, ...

Data Management Task: Find tables that can be union with a query table.



Query Table

Candidate Table

Outline

- Data Lake
 - What is it and why is it important?
 - New data management challenges
- Data Discovery
 - Table Join Search:
 - ***LSH Ensemble PVLDB 16, PVLDB 17**
 - ***JOSIE SIGMOD 19**
 - Table Union Search
- Open Questions

Table Join Search

Query Q

Electricity	Barnett	Domestic	62688
Gas	Barnett	Domestic	206438
Railway Diesel	City of London	Transport	2730044
Oil	City of London	Domestic	430078
]	

Query Table

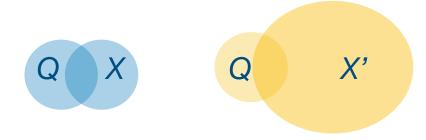
Potential Answer X

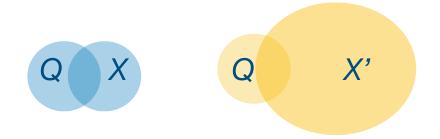
Barnett	38900	Low	20
Camden	40000	Low	14
City of London	888000	Medium	20
		Candida	

Measuring Join Goodness?

$$Jaccard(Q, X) = \frac{|Q \cap X|}{|Q \cup X|}$$

$$Containment(Q,X) = \frac{|Q \cap X|}{|Q|}$$





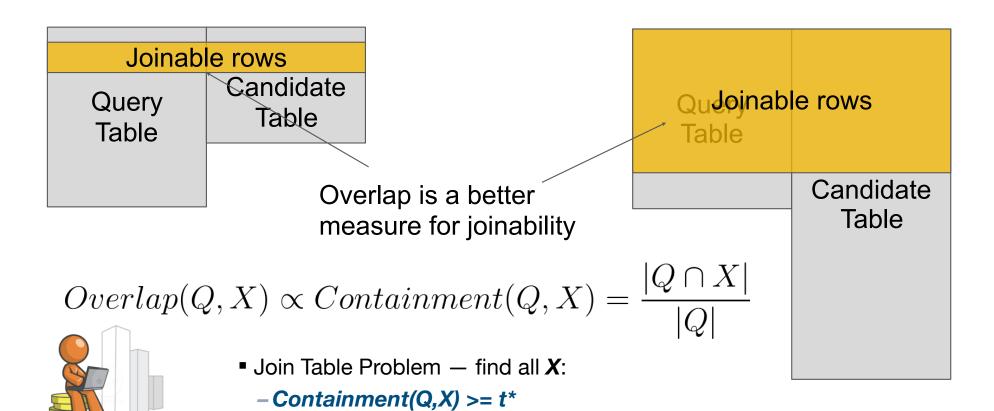
Jaccard(Q,X) >> Jaccard(Q, X')

Same intersection size, but the Jaccard similarity is much smaller on the right

Containment(Q, X) = Containment(Q, X')

Containment is the same for both, independent of the size of X and X'

What is a good measure for joinability?



User specifies tolerance for error t*

MinHash LSH (Broder SEQ97)

$$X = \{x_1, x_2, ..., x_m\}$$
 $Y = \{y_1, y_2, ..., y_m\}$

$$Y = \{y_1, y_2, ..., y_m\}$$

$$h_0(X) = \min_{x \in X} f_0(x)$$

$$h_0(Y) = \min_{y \in Y} f_0(y)$$

$$h_0(X) = \min_{x \in X} f_0(x) \qquad h_0(Y) = \min_{y \in Y} f_0(y) \qquad P(h_0(X) = h_0(Y)) = \frac{|X \cap Y|}{|X \cup Y|}$$

Define a hash function for set, where f_i is a hash function for value (e.g., SHA1)

$$h_1(X) = \min_{x \in X} f_1(x)$$
 Hash Tables
$$h_k(X) = \min_{x \in X} f_k(x)$$

 $h_1(Y) = \min_{y \in Y} f_1(y)$

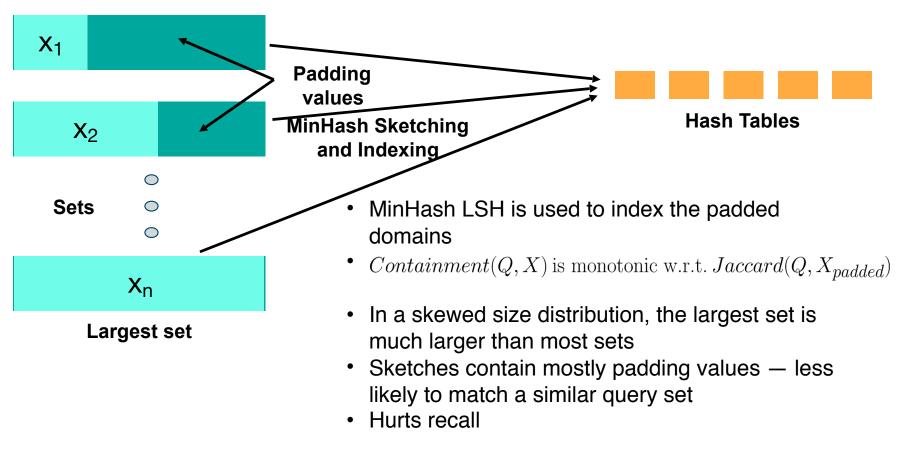
$$h_k(Y) = \min_{y \in Y} f_k(y)$$

Indexing: generate k such hash functions and insert sets into k respective hash tables

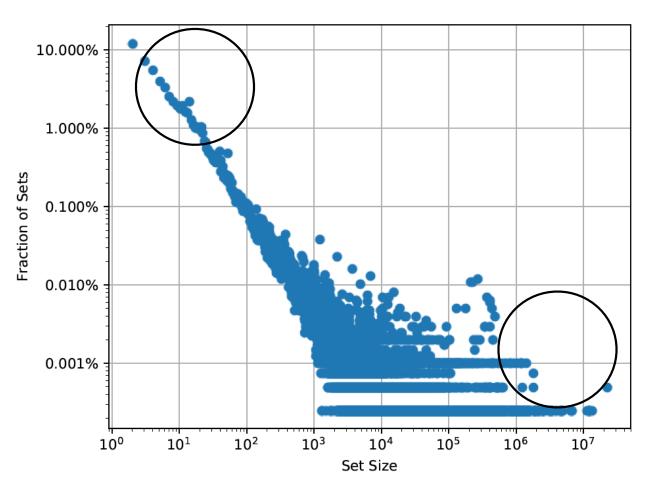
Query: hash the guery set with k hash functions, and retrieve candidates from the k hash tables

$$\frac{|X \cap Y|}{|X \cup Y|} \approx \frac{Count(h_i(X) = h_i(Y))}{k}$$

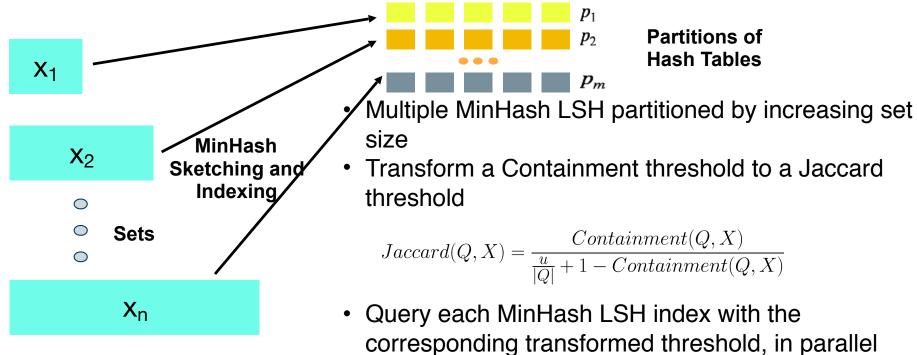
Asymmetric MinHash (Shrivastava&Li WWW15)



Open Data Attribute Cardinality Sizes

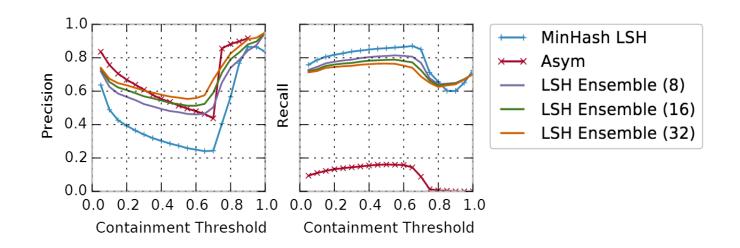


LSH Ensemble (Zhu+ PVLDB16)



- Query each MinHash LSH index with the
- Increasing number of partitions improves precision and speed
- Optimal partitioning strategy for power-law set size distribution (Zhu+ PVLDB16)

LSH Ensemble Accuracy



- Creating more partitions leads to fewer false positives, while maintaining recall
- Asymmetric MinHash LSH has high precision, but low recall due to padding

LSH Ensemble Query Performance

Search Index	Mean Query (sec)	Precision (threshold=0.5)
MinHash LSH	45.13	0.27
LSH Ensemble (8)	7.55	0.48
LSH Ensemble (16)	4.26	0.53
LSH Ensemble (32)	3.12	0.58

- Fewer false positive attributes to process (higher precision)
- Parallel querying over partitions

Related Work

- Set Similarity Search
 - Doesn't scale to join search
 - Prefix Filter
 - *[Chaudhuri+ICDE06]
 - Position Filter
 - *[Xiao+WWW08]
 - Comparison
 - ★[Mann+PVLDB16]
 - *[Behm+ICDE11,Li+ICDE08,Wang+SIGMOD12]

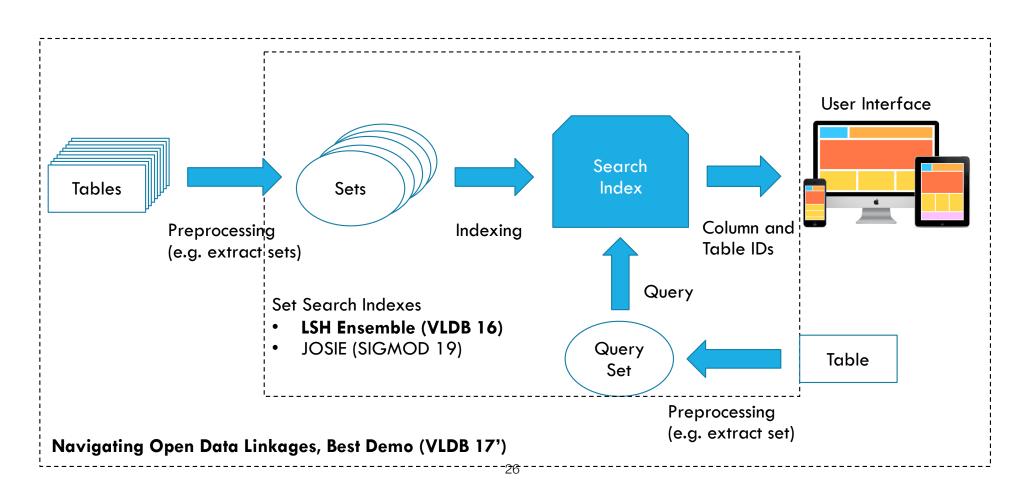
DataSet	Avg Set Size	Max Set Size	Dictionary Size
AOL	3	245	3.9M
ENRON	135	3,162	1.1M
DBLP	86	1,625	7K
WebTables	10	17,030	184M
Open Data	1.5K	22M	562M

- Mass Collaboration Data Search
 - Relies on metadata
 - Linked Data/Microdata
 - *[Bizer+JSWIS09,Meusel+ISWC14]
 - Web Tables
 - **★**[Cafarella+ PVLDB08]
 - [Lehmberg+WWW16]
 - *[Bhagavatula+IDEA13]

Table extension

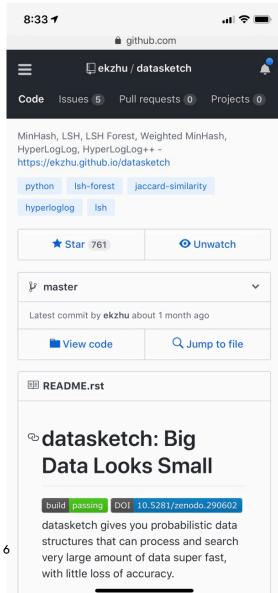
- *Infogather [Yakout+SIGMOD12]
- *[Cafarella+PVLDB09]
- **★**[DasSarma+SIGMOD12]
- *Mannheim Search Join [Lehmberg+JWebSem15]

A Joinable Table Search System



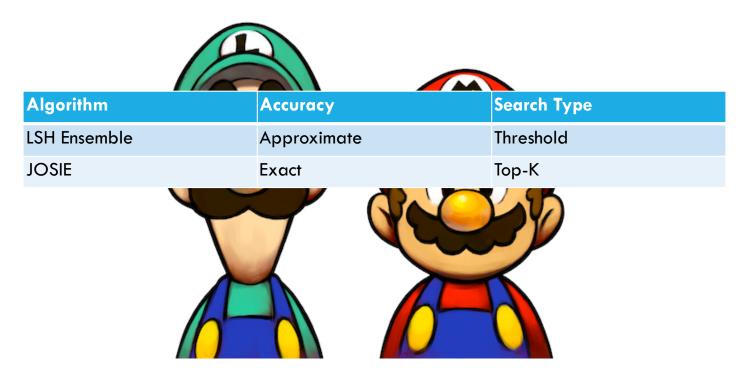
LSH Ensemble¹

- Threshold-based search indexes
- Part of datasketch Python library², together with MinHash LSH
- The library is used by Google (TimeSketch), MIT (Aurum Data Discovery) and Stanford (NLP)
- Over 1100 stars on Github
- [1] Erkang Zhu, Fatemeh Nargesian, Ken Pu, Renée J. Miller, "LSH Ensemble:L Internet-Scale Domain Search", VLDB 2016 [2] https://github.com/ekzhu/datasketch



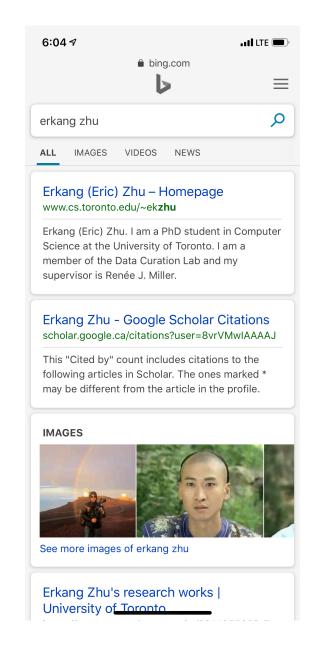
JOSIE vs. LSH Ensemble

They are different!



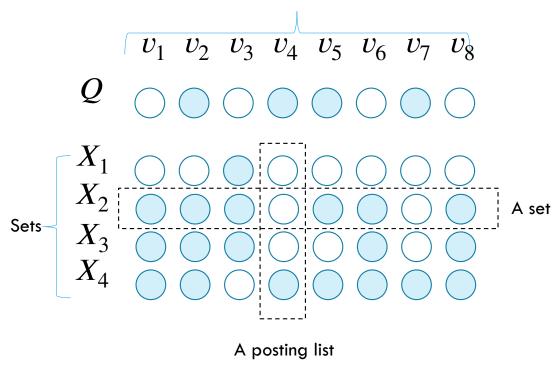
Top-K Search?

- Threshold search: user must specify a containment threshold
 - User may not know a good threshold
 - ▶ Even if they do it may produce no results or too many
- ullet Top-K problem: just return the best k results
 - ▶ No knowledge of relevance measure is required
 - ▶ We showed that for small k (< 20), our exact top-k algorithm can be faster than LSH Ensemble with decreasing threshold hack!
- ullet Use top-k for less sophisticated users and small k



Inverted Index – A Matrix Perspective

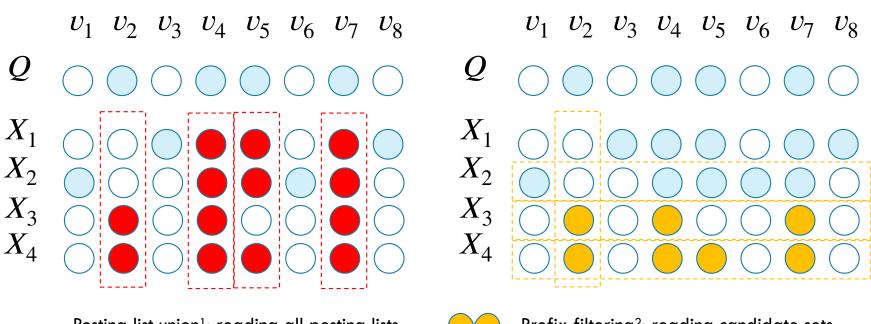
Domain of data values



^[1] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction to Information Retrieval. Cambridge University Press, 2008

^[2] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. Top-k set similarity joins. In ICDE, pages 916–927, 2009.

Baselines for Find Top-1



Posting list union¹: reading all posting lists costs 13 values

Prefix filtering²: reading candidate sets costs 7 values

- [1] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schu¨tze. Introduction to Information Retrieval. Cambridge University Press, 2008
- [2] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. Top-k set similarity joins. In ICDE, pages 916–927, 2009.

Cost Matters in Data Lakes

Dataset	# of Sets	Max Size	Avg. Size	# of Uniq. Values	
Open Data*	745K	22M	1,540	562M	Data
WDC Web Table	163M	1 <i>7</i> K	10	184M	Lakes
AOL (Query Logs)	10M	245	3	3.9M	
ERON (Emails)	517K	3,162	135	1.1M	
DBLP (Bibliographies)	100K	1,625	86	6,864	

^{*215,393} Open Data tables from Canadian, US, and UK Open Data Portal

Read Bottleneck

Large number of sets and data values makes index access expensive Large posting lists and sets are expensive to read

JOSIE solves these issues using an adaptive cost based algorithm

Outline

- Data Lake
 - What is it and why is it important?
 - New data management challenges
- Data Discovery
 - Table Join
 - Table Union
- Open Questions

Table Union

Electricity Barnett		Domestic	240.99	
Gas	Gas Brent		164.44	
Coal Camden		Transport	134.90	
Railways diesel City of London		Domestic	10.52	
Gas	Brent	Domestic	169.69	
Coal	Brent	Transport	120.01	

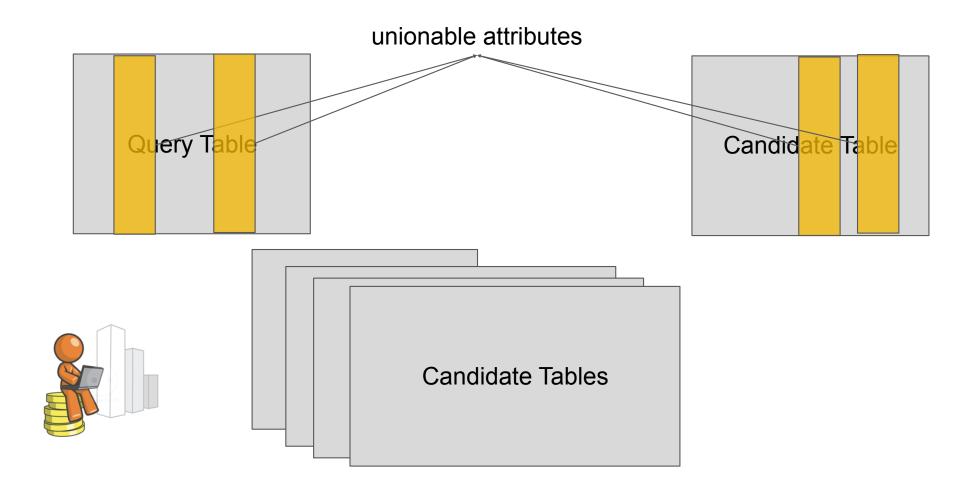
Query Table

Benton	Transport	Gasoline	64413	62.9
Kittitas	Hydro	Fuel oil (1,2,	12838	66.0
Grays	Domestic	Aviation fuels	1170393	66.1
Skagit	Transport	Liquified	59516	60.1

Candidate

- Some attributes may overlap
- Some may refer to entities of common type
- Some may use semantically similar words

Unionable Attribute Search



Attribute Unionability tural Language Semantic Set

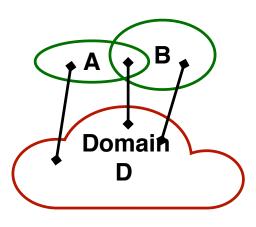
Natural	Language	Semantion
----------------	----------	-----------

Electricity	Barnett	Domestic	240.99	
Gas	Brent	Transport	164.44	
Coal	Camden	Transport	134.90	
Railways diesel	City of	Domestic	10.52	
Gas	Brent	Domestic	169.69	
Coal	Brent	Transport	120.01	

ı			_		_		
	Gasoline	Benton	Г	Transport		64413	62.9
	Fuel oil (1,2,	Kittitas		Hydro		12838	66.0
	Aviation fuels	Grays		Domestic		1170393	66.1
	Liquified petroleum	Skagit		Transport		59516	
			П				

- Probabilistic Model
 - Attributes are samples drawn from the same domain
- Three types of attribute unionability/domains
 - Set, semantic, natural language

Attribute Unionability



- Set and Semantic
 - D is set of values or set of ontology classes
- Natural Language
 - Convert values to word embeddings
 - Measure how likely the word embeddings are drawn from the same domain

Ensemble unionability

Measures are incomparable so define based on the corpus. How unexpected is a score given the corpus?

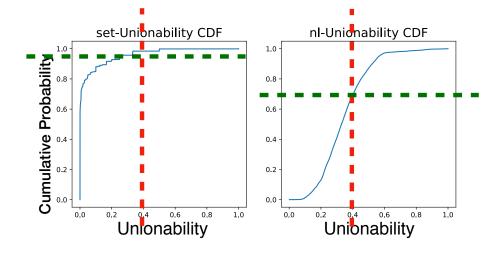
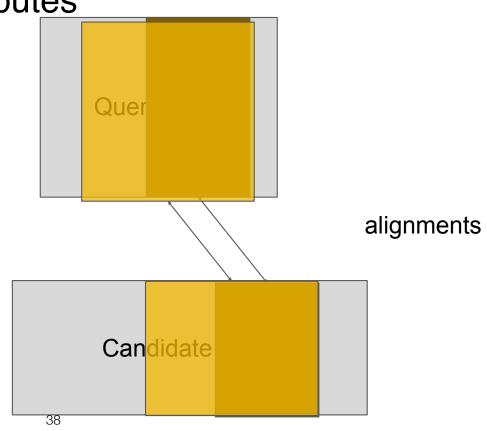


Table Alignment

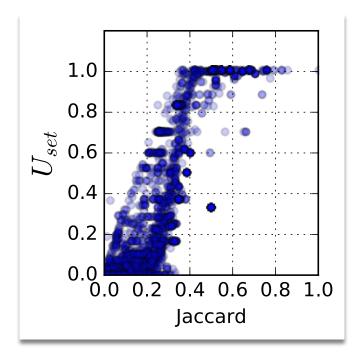
Given set of unionable attributes

when is an alignment of size *n* better than an alignment of size *n*+1 attributes?



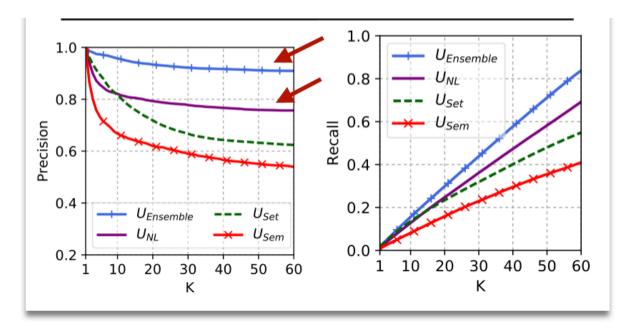
Scaling Unionable Attribute Search

- Set and Semantic Unionability
 - Correlated with Jaccard
- Natural Language Unionability
 - Correlated with Cosine of topic vectors
- Use LSH indices to efficiently retrieve candidate attributes



Evaluation Table Union on Open Data

- NL Unionability outperforms set and semantic (individually)
- Ensemble Unionability (uses all 3) best in accuracy
- Defined as top-K search
 - User defined threshold for unionability is not intuitive



- Semantic Unionability
 - Uses Open Ontology: YAGO

*[Suchenek+WWW07]

Public Table Union Search Benchmark

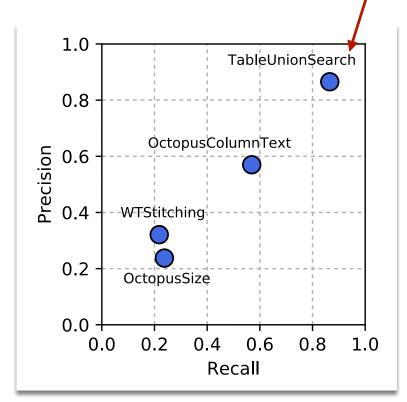
https://github.com/RJMillerLab/table-union-search-benchmark

Using Search on Mass Collaboration Data

- Search on metadata
 - Schema Matching attributes that matched can be "unioned"
 - * [Ling+IJCAI13], [Lehmberg and BizerPVLDB17]
 - Schema plus keyword description of each attribute
 - * [Pimplikar&SarawagiPVLDB12]
- Keyword Search and Clustering of Tables
 - Tables in the same cluster are "unionable"
 - **★**Octopus [Cafarella+PVLDB09]
- Entity-table search
 - Union tables that share a subject attribute (entities of same type)
 - **★**[Das Sarma+SIGMOD12]

Comparison to WebTable Union

- Octopus [Cafarella+PVLDB09]
 - Keyword search; cluster
 - Attribute Similarity
 - Size: avg length values
 - ColumnText: tf-idf of values
- Stitching [Lehmberg&BizerPVLDB17]
 - Instance-based schema matching
- Entity-Complement [DasSarma+SIGMOD12]
 - Union entity tables w/ same subject



Outline

- Data Lake
 - What is it and why is it important?
 - New data management challenges
- Data Discovery
 - Table Join
 - Table Union
- Open Questions

Open Problems

- Near-term: analysis-driven data discovery
 - Bags vs. Sets
 - Multi-attribute join search
 - Finding tables that join and contain new information
 - Incorporating entity-resolution into scalable search
 - Search over quantities (with different measures)
 - Schema inference

Vision

- Query discovery over massive data lakes
 - Finding not only the tables that can be integrated but also the best way to transform and integrate them meaningfully
 - Lessons from mapping discovery
- Data Quality over Open Data
 - Are "Principles of Open Data" being achieved?
 - *Truth finding has been studied over mass collaboration data [Pochampally+SIGMOD14]
 - *Can we quantify when open data is accurate, complete, primary?
 - Shazia Sadiq+, "Data Quality: The Role of Empiricism", SIGMOD Record 2018

Acknowledgments

- This work was done in collaboration with Professor Ken Q. Pu, UOIT &
 - Erkang (Eric) Zhu
 - *Table Join and Open Data Search
 - *PhD April 2019, now Researcher at MSR
 - Fatemeh Nargesian
 - *Table Union Search
 - *PhD June 2019, Asst Professor University of Rochester