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Network and Distributed System Security (NDS2) Lab
• Machine learning and AI for cybersecurity

– Threat detection [Yen et al. 13], [Yen et al. 14], [Oprea et al. 15], [Li and Oprea 16], 
[Buyukkayhan et al. 17], [Oprea et al. 18], [Duan et al. 18], [Ongun et al. 19]

– IoT security: [Ongun et al. 19]
– Web security: [Jana and Oprea 19]
– AI for cyber security games:  [Oakley and Oprea 19]

• Adversarial machine learning and AI
– Poisoning attacks and defenses  [Liu et al. 17], [Jagielski et al. 18], [Jagielski et al. 19]
– Attack transferability [Demontis et al. 19]
– Evasion attacks for cyber security and connected cars [Chernikova et al. 19], 

[Chernikova and Oprea 19]
– Fairness and Privacy [Jagielski et al. 19] 
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AI is Everywhere
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Fast Forward in the Near Future

AI Transportation in Cities of the Future (10-20 years)
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Fast Forward in the Near Future

AI Robots in Medicine of the Future (10-20 years)
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Implications for Cyber Security 

• AI has potential in security applications
– Complement traditional defenses
– Design intelligent and adaptive defense algorithms

• …But AI becomes a target of attack
– Deep Neural Networks are not resilient to adversarial 

manipulations
• [Szegedy et al. 13]: “Intriguing properties of neural networks”

– Many critical real-world applications are vulnerable
– New adversarially-resilient algorithms are needed!

AI
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Supervised Learning: Classification
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Supervised Learning: Regression
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MADE: Detecting Malicious Web Domains
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Network

A. Oprea, Z. Li, R. Norris, K. Bowers. 
MADE: Security Analytics for Enterprise Threat Detection. In ACSAC 2018.



Adversarial Machine Learning: Taxonomy
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Evasion Attacks

Adversarial 
example
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• Evasion attack: attack against ML at testing time
- [Szegedy et al. 13], [Biggio et al. 13], [Goodfellow et al. 14],         

[Carlini and Wagner 17], [Madry et al. 17], [Athalye et al. 18], …
• Implications

- Small (imperceptible) modification at testing time can change the 
classification of any data point to any targeted class



Adversarial Examples

• N. Carlini and D. Wagner. Towards 
Evaluating the Robustness of 
Neural Networks. In IEEE Security 
and Privacy Symposium 2017

• Goal: create minimum 
perturbations for adversarial 
examples

• They always exist!
• Application domains: image 

recognition,  videos classification, 
text models, speech recognition
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Evasion Attacks For Neural Networks

[CW 17], [Madry et al.18] 

Input: Images 
represented as 
feature vectors

Given input 𝑥
Find adversarial example 

𝑥6 = 𝑥 + 𝛿
min
=
𝑐 𝛿 ?

?
+ 𝐿A(𝑥 + 𝛿)

Optimization Formulation

Min distance Change class
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• Most existing attacks are in continuous domains
• Images represented as matrix of pixels with continuous values
• Optimization problem solved with gradient descent



Evasion Attacks for Security

Pr[y=1|x]Raw 
Data 

Feature 
Extraction

Challenge
• Attacks for continuous domains do not result in feasible adversarial examples 
Solution
• New framework for evasion attacks taking into account feature constraints
• Iterative modification guided by gradient values

Network Connection

Malicious Benign
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Evasion Attack for Malicious Connection Classifier

Time Src IP Dst IP Prot. Port Sent 
bytes

Recv.
bytes

Sent 
packets

Recv.
packets

Duration

9:00:00 147.32.84.59 77.75.72.57 TCP 80 1065 5817 10 11 5.37

9:00:05 147.32.84.59 87.240.134.159 TCP 80 950 340 7 5 25.25

9:00:12 147.32.84.59 77.75.77.9 TCP 80 1256 422 5 5 0.0048

9:00:20 147.32.84.165 209.85.148.147 TCP 443 112404 0 87 0 432

Raw 
network 

logs

• Goal: Distinguish malicious and benign network connections 
• Features: Aggregated statistical features per port  
• Attack: Insert TCP or UDP connections on the determined port
• Physical constraints on network 

– Max packet size, latency, protocol accepted per port
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How Effective are Evasion Attacks in Security?
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Insert up to  12 
new connections• Dataset: CTU-13, Neris botnet

– 194K benign, 3869 malicious
• Features: 756 on 17 ports
• Model: Feed-forward neural 

network (3 layers), F1: 0.96

A. Chernikova and A. Oprea. Adversarial Examples for Deep-Learning Cyber 
Security Analytics. http://arxiv.org/abs/1909.10480, 2019.

http://arxiv.org/abs/1909.10480


How Effective are Evasion Attacks in Security?

• Significant degradation of ML classifiers in security
• Small amount of perturbation is effective
• General framework for adversarial testing in discrete domains
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Malicious connection classifier Malicious domain classifier



Increasing Robustness of ML in Security

• Adversarial re-training
– Train model iteratively
– In each iteration, generate 

adversarial examples and 
add to training

• Implications
– Adversarial training can 

improve robustness of ML 
model 
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Evasion Attacks in Connected Cars

Predict direction: Straight, Left, Right
Predict steering angle

● Udacity challenge: Predict steering 
angle from camera images, 2014 

● Actions
- Turn left (negative steering angle) 
- Turn right (positive steering angle)
- Straight (steering angle in [-T,T])

● Dataset has 33,608 images and 
steering angle values (70GB of data)

A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim.
Are Self-Driving Cars Secure? Evasion Attacks against Deep Neural Networks for Self-Driving Cars.

In IEEE SafeThings 2019. https://arxiv.org/abs/1904.07370 20

https://arxiv.org/abs/1904.07370


CNN for Direction Prediction

P[“straight”]

P[“left”]
P[“right”]

Input image Convolutional Layers Fully-Connected Layers

Pixel values(X)
Hidden 
Layers

Logits(Z)
SoftMax(F)

● Two CNN architectures: 25 million and 467 million parameters
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Evasion Attack against Regression

● 10% of adversarial images have MSE 20 times higher than legitimate 
● The maximum ratio of adversarial to legitimate MSE reaches 69
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● First evasion attack for CNNs for regression 
● New objective function

− Minimize adversarial perturbation
− Maximize the square residuals 

(difference between the predicted and 
true response)

min
=
𝑐 𝛿 ?

? − 𝐺(𝑥 + 𝛿, 𝑦)
such that 𝑥 + 𝛿 ∈ 0,1 F

G 𝑥 + 𝛿, 𝑦 = 𝐹 𝑥 + 𝛿 − 𝑦 ?



Adversarial Example for Regression

Original Image
Steering angle = -4.25; MSE = 0.0016

Adversarial Image
Steering angle = -2.25; MSE = 0.05
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• Significant degradation of CNN classifiers in connected cars
• Small amount of perturbation is effective
• Models for both classification and regression are vulnerable
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Training-Time Attacks

• ML is trained by crowdsourcing data in many applications

• Cannot fully trust training data! 

• Social networks
• News articles
• Tweets

• Navigation systems
• Face recognition
• Mobile sensors
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ML
model

Poisoning Availability Attacks

Data

Labels

Plane

ML
model

ML Algorithm
Bird

Testing 
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• Attacker Objective:
– Corrupt the predictions by the ML model significantly

• Attacker Capability: 
– Insert fraction of poisoning points in training

M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating Machine   Learning: 
Poisoning Attacks and Countermeasures for Regression Learning. In IEEE S&P 2018

Poisoned 
Training Data
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Optimization Formulation

argmax
JK

𝐴(𝐷NOP, 𝜽R) 𝑠. 𝑡.

𝜽R ∈ argmin
𝜽

𝐿(𝐷 ∪ 𝐷R, 𝜽)

Given a training set 𝐷 find a set of poisoning data points 𝐷R
that maximizes the adversary objective 𝐴 on validation set 𝐷NOP

where corrupted model 𝜽R is learned by  minimizing the loss 𝐿 on 𝐷 ∪ 𝐷R

Bilevel Optimization  
NP-Hard! 

First white-box attack for linear regression [Jagielski et al. 18]
• Determine optimal poisoning point (𝒙Z,𝑦Z)
• Optimize by both 𝒙Z and 𝑦Z
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Poisoning Regression 
• Improve existing attacks by a factor of at most 6.83

Existing attack

Novel 
attacks

Predict loan rate with ridge regression 
(i.e. with L2 regularization)

Stronger 
attack
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Is It Really a Threat?
• Case study on healthcare dataset (predict Warfarin medicine dosage )
• At 20% poisoning rate

– Modifies 75% of patients’ dosages by 93.49% for LASSO
– Modifies 10% of patients’ dosages by a factor of 4.59 for Ridge

• At 8% poisoning rate
– Modifies 50% of the patients’ dosages by 75.06%

Quantile Initial Dosage Ridge Difference LASSO Difference

0.1 15.5 mg/wk 31.54% 37.20%

0.25 21 mg/wk 87.50% 93.49%

0.5 30 mg/wk 150.99% 139.31%

0.75 41.53 mg/wk 274.18% 224.08%

0.9 52.5 mg/wk 459.63% 358.89%
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Poisoning Neural Networks
Availability with 20% random label flipping

• Hard to change overall structure of decision boundary
• Availability attacks are easily detectable if classifier accuracy degrades
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New Attack: Subpopulation Poisoning

Key Insights
• Data has natural clusters (subpopulations)
• Some subpopulations are more vulnerable
• Minority populations are affected more! 

Attack worked here!
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Initial Results

Cluster Original 
Accuracy

Poisoned Cluster 
Accuracy

Poisoned Points

C1: Size 35 100% 27.77% 70
C2: Size 29 94.11% 21.56% 58
C3: Size 22 100% 33.33% 36
C4: Size 26 100% 39.99% 43
C5: Size 39 92.85% 46.03% 65

Subpopulation poisoning attack
• Perform data clustering
• Select clusters to poison (according to different criteria)
• Insert poisoned points from subpopulation with flipped label

UCI Adult Dataset
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Towards Stealthy Poisoning Attacks

• New subpopulation poisoning attack
– Attack is stealthy (difficult to detect)
– Insert a small number of poisoned points in training
– Does not require change of testing data

• Research questions
– Which subpopulations are more vulnerable?
– How to maximize the impact of the attack with minimum number of 

poisoning points?
– Are defenses possible? Our conjecture is that not really!
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M. Jagielski, P. Hand, A. Oprea. Subpopulation Data Poisoning Attacks. 
In Robust AI in Financial Services workshop at NeurIPS 2019.



Open Problem: Robust AI

• Most AI models are vulnerable in face of attacks!
– Evasion (testing-time) attacks 
– Poisoning (training-time) attacks
– Privacy attacks

• How to design AI algorithms robust to attacks?



Open Problem: AI under Constraints

• AI models face conflicting requirements in practice
– Privacy of user data
– Fairness of predictions

• How to design AI algorithms under constraints?

Privacy Fairness



Takeaways
• AI has potential in security applications

– Design intelligent and adaptive defense algorithms
– Current research: AI and graph models to detect advanced attacks
– Current research: Collaborative AI defenses
– Open problems: Intelligent cyber defense, online learning in cyber

• …But AI becomes a target of attack
– Traditional ML and Deep Neural Networks are not resilient to 

adversarial manipulations at training and testing time
– Current research: Evasion and poisoning attacks for cyber security
– Current research: ML under privacy and fairness constraints
– Open problems: Design AI algorithms resilient against attacks
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