Frontier-Based RTDP: A New Approach to Solving the Robotic Adversarial Coverage Problem

Roi Yehoshua, Noa Agmon and Gal A. Kaminka

Presenters: Chan Min Park, Rachel Prendergass, Olivia Schlepphorst

The Problem

Area coverage problem

- Example: Roomba

Adversarial coverage

- Example: navigating a minefield

Environment: Grid world

P(S)=0.2	P(S)=0.1	P(S)=0.2	P(S)=0.2
P(S)=0.2		P(S)=0.2	P(S)=0.2
start	P(S)=0	P(S)=0.6	P(S)=0.5

Zhang, Jeremy. "Reinforcement Learning-Implement Grid World From Scratch." *Medium*, Towards Data Science, 24 Aug. 2019,

towardsdatascience.com/reinforcement-learning-implement-grid-world-from-scratch-c596 3765ebff.

- Grid contains the probability of the robot being stopped by a threat at any point.
- Offline version: robot knows the map beforehand and can plan ahead

The Approach: Markov Decision Process (MDP)

- Represent costs and uncertainty of actions
- Stochastic Shortest Path Problem
- Possible state space size requires redefining the search algorithm to solve the MDP
- Introduction of the frontier

Adversarial Coverage

Independance: Each (S,S`) transition is independent

Given Path A: **P(completion):**

$$P(S_A) = \prod_{i \in (a_1, \dots, a_m)} (1 - p_i)$$

Cost Function:

 $f(A) = -\alpha \cdot P(S_A) + \beta \cdot |A|$

 α : Risk , β : Coverage time

Coverage expressed as an MDP

State: Gridworld coverage and Robot Position

Expansion: State Actions:

- State expansion shows possible transitions
- Action expansion shows possible results

Goal State: All cells in coverage state are 1

Termination State: Goal State or Dead

Transition Function

Transition probability success:

$$P_a(s'|s) = 1$$

Transition probability fail:

$$P_a(s'|s) = 1 - p_j$$

Cost Success:

$$C_a(s,s') = \frac{1}{1-p_j}$$

Cost Fail:

 $C_a(s, s_d) = -D \cdot \frac{\log(1-p_j)}{p_j}$

Transition Function

P = 1, C = 11 R 1 Go left 0 0 a_1 **s**₂ α: Risk 1 1 R 0 0 1 1 0 1 R s_1 P = 0.8, C = 1.25\$3 Go down a_2 P = 0.2, C = 1.116DDead \boldsymbol{L} Sd

Discount & Risk Ratio:

$$D = -\frac{\alpha}{\beta} \cdot \frac{1}{\log(1 - p_{min})}$$
 α : Risk , β : Coverage time
Expected cost of state:

1

Expected cost of state:

$$E[C(\alpha_i)] = (1 - \alpha_i) - \frac{1}{1 - 1} - \frac{1}{1 - 1}$$

$$[C(c_j)] = (1 - p_j) \cdot \frac{1}{1 - p_j} + p_j \cdot \left[-D \cdot \frac{\log(1 - p_j)}{p_j} \right]$$
$$= 1 - D\log(1 - p_j)$$

Minimum Path Cost and Limitation

Minimum Path Cost:

$$\sum_{t=0}^{n-1} E\left[C_{a_t}(s_t, s_{t+1})\right] = n - D\sum_{j=1}^n \log(1 - p_j)$$

Limitation:

- Searching through possible states is a NP-complete problem!
- Processing and memory limitations

Real-Time Dynamic Programming

- Heuristic-search DP algorithm
- Benefits
 - Is focused
 - Has a good anytime behavior
- Repeated trials
 - Initial state so
 - Ends in goal state or dead-end state
 - $\circ \quad \text{Action selection} \rightarrow \text{greedy}$
 - \circ Outcome selection \rightarrow randomly determined
 - Coverage path is built

Frontier Based Real-Time Dynamic Programming

- RTDP wastes time
- Frontier states = separate covered regions from uncovered
- Path with minimum expected cost
- Composite action/outcomes
- Dijkstra's algorithm \rightarrow shortest path

Algorithm - FBRDTP

Algorithm 2 Frontier_Based_RTDP

Data structures: *frontier* - set of frontier states visited - set of states already visited by the current trial

- 1: function FBRTDP (s_0) // s_0 is the initial state
- 2: while $\max_{s \in visited} \text{RESIDUAL}(s) > \epsilon$ do
- 3: visited $\leftarrow \{s_0\}$
- 4: frontier \leftarrow all successors of s_0
- 5: $FBRTDPTRIAL(s_0)$
- 1: function FBRTDPTRIAL(s) // Execute one trial
- 2: while not GOAL(s) and $s \neq s_d$ do 3:
 - // Pick best composite action and update hash
- 4: $\hat{a} \leftarrow \text{GREEDYCOMPOSITEACTION}(s)$
- 5: UPDATE (s, \hat{a})

8:

9:

- 6: // Stochastically simulate next state 7:
 - $s \leftarrow \text{CHOOSENEXTSTATE}(\hat{a})$
 - if $s \notin visited$ then
 - Add s to visited
- 10: UPDATEFRONTIER(s)

- 1: function GREEDYCOMPOSITEACTION(s)
- 2: Build a graph G that consists of the states in visited \cup frontier and its edge weights defined as the expected costs of the state transitions
- 3: Run Dijkstra on the graph G starting from s
- 4: Find a frontier f with minimum cost path from s
- 5: Let $\hat{a} = (a_1, ..., a_n)$ be the sequence of actions leading from s to f on the minimum cost path
- 6: return \hat{a}
- 1: function QVALUE (s, \hat{a})
- $\mathbf{return} \sum_{s' \in S} P(s'|s, \hat{a}) \big[C_{\hat{a}}(s, s') + s'.V \big]$ 2:
- 1: function UPDATE (s, \hat{a}) 2: $s.V \leftarrow \text{QVALUE}(s, \hat{a})$
- 1: function CHOOSENEXTSTATE (s, \hat{a})
- 2:Choose s' with probability $P(s'|s, \hat{a})$
- 3: return s'

5:

- 1: function UPDATEFRONTIER(s)
- 2: Remove *s* from *frontier*
- 3: for every successor state s' of s do 4:
 - if $s' \notin visited$ and $s' \notin frontier$ then
 - Add s' to frontier

Empirical Evaluation

- Comparison of FBRTDP to:
 - RTDP
 - Labeled RTDP (LRTDP)
 - Value Iteration (VI)
 - Greedy Adversarial Coverage (GAC)

Larger Maps Comparison

Conclusion

- Model adversarial coverage problem as an MDP for robots
- Smaller maps vs. larger maps
- MDPs
- FBRTDP
 - Provides efficiency while having same optimal convergence as RTDP
 - Allows RTDP to solve the problem on larger maps
- In the future:
 - Handle different variants of the adversarial coverage problem
 - I.e. time delay for robot rather than full stop
 - evaluate FBRTDP on other planning problems and compare its performance to other heuristic algorithms for solving MDPs

Works Cited

[1] Roi Yehoshua, Noa Agmon and Gal A. Kaminka. 2015. Frontier-Based RTDP: A New Approach to Solving the Robotic Adversarial Coverage Problem. Retrieved March 2020 from <u>https://www.researchgate.net/profile/Roi_Yehoshua/publication/28117</u> <u>6286_Frontier-Based_RTDP_A_New_Approach_to_Solving_the_Robotic_</u> <u>Adversarial_Coverage_Problem/links/55d9b64208aec156b9ac4ae4.pdf</u>.