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The Problem

Area coverage problem
- Example: Roomba

Adversarial coverage
- Example: navigating a minefield



Environment: Grid world

P(S)=02 P(S)<0.1 P(S)<02 PS)<02 - Grid contains the probability of
the robot being stopped by a

P(5)=0.2 - P(5)=0.2  P(5)=0.2 threat at any point.

ps=0 P06 pg-0s - Offlineversion: robot knows the
start map beforehand and can plan

Zhang, Jeremy. “Reinforcement Learning-Implement Grid World From Scratch.” Medium, a h e a d
Towards Data Science, 24 Aug. 2019,
towardsdatascience.com/reinforcement-learning-implement-grid-world-from-scratch-c596

3765ebff.



The Approach: Markov Decision Process (MDP)

Represent costs and uncertainty of actions

Stochastic Shortest Path Problem

Possible state space size requires redefining
the search algorithm to solve the MDP

Introduction of the frontier



Adversarial Coverage

Independance: Each (S,S’) transition is
independent

Given Path A:
P(completion):

PSa)= 1] (-p)
i€ (a.l,..,,am)
Cost Function:

a: Risk , B: Coverage time




Coverage expressed as an MDP

Go left

State: Gridworld coverage and Robot Position

Expansion: State Actions:
e State expansion shows possible transitions
e Action expansion shows possible results

P=08,C=1.25

Go down

a9

P=i02,C =1.116D

Goal State: All cells in coverage state are 1

Termination State: Goal State or Dead

Sd



Transition Function

Go left

P=08,C=1.25

Go down

a9

P=i02,C =1.116D

Transition probability success:
P.(s'|s) =1
Transition probability fail:
Pu(s'|s) = 1 —p,

Cost Success:

Cost Fail:

Cao(8,84) = —D- log(1=p;)



Transition Function

Discount & Risk Ratio:

Q 1
D=-2.
ISR ﬁ lOg(l = pmzn)

a: Risk , B: Coverage time

P=08,C=125

Expected cost of state:

1 log(1 — p,
J

=1- Dlog(1 — p;)



Minimum Path Cost and Limitation

Minimum Path Cost:

n—1

Z E[Cat (s¢, 8t+1)] =n—D log(1 — pj)

t=0 j=1

Limitation:

e Searching through possible states is a NP-complete
problem!

e Processing and memory limitations




Real-Time Dynamic Programming

e Heuristic-search DP algorithm

e Benefits
o Isfocused
o Has a good anytime behavior

e Repeated trials
o Initial state sO
Ends in goal state or dead-end state
Action selection — greedy
Outcome selection — randomly determined
Coverage path is built

O O O O



Frontier Based Real-Time Dynamic Programming

e RTDP wastes time

e Frontier states = separate covered regions from uncovered
e Path with minimum expected cost

e Composite action/outcomes

e Dikstra’'s algorithm — shortest path



Algorithm - FBRDTP

Algorithm 2 Frontier_Based _RTDP

Data structures: frontier - set of frontier states
visited - set of states already visited by the current trial

1: function FBRTDP(so) // so is the initial state
while maxgecyisited RESIDUAL(S) > € do
visited < {so}
frontier < all successors of sg
FBRTDPTRIAL(S0)

function FBRTDPTRIAL(s) // Ezecute one trial
while not GOAL(s) and s # sq do
// Pick best composite action and update hash
@ < GREEDYCOMPOSITEACTION(S)
UPDATE(s, @)
// Stochastically simulate next state
s + CHOOSENEXTSTATE(d)
if s ¢ visited then
Add s to visited
UPDATEFRONTIER(S)

COXNDUBWIN - GIBRWN

o

function GREEDY COMPOSITEACTION(S)

Build a graph G that consists of the states in visited U
frontier and its edge weights defined as the expected costs
of the state transitions

Run Dijkstra on the graph G starting from s

Find a frontier f with minimum cost path from s

Let @ = (a1,...,an) be the sequence of actions leading
from s to f on the minimum cost path
return a

function QVALUE(s, d)
return Y P(s|s,a)[Ca(s,s’) + s'.V]
s'es

function UPDATE(s, @)
5.V < QVALUE(s, @)

function CHOOSENEXTSTATE(S, @)
Choose s’ with probability P(s’|s, a)
return s’

function UPDATEFRONTIER(S)
Remove s from frontier
for every successor state s’ of s do
if s’ ¢ visited and s’ € frontier then
Add s’ to frontier




Empirical Evaluation

e Comparison of FBRTDP to:

©)

RTDP
Labeled RTDP (LRTDP)
Value Iteration (VI)

Greedy Adversarial Coverage
(GAC)
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Larger Maps Comparison

w
(<}

Prob. To Complete %
w
o
(&)

w
@

T
|

£
(&)

10

Total Path Length
[
A
o

«a
[=3
o

400 : . .

10



Conclusion

Model adversarial coverage problem as an MDP for robots
Smaller maps vs. larger maps
MDPs
FBRTDP
o Provides efficiency while having same optimal convergence as RTDP
o Allows RTDP to solve the problem on larger maps
In the future:
o Handle different variants of the adversarial coverage problem
m e time delay for robot rather than full stop
m evaluate FBRTDP on other planning problems and compare its
performance to other heuristic algorithms for solving MDPs
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