"Verifying an Open Compiler Using
Multi-Language Semantics”

By James T. Perconti and Amal Ahmed

Presentation By Kevin Cam, Noble Mushtak, and Anthony Mu

Problem

e Projects are developed in multiple languages.
e However, the way interoperability between different
programming languages is implemented is very “unsafe.

4
= ML

Java

Example

e let'ssayyou are developing a game in both Racket and C.
e How do you ensure that the C code does not violate the
structure of data from Racket?

W ¢

Goal

e Therefore, we would like to be able to prove that when we link
two programs from different programming languages together,
they work together in the manner that was intended.

Related Work: Benton-Hur Approach

e Benton-Hur 2009
e Relies on creating a logical relation between the source code
and the target code
o Two programs are logically related if they have the same
semantics or behavior.
e Drawbacks: Vertical and Horizontal Compositionality
o Vertical: Doesn’t scale to a multi-pass compiler
o Horizontal: Approach is very limited to simple components

The Paper

-4
“Verifying an Open Compiler Using Multi-Language Semantics”
James T. Perconti and Amal Ahmed
23rd European Symposium on Programming (ESOP 2014)

Proposed methodology on proving compositional compiler
correctness

© guru99.com

High Level . Low Level
Language S— COMPller P— Language

Compiler Correctness |

Compilation Error

e A compiler translates a program in one programming language
into another programming language.

e A compileriscorrect if the program it outputs always has the
same behavior as the original program.

e Firstsuccessful implementation was the CompCert C compiler
o LeRoy 2006

o Drawback: Only worked on closed programs

Compositional Compiler Correctness

e Anopen compilerisacompiler that translates open programs
into another programming language.

e Compositional compiler correctness is the problem of proving
that open compilers are correct.

e However, how do we prove that two open programs have the
same behavior, if we can’t run open programs?

Contextual Equivalence

e Two open programs e, and e, are contextually equivalent if, for
any closed program which contains e, we can replace e, with e,
and the behavior of the closed program will not change.

e Unlike logical relations, contextual equivalence is only defined
for programs written in the same programming language.

(+ x 1) = (+ 1 Xx)

Multi-Language Operational Model B

e Threelanguages:
o F (System F): Functional, Has Closures
o C (Closure Conversion): Functional, but No Closures
o A (Allocation): Allows Mutation
e FCAisalanguage which incorporates all three of the above
programming languages.

System F

e Independently created by Jean-Yves Girard, in 1972, and John
C.Reynolds, in 1974

Very similar to functional programming languages like ML
Statically typed

Allows for higher-order functions, closures

Universal types (i.e. generic data definitions)

Recursive types (i.e. recursive data definitions)

Example of F Code

; Remove all elements equal to unwanted from 1st
(lambda (lst :[List-of X] unwanted :X equal? :[X X -> Boolean])
(tilier
; Is el not equal to unwanted ?
(Lambda (el :X)
(not (equal? el unwanted)))
lst))

The Compiler (F to C)

e The maindifference between F and C is that C does not allow
for free variables inside of functions.

o Therefore, the free variables associated with each function
in F code are encapsulated in a tuple called an environment,
which is then passed as an argument to the function.

o Thisclosed function is paired with the environment tuple to
create a closure.

Example of C code

; Remove all elements equal to unwanted from 1st
(lambda (1lst :[List-of X] unwanted :X equal? :[X X -> Boolean])
(filter
(make-closure
(equal?, unwanted)
; Is el not equal to unwanted ?
(Lambda (env :[(X X -> Boolean, X)] el :X)
((first env) el (second env))))
lst))

The Compiler (C to A)

e The maindifference between C and A is that A has memory
allocation.
e |nordertoaccomodate with A code’s memory allocation, we
create a memory heap for the translated C component.
o All functions and tuples are stored on the memory heap.
o The compiler translates C tuples by generating balloc
expressions, which represents dynamic memory allocation.

Example of A Code

Program: 11

. ; Remove all elements equal to unwanted from 1st_
Memory Heap' 11: (lambda (lst :[List-of X] unwanted :X equal? :[X X -> Boolean])
(filter

(make-closure
(balloc (equal?, unwanted))
12)

1st)))

; Is el not equal to unwanted ?
12: (lambda (env :[(X X -> Boolean, X)] el :X)
((first env) el (second env))))

FCA: Interoperability Language

e Boundary Terms are used to insert a fragment of code from one
language into code from another language

° FC(eC) allows e, a program in C code, to be treated like a
programin F code

o CF(eF) allows e, a program in F code, to be treated like a
program in C code

e There aresimilar boundary terms for CA and AC

CF'e

Lump Types L{T)

e Lump types are used to convert C types into opaque F types,
and convert A types to opaque C types.
o When translating closure values in C to F, we use lump types

in order to encode the type of the environment, so that the
environment of the closure remains opaque to F.
o Introduced by Matthews and Findler in 2007

Suspension Types [

e Suspensions are used to convert F type variables into a C type
variable,and Cto A
o Only used on type variables, unlike lump types
o Used when C needs access to type variables from F, or when
A needs access to type variables from C
o Suspensions are a unique concept introduced by Perconti
and Ahmed in this paper

Compiler Correctness Theorem: Fto C

e BetweenF andC:
o If the open programe_in F compiles to the programe_in C,
then the original program e_in FCA is contextually
equivalent to FC(eC)

Theorem 1 (Llosure Conversion is Sel_t_tantlcs Preserving). If ;x: 7' - e: 7 ~ e,
then ;@;x: 7' F e = "FC(e[[a] /a] [CF™'x/x]):T

Compiler Correctness Theorem: Cto A

e BetweenCandA:

o If the open program e in C compiles to the program (e,, H)
in A, then the original program e in FCA is contextually
equivalent to CA((e,, H))

e Since contextual equivalence is transitive, this also proves
compiler correctness between F and A.

Theorem 2 (Allocation is Semantics-Preserving). If &v:x: 7/ F e:7 ~ (L, H: W),
then ;@;x: 7' F e = "CA(t[[a] /a] [ACT x/x],H):T.

Proving Compiler Correctness

e To prove the compiler correctness theorem, they design a
“step-indexed Kripke logical relation” as a sound and complete
model of contextual equivalence in FCA.

o The Kripke logical relation is defined on both programs and
memory heaps.

o Thiskind of logical relation makes it easy to handle
recursive types and memory allocation.

Lemma 9.4 (CF/FC Boundary Cancellation)
Given W, 7, and A, let p € D[A, 3] such that p = py[3 — VR] and o’ = pg[5 — opaqueR(VR)]. Then

1. If (W, ey, ez) € E[7{€)]p, then (W, e, CFP:(T) r2(T)FC ez) € E[r(C)]p.

2. If (W, v, vz) € V[7{9]p, (M;, M) : W, and CFP7) (P2 (IR C(vy, M) = (v5. Ms), then

(W,v1,v4) € V79 p.

Proving Compiler Correctness (cont.)

e Thetwo properties vital for this proof are the bridge lemma and
boundary cancellation.

o Bridge Lemma: For any two values v, and v, inF, if Vv, and v,
are logically related, then CF(v,) and CF(v,) are logically
related.

o Boundary Cancellation: Any program e_ written in C code is
contextually equivalent to CF(FC(eC)) in FCA.

Discussion and Future Work

Getting Rid of Suspension Types
Compiling To Assembly

Mutable References

Adding Compiler Passes

Supporting Realistic Interoperability

References

e Benton, N., Hur, C.K.: Realizability and compositional compiler correctness for a
polymorphic language. Technical Report MSR-TR-2010-62, Microsoft Research, Apr. 2010.

e Cardelli, L.: Type Systems. Microsoft Research, Feb. 2004.

e Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. In POPL
2007.

e Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In POPL 2006.

e J.T.Percontiand A. Ahmed. Verifying an open compiler using multi-language semantics. In
European Symposium on Programming (ESOP), Apr. 2014

