
“Verifying an Open Compiler Using 
Multi-Language Semantics”

By James T. Perconti and Amal Ahmed

Presentation By Kevin Cam, Noble Mushtak, and Anthony Mu



Problem

● Projects are developed in multiple languages.

● However, the way interoperability between different 

programming languages is implemented is very “unsafe.”



Example

● Let’s say you are developing a game in both Racket and C.

● How do you ensure that the C code does not violate the 

structure of data from Racket?



Goal

● Therefore, we would like to be able to prove that when we link 

two programs from different programming languages together, 

they work together in the manner that was intended.



Related Work: Benton-Hur Approach

● Benton-Hur 2009

● Relies on creating a logical relation between the source code 

and the target code

○ Two programs are logically related if they have the same 

semantics or behavior.

● Drawbacks: Vertical and Horizontal Compositionality

○ Vertical: Doesn’t scale to a multi-pass compiler

○ Horizontal: Approach is very limited to simple components



The Paper

● “Verifying an Open Compiler Using Multi-Language Semantics”

● James T. Perconti and Amal Ahmed

● 23rd European Symposium on Programming (ESOP 2014)

● Proposed methodology on proving compositional compiler 

correctness



Compiler Correctness

● A compiler translates a program in one programming language 

into another programming language.

● A compiler is correct if the program it outputs always has the 

same behavior as the original program.

● First successful implementation was the CompCert C compiler

○ LeRoy 2006

○ Drawback: Only worked on closed programs



Compositional Compiler Correctness

● An open compiler is a compiler that translates open programs 

into another programming language.

● Compositional compiler correctness is the problem of proving 

that open compilers are correct.

● However, how do we prove that two open programs have the 

same behavior, if we can’t run open programs?



Contextual Equivalence

● Two open programs e
1

 and e
2

 are contextually equivalent if, for 

any closed program which contains e
1

, we can replace e
1

 with e
2

 

and the behavior of the closed program will not change.

● Unlike logical relations, contextual equivalence is only defined 

for programs written in the same programming language.

≈



Multi-Language Operational Model

● Three languages:

○ F (System F): Functional, Has Closures

○ C (Closure Conversion): Functional, but No Closures

○ A (Allocation): Allows Mutation

● FCA is a language which incorporates all three of the above 

programming languages.



System F

● Independently created by Jean-Yves Girard, in 1972, and John 

C. Reynolds, in 1974

● Very similar to functional programming languages like ML

● Statically typed

● Allows for higher-order functions, closures

● Universal types (i.e. generic data definitions)

● Recursive types (i.e. recursive data definitions)



Example of F Code



The Compiler (F to C)

● The main difference between F and C is that C does not allow 

for free variables inside of functions.

○ Therefore, the free variables associated with each function 

in F code are encapsulated in a tuple called an environment, 

which is then passed as an argument to the function.

○ This closed function is paired with the environment tuple to 

create a closure.



Example of C code



The Compiler (C to A)

● The main difference between C and A is that A has memory 
allocation.

● In order to accomodate with A code’s memory allocation, we 

create a memory heap for the translated C component. 

○ All functions and tuples are stored on the memory heap.

○ The compiler translates C tuples by generating balloc 

expressions, which represents dynamic memory allocation.



Example of A Code

Program:

Memory Heap:



FCA: Interoperability Language

● Boundary Terms are used to insert a fragment of code from one 

language into code from another language

● FC(e
C

) allows e
C

, a program in C code, to be treated like a 

program in F code

● CF(e
F
) allows e

F
, a program in F code, to be treated like a 

program in C code

● There are similar boundary terms for CA and AC



Lump Types

● Lump types are used to convert C types into opaque F types, 

and convert A types to opaque C types.

○ When translating closure values in C to F, we use lump types 

in order to encode the type of the environment, so that the 

environment of the closure remains opaque to F.

○ Introduced by Matthews and Findler in 2007



Suspension Types

● Suspensions are used to convert F type variables into a C type 

variable, and C to A

○ Only used on type variables, unlike lump types

○ Used when C needs access to type variables from F, or when 

A needs access to type variables from C

○ Suspensions are a unique concept introduced by Perconti 

and Ahmed in this paper



Compiler Correctness Theorem: F to C

● Between F and C: 

○ If the open program e
F
 in F compiles to the program e

C
 in C, 

then the original program e
F
 in FCA is contextually 

equivalent to FC(e
C

)



Compiler Correctness Theorem: C to A

● Between C and A: 

○ If the open program e
C

 in C compiles to the program (e
A

, H) 

in A, then the original program e
C

 in FCA is contextually 

equivalent to CA((e
A

, H))

● Since contextual equivalence is transitive, this also proves 

compiler correctness between F and A.



Proving Compiler Correctness

● To prove the compiler correctness theorem, they design a 

“step-indexed Kripke logical relation” as a sound and complete 

model of contextual equivalence in FCA.

○ The Kripke logical relation is defined on both programs and 

memory heaps.

○ This kind of logical relation makes it easy to handle 

recursive types and memory allocation.



Proving Compiler Correctness (cont.)

● The two properties vital for this proof are the bridge lemma and 

boundary cancellation.

○ Bridge Lemma: For any two values v
1

 and v
2

 in F, if v
1

 and v
2

 

are logically related, then CF(v
1

) and CF(v
2

) are logically 

related.

○ Boundary Cancellation: Any program e
C

 written in C code is 

contextually equivalent to CF(FC(e
C

)) in FCA.



Discussion and Future Work

● Getting Rid of Suspension Types

● Compiling To Assembly

● Mutable References

● Adding Compiler Passes

● Supporting Realistic Interoperability



References 

● Benton, N., Hur, C.K.: Realizability and compositional compiler correctness for a 

polymorphic language. Technical Report MSR-TR-2010-62, Microsoft Research, Apr. 2010.

● Cardelli, L.: Type Systems. Microsoft Research, Feb. 2004.

● Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. In POPL 

2007.

● Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a 

proof assistant. In POPL 2006.

● J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-language semantics. In 

European Symposium on Programming (ESOP), Apr. 2014


