Boundary Forest

Authors: Charles Mathy, Nate Derbinsky, José Bento, Jonathan Rosenthal,
Jonathan Yedidia

Presenters: Steven Abbott, Michael Ruberto, Jesse Steinberg, Zhizhen Zhu
(Group 4)

Background

- KD Tree and Random Decision Forest

- Friedman, J.; Bentley, J.; and Finkel, R. 1977. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. on Mathematical Software
3:209-226.

- Cover Tree

- Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover tree for nearest
neighbor. In Proceedings of the 2006 23rd International Conference on
Machine Learning.

K-Dimensional(KD) Tree

- A Kind of Binary Search Tree

- Each node represent value in k-dimension

- Each non-leaf node in K-D tree divides the space into two parts, called as
half-spaces.

- Use on the searching key value in high dimension

P

Problem of KD Tree

- Meant to perform cheaper computations

- In fact, kd trees typically scale no better than brute force in higher than 20
dimensions.

- Break up the features

Random decision Forest(RF)

Decision Tree

- Atype of model used for both classification and regression

- Easy to interpret and make for straightforward visualizations. ’ s;w Mrm
- Can handle both numerical and categorical data. Ly—J
- Perform well on large datasets

- Random will reduce the variance in result

1

Yes

Problem of the RF Tree

- Building decision trees require algorithms capable of determining an optimal choice at
each node. Which is greedy.
- Decision trees are prone to overfitting, especially when a tree is particularly deep.

Cover Tree

- An algorithm designed to facilitate the speed-up of a nearest neighbor search
- O(c™o6logN) for inserting
- where N is the amount of data and c the so-called expansion constant

Problem of Cover Tree

- A Tradeoff Comparing to other algorithm
- Similar Problem with K-nearest neighbor
- Does not work well with large dataset

- Does not work well with large dimension
- Sensitive to noisy data

The Boundary Forest Algorithm

Boundary Forest - Parameters & Details

e o
e Collection of Boundary Trees (BT's) i‘\:‘ ° 9
e Each node stores training data * oo ¥ Py OTsupon
e Requirements/Parameters: Ff\‘
\

o #of trees w/in the forest (n,)

o Maximum # of child nodes allowed for any node in a tree (k)

o Distance metric function d(x, y)
m Any function to measure closeness between nodes and training/testing data
m ex. Euclidean distance

Boundary Forest - Train vs. Query

Train

(@)

From root, recursively compute
closest node to labeled training
vector
IF correct prediction:

m Do nothing *
IF incorrect prediction:

m Add new node & edge

Query

(@]

o

Same traversal as training
Closest node to the query is the
prediction

2D
Classification
Training
Example

(6 training points)

Example images from:

https://derbinsky.info/public/_custom/research/aaai2015_bf/talk.pdf
https://derbinsky.info/public/_custom/research/aaai2015_bf/talk.pdf

Boundary Forest - Training Example (1)

Ground Truth Boundary Tree

Classes are color
Features are (X, y)
Point became root

Boundary Forest - Training Example (2)

Ground Truth Boundary Tree o
Prediction

Blue

Result
Add new node as
child of root

Boundary Forest - Training Example (3)

Ground Truth Boundary Tree

Prediction
Blue

Result
Add new node as
child of root

Boundary Forest - Training Example (4)

Ground Truth Boundary Tree

Prediction
Blue

Result
Add new node as
child of root

Boundary Forest - Training Example (5)

Ground Truth Boundary Tree

< Prediction
% Red
% Result
< Do not add the
training point

% Important:
> BF only keeps
training points that
update the model

Boundary Forest - Training Example (6)

Ground Truth Boundary Tree Prediction

Red

Result
Add new node as
child of red node

Tests

e Comparisons between different classification algorithms

e Trials performed on datasets from LIBSVM Repository

e Compared Boundary Forest (BF) to k-Nearest Neighbor (k-NN), Random kd
Trees (R-kd), Random Decision Forests (RF), and Cover Tree (CT) algorithms

Numerical Results — Training Time

Data BF BF4 R-kd CT RF
dna 034 015 0.042 032 3.64
letter 1.16 0.80 0.12 1.37 7.5

mnist 1039 37l 5.67 168.4 310

pendigits 034 042 0.059 0.004 47
protein 3547 1381 090 444 191
seismic ~ 48.59 1630 1.86 176.1 2830

*k-NN algorithms do not have separate training times

Numerical Results — Testing Time

Data BF BF4 1-NN 3-NN R-kd CT RF
dna 0.34 0.15 3.75 423 0050 0.25 0.025
letter 1.16 0.80 3.9 6.4 1.67 0.91 0.11

mnist 23.9 87 2900 3200 89.2 417.6 0.3
pendigits (034 042 2.1 24 075 0.022 0.03
protein 3547 13.8 380 404 11,5 514 625
seismic 16,20 52 433 485 657 1725 132

Numerical Results — Training and Testing Times

Training Testing
Data BF BF4 R-kd gL RF BF BF4 1-NN 3-NN R-kd CT RF
dna 034 0.15 0.042 032 364 | 034 0.15 373 423 0.050 0.25 0.025
letter 1.16 080 0.12 = 1.37 75 | 1.16 0.80 5.0 6.4 1.67 0.91 0.11

mnist 1039 371 567 1684 310 | 23.9 87 2900 3200 89.2 417.6 0.3

pendigits 0.34 042 0.059 0.004 4.7 0.34 042 2.1 2.4 0.75 0.022 0.03
protein 3547 13.81 0.90 44 4 191 135.47 13.8 380 404 115 514 625
seismic 4859 1630 1.86 176.1 2830 |16.20 52 433 485 0574 17295 1.32

*Highlight denotes algorithms which were outperformed by BF

Numerical Results - Error Rate

Data BF I-NN 3-NN RF R-kd CT

dna 14.3 25.0 23.9 5.7 22.5 25.55
letter 5.4 9:D 5.4 7.6 9.5 5.6
mnist 2.24 3.08 2.8 3.2 3.08 2.99
pendigits 2.62 2.26 2.2 5.2 2.26 2.8
protein 44.2 52.7 50.7 32.8 53.6 52.0
seismic 40.6 34.6 30.7 23.7 30.8 38.9

Numerical Results - Error Rate (Online vs. Offline)

Data BF OBF

dna 14.3 13.1
letter 5.4 5.5
mnist 2.24 2.6
pendigits 2.62 2.60
protein 44.2 41.7
seismic 40.6 39.6

Conclusion

e A new online learning algorithm
e Nlog(N) training, log(N) querying
e Similar or superior performance to other Nearest Neighbor algorithms

