
Modeling and Reasoning about
DOM Events

Presentation by Zachary Maizes & Nicole Gerzon

Authors: Benjamin S. Lerner, Matthew J. Carroll, Dan P. Kimmel, Hannah Quay-de la Vallee,
and Shriram Krishnamurthi, Brown University

Presented at USENIX Conference on Web App Development
Year of Publication: 2012

Purpose Statement
Current implementations of the document object
model are very lackluster and lead to inconsistencies
and are implemented in different ways among
different browsers. This leads to issues in testing
apps and their interactions.

In order to solve this issue, a more specific and
modular DOM was modeled in this paper.

Paper Outline
List of Topics

Document Object Model (DOM)

Research Goals

DOM Events

Improvements & Challenges

Model Specifics

Event Dispatching

Event Listener Specifics

Properties & Inconsistencies

Event Propagation

Specifies Behaviours of
Triggered Events in Web Pages

“HTML tells events how to
propagate, and events tell
HTML how to evolve”

Poor Support for Modularity

Extensions may not work
together

Research Goals
This research was conducted on various existing
implementations of the Document Object Model,
focusing on specific web browsers.

The goal of this research was to better understand
the DOM and make an improved model that would
allow for various enhancements when using it.

Event listeners have triggers and
actions.

These actions go down the DOM until
they find their target and then go back
up, as illustrated here by the triggered
phases when targeting in this
model:

<div><p></p></div>

Event Flow
1. On <div/> for phase capture, then

2. On <p/> for phase capture, then

3. On for phase target, then

4. On <p/> for phase bubble, then

5. On <div/> for phase bubble.

Suggested Improvements
Multiple Listeners &
Propagation Path:
Adds listeners to a queue
instead of overriding

Aborting Event
Propagation:
Ability to tell it to stop
propagating while
currently propagating

Dynamic Listeners:
Remove listeners at any
time

Check listeners at each
step to accommodate

Challenges
Invited 3rd-Party Code:
Issues arise if ads are given free
reign, and if not there are issues
with DOM events

Uninvited 3rd-Party Code:
Can’t defend without a model of
what to defend against

Model Highlights
Listener Execution and Dispatch

▸ 1200 lines of code
▸ Implemented using PLT

Redex modeling language
▸ 5 states, 8 transitions, 18

transition conditions
▸ Felleisen-Heib Style:

▹ A particular style of
operational semantics

Stages of Dispatch:

pre-dispatch
dispatch - collect

dispatch - next dispatch - defaultdispatch

Propagation, Execution, & Default
Propagation:

▸ Determined in
pre-dispatch

▸ Cannot be changed
regardless of any
mutation on the page

Execution:

▸ Either in dispatch-next or dispatch
▸ Listeners may invoke synchronous event

dispatches - or cancel the current one
▸ Allowed to modify the DOM

Default Actions:

▸ Meta-function when path ends

Representing Listeners
▸ Model separates specification and representation
▸ Event listeners are called in the order they were installed

▹ Must be for either <target> & <capture> or <target> and
<bubble>

▸ Lists are updated w/ a meta function

ancestor

ancestor

 leaf

The target node changes
depending on the stage of
the propagation path

Provable Properties (the highlights)
1. No pointers to null
2. The nodes in the heap are tree structured
3. Every heap location is used as a node or listener
4. If dispatch is not stopped, each node will be

visited exactly twice

Event Dispatch is Deterministic

Finding & Handling Inconsistencies
▸ The model is the ideal - not what is currently

implemented in widely used browsers
▹ ex. Legacy handlers

▸ Handling extension conflicts
▹ ex. Thunderbird - Nostalgy

The extension and original
browser offer two conflicting
UI’s for conversation views

Hot keys in Nostalgy change
the UI even more by creating
a separate dispatch chain

Possible bugs in Thunderbird
which the model helps
identify

Sandboxes and Event Propagation
▸ Sandboxes protect webapps from 3rd party code
▸ These widgets can prevent DOM events or even

invoke code on their own
▸ No model exists to prove that widgets are

sandboxed out of bubble phase interference
▸ 2 possible solutions!

Related + Future Work
▸ Browser testing

▹ Firefox, Chrome, etc...
▸ Extension implementation
▸ Future Improvement:

▹ Keeping up with changing browsers
▹ Fully incorporating Javascript
▹ Non-simplified event modeling

Conclusion
This paper describes a model for reasoning about
and testing various DOM events in browsers

Such a model is useful in bug testing, security
research, and general browser design.

