
The Design and
Implementation of Typed
Scheme
Mitch, Caelan, and David

The Paper

● “The Design and Implementation of Typed Scheme”

● Sam Tobin-Hochstadt and Matthias Felleisen

● Principles Of Programming Languages (POPL) Conference, 2008

● Introduced the first functioning model for a Gradual Typing system

The goal: add types to
untyped languages!

The Pros and Cons of Untyped Languages
Pros :

● Easy to get started

● Easy to configure

● Lots of flexibility

Cons:

● Harder to reason about

● Introduces lots of bugs that types prevent

What is Gradual Typing?

● A method for adding types back to code gradually
● Allows a programmer to write typed code that works together with untyped code

AND

● Convert existing untyped code to typed code

History of Gradual Typing

● Soft Typing (1990’s)

● Migratory Typing (2006)

● Gradual Typing (2006)

● First full model for gradual typing (2008)

Examples of Gradual Typing

Untyped Languages with Gradually Typed Equivalents:

● Javascript → Typescript

● Racket → Typed Racket

● PHP → Hack

● Python → mypy, Python3.8 type annotations, etc

Languages like Dart are being built gradually

typed from the outset

Types of Gradual Typing

Micro:

● Add types to whatever part of the code you want, no matter how small

● Pros: Easy to add types

● Cons: tough on performance, is not very helpful with code guarantees

Macro:

● Have (mostly) typed files/modules, and separate untyped files/modules

● Pros: better performance, stronger guarantees

● Cons: Higher upfront cost for migrating

Types of Type Checking

● Optional: cast values to the type they’re supposed to be and hope for the best

● Latent: Check the type of something when it’s used

● Natural: Check all types when a function is called

Methodology

● Give formal semantics for language (AKA define how the language works mathematically)

● Describe real language + how different operations work

● Describe examples + real code/migrations

Lambda Calculus

Examples: Typed ISL/PLT Scheme

;; add two numbers

;; Number Number -> Number

(define (add x y)

 (+ x y))

;; add two numbers
(define (add [x: Number] [y: Number]): Number

 (+ x y))

Examples: Typed ISL/PLT Scheme
;; data definition: a Complex is one of:

;; - a Number or

;; - (cons Number Number)

;; Complex → Number

(define (creal x)

 (cond [(number? x) x]

 [else (car x)]))

(define-type-alias Cplx (⋃ Number (cons Number Number)))

(define: (creal [x : Cplx]) : Number

 (cond [(number? x) x]

 [else (car x)]))

Examples: Typescript

Examples: Typescript

Additional Features

● ‘Local’ Type Inference

● Type checking on structs & lists/list operations (map, filter, etc)

(define (m [z : Number]): Number

(define x 3)

(define y (∗ x x))

(− y 1))

Proof of Concept

To prove the effectiveness of the model, programs

were ported into the gradual typing system.

● Code from How To Design Programs (HtDP)

● Small libraries in the Racket codebase

● An online game + a checkbook system

(written and ported by an undergrad!)

Major challenges:

● Generic (‘polymorphic’) Types

● Classes/Objects

● Racket Macros

Impact of Paper & Future of Gradual Typing

● First complete model for gradual typing

● Significant influence on gradually-typed languages in industry

○ Particularly Typescript

● Inspired further research into gradual typing

models in other programming languages

○ Ruby

○ Javascript

● Gradual Typing for specific challenges

○ Generic Typing

Regrets

Matthias Felleisen had two regrets with his paper:

● Got the name wrong—he published first, but Siek came up with the Gradual Typing name

● Sam spent 6 months trying to use an automatic prover to prove properties about the language,

which ultimately failed

○ Delayed paper by half a year

Want to do Research?

Northeastern Programming Research Laboratory (PRL)

● Amal Ahmed working on Gradual Types

● Other significant research areas:
○ Type Systems
○ Compilers
○ Domain-Specific Languages
○ … and much, much more!

Citations

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and implementation of typed scheme. SIGPLAN Not. 43, 1 (January
2008), 395–406. DOI:https://doi.org/10.1145/1328897.1328486

Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. InScheme and Functional Programming Workshop,
University of Chicago,Technical Report TR-2006-06, pages 81–92, September 2006.

Tobin-Hochstadt, Sam, and Matthias Felleisen. "Interlanguage migration: from scripts to programs." Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems, languages, and applications. 2006.

New, Max S., Dustin Jamner, and Amal Ahmed. "Graduality and parametricity: together again for the first time." Proceedings of the
ACM on Programming Languages 4.POPL (2019): 1-32.

