Exploiting Redundancy in Natural Language to Penetrate **Bayesian Spam Filters**

Christoph Karlberger, Günther Bayler, Christopher Kruegel, & Engin Kirda

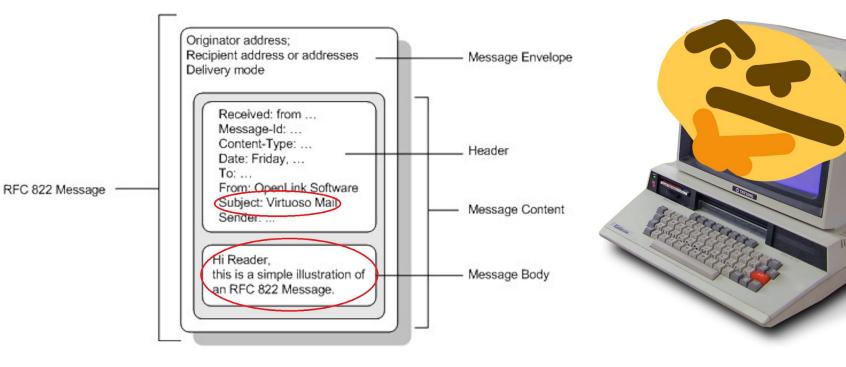
WOOT '07: Proceedings of the first USENIX workshop on Offensive Technologies

Chris Li, Amy Min, Claire Wang, & Jack Steilberg

Problem statement

Summary

What is in an email?



What is a Bayesian spam filter?

How does a Bayesian spam filter work? Calculating the probabilities for individual words

$$P_{spam}(token) = \frac{\frac{n_{spam}(token)}{n_{spam}}}{\frac{n_{spam}(token)}{n_{spam}} + \frac{n_{ham}(token)}{n_{ham}}}$$

Ham means not spam

Training a Bayesian spam filter

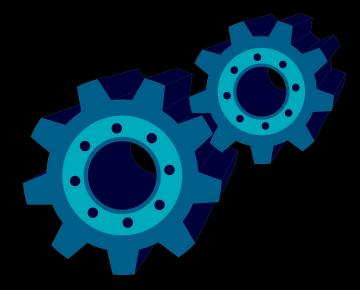
- 1. Tokenize emails
- 2. Analyze messages

Training a Bayesian filter 2. Analyze messages

Formula derived from Bayes' theorem combining individual probabilities

$$p = rac{p_1 p_2 \cdots p_N}{p_1 p_2 \cdots p_N + (1-p_1)(1-p_2) \cdots (1-p_N)}$$

How it Works



Typical attacks: Appending filler words 1. Random2. Common3. Commonwordwordwordattackattack+

uncommon in spam attack

Alternate attack: Substitution

	Synsets	Hypernym sets	If no synonym sets
Car:	"an automobile with four wheels"	"motor vehicle"	a → @
	"a motor vehicle with four wheels"	"automobile"	$i \rightarrow I$ (lower case L)
	"a cabin for transporting people"		

Automating Substitution Attacks

- 1. Identify all words with high spam probability
- 2. Find a synonym set with a lower spam probability
- 3. Replace words in the email with one of the synonym sets
- 4. Test altered email against spam filter

1. Identifying all words with high spam probability

Training spam filters with spam and ham emails:

- 1. Find the spam probability of every word
- 2. Use a substitution threshold

2. Finding sets of words with similar meaning

- 1. Find synonym sets using **WordNet**
 - a. If none found, use *exchange threshold* for doing e.g. $a \rightarrow @$
- 2. Give WordNet the role of the word using **LingPipe NLP** package
- 3. Use **SenseLearner** to choose the synset closest semantically to the original term

3. Replacing words in the email

Two methods of selecting from the set of synonym sets found:

- 1. Random
- 2. Minimum spam probability

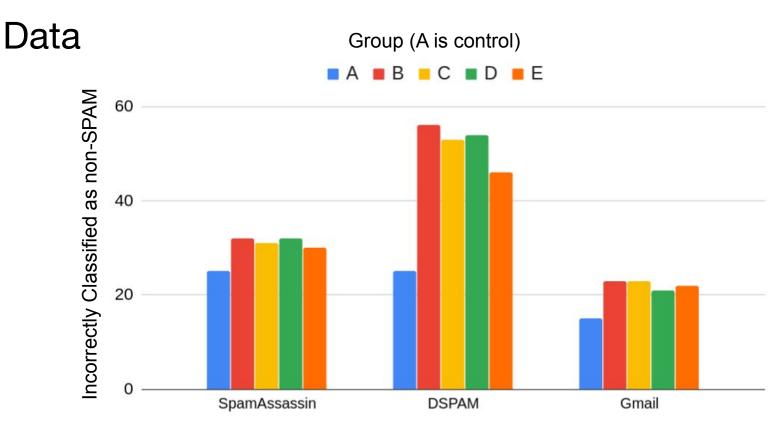
Results

Evaluation

- Results were evaluated with three different spam filters
 - SpamAssassin 3.1.4
 - **DSPAM 3.8.0**
 - Gmail
- Spam emails obtained from Bruce Guenter's SPAM archive

Evaluation

- HTML stripped from messages
- Manually corrected pre-existing word-alternation based filter attacks



Classifier

Data (uglier)

Mail set	Substitution	Exchange	Replacement	Mails not recognized as spam by		
	threshold	threshold	strategy	SpamAssassin 3.1.4	DSPAM 3.8.0	Gmail
Test Set A	100%	100%	-	25	25	15
Test Set B	60%	95%	minimum	32	56	23
Test Set C	60%	100%	minimum	31	53	23
Test Set D	60%	100%	random	32	54	21
Test Set E	80%	100%	minimum	30	46	22

Limitations

- Substitution was not always able to find a good word to use
 - Instead do character exchanges, but those do not usually fool spam filters
- Sometimes word substitutions do not make sense to a human
- Spam often has bad grammar which makes substitution more difficult



Later Research

Mostly ways to counter the attack proposed in our paper

Enhanced **Topic-based Vector Space** Model for semantics-aware spam filtering [2]

2012

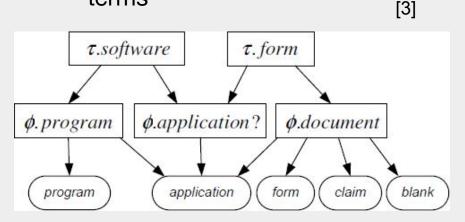
Igor Santos, Carlos Laorden, Borja Sanz, and Pablo G. Bringas

VSM

- Models natural language
- Used in information retrieval
- Treats words as independent

eTVSM

- Accounts for meaning



2012 - eTVSM

Evasion-Robust Classification on Binary Domains [4]

2018

Bo Li and Yevgeniy Vorobeychik

- Our paper was an evasion attack
 - > Intelligent adversary
- And had a binary feature space

2018 - Evasion-Robust Classification

- Authors created 2 frameworks
 - > General
 - Mixed-integer linear programming
 - Accounts for feature cross-substitution attacks
 - ≻ RAD
 - Algorithm for retraining with arbitrary attack models & classifiers
- And tested them
 - ➤ Filtering spam
 - Identifying handwritten numbers

Opportunities to do similar research

NEU SecLab - practical security

- Security applications of program analysis
- Web & mobile security
- Malware
- Botnets

Basic knowledge of security is helpful

https://seclab.ccs.neu.edu/

ek@ccs.neu.edu

FACULTY

Engin Kirda Professor

William Robertson Associate Professor

Conclusion

- Spam emails are a serious concern and major annoyance
- Bayesian spam filters are an important technology for removing spam
- They are not perfect and can be fooled by substitution
 - Replacing suspicious words with more innocuous ones
 - \succ This can be used to improve filters in the future
- This shows we need more improvements to filter spam

References

[1] Christoph Karlberger, Günther Bayler, Christopher Kruegel, and Engin Kirda. 2007. Exploiting redundancy in natural language to penetrate Bayesian spam filters. *WOOT '07: Proceedings of the first USENIX workshop on Offensive Technologies*, Article 9 (2007), 7 pages.

[2] Igor Santos, Carlos Laorden, Borja Sanz, and Pablo G. Bringas. 2011. Enhanced Topic-based Vector Space Model for semantics-aware spam filtering. *Expert Systems with Applications* 39, 1 (Jan. 2012), 437-444. DOI: <u>https://doi.org/10.1016/j.eswa.2011.07.034</u>

[3] Ahmed Awad, Artem Polyvyanyy, and Mathias Weske. 2008. Semantic Querying of Business Process Models. *12th International IEEE Enterprise Distributed Object Computing Conference* (2008), 85-94. DOI: https://doi.org/10.1109/EDOC.2008.11

[4] Bo Li and Yevgeniy Vorobeychik. 2018. Evasion-Robust Classification on Binary Domains. *ACM Trans. Knowl. Discov. Data*. 12, 4, Article 50 (June 2018), 32 pages. DOI: <u>https://doi.org/10.1145/3186282</u>