Updated 4/7/2025

Topic 2: Database design
L23: Normalization

Wolfgang Gatterbauer
CS3200 Introduction to Databases (sp25)

https://northeastern-datalab.github.io/cs3200/sp25s1/
4/7/2025

615

https://northeastern-datalab.github.io/cs3200/sp25s1/

Overview

Database normalization
& Design Theory

https://northeastern-datalab.github.io/cs3200/

https://northeastern-datalab.github.io/cs3200/

Best Practice Patterns in Software Programming

......

fé#i%é& Dont Repeat Yourself

Context:

Duplication (inadvertent or purposeful duplication) can lead to maintenance
nightmares, poor 1actoring, and Iogical contradictions.

Duplication, and the strong possibility of eventual contradiction, can arise

anywhere: in architecture, requirements, code, or documentation, The effects
can range from mis-implemented code and developer confusion t§ complete
system failure.

One could argue that most of the difficulty in Y2K remediation is dugd to the
lack of a single date abstraction within any given system; the knowledge of
dates and date-handling is widely spread.

The Problem:

But what exactly counts as duplication? CloneAndModifyProgramming is
generally cited as the chief culprit (see OnceAndOnlyOnce, etc.), but there is
more to it than that. Whether in code, architecture, requirements documents,
or user documentation, duplication of knowledge - not just text - is the real

culprit. —

Therefore:

The DRY (Don't Repeat Yourself) Principle states:

Every piece of knowledge must have a single, unambiguous, Can you +M_Mk O‘F an ?Xﬁ VV\:P[@ ‘Fl"OW\ our OIQSS ?
authoritative representation within a system. where I violated this :PY'WICIPIG .

Source: https://wiki.c2.com/?DontRepeatYourself , https://wiki.c2.com/?0nceAndOnlyOnce
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 617

https://northeastern-datalab.github.io/cs3200/
https://wiki.c2.com/?DontRepeatYourself
https://wiki.c2.com/?OnceAndOnlyOnce

Best Practice Patterns in Software Programming

- § —
=1 3

fé#i%‘\& Dont Repeat Yourself

Context:

Duplication (inadvertent or purposeful duplication) can lead to maintenance
nightmares, poor 1actoring, and Iogical contradictions.

Duplication, and the strong possibility of eventual contradiction, can arise

anywhere: in architecture, requirements, code, or documentation, The effects
can range from mis-implemented code and developer confusion t§ complete
system failure.

One could argue that most of the difficulty in Y2K remediation is dugd to the
lack of a single date abstraction within any given system; the knowledge of
dates and date-handling is widely spread.

The Problem:

But what exactly counts as duplication? CloneAndModifyProgramming is
generally cited as the chief culprit (see OnceAndOnlyOnce, etc.), but there is
more to it than that. Whether in code, architecture, requirements documents,
or user documentation, duplication of knowledge - not just text - is the real

culprit. —

Therefore:
The DRY (Don't Repeat Yourself) Principle states:

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

i, ey

ey
4&4%‘\& Once And Only Once

One of the main goals (if not the main goal) when ReFactoring code. Each
and every declaration of behavior should appear OnceAndOnlyOnce.
Conceptually analogous to normalization in the Relatlona[MOgel. See also

Code wants to be simple. If you are aware of CodeSmells, and duplicate code
is one of the strongest, and you react accordingly, your systems will get
simpler. When I began working in this style, I had to give up the idea that I
had the perfect vision of the system to which the system had to conform.
Instead, I had to accept that I was only the vehicle for the system expressing
its own desire for simplicity. My vision could shape initial direction, and my
attention to the desires of the code could affect how quickly and how well the
system found its desired shape, but the system is riding me much more than I
am riding the system. -- KentBeck, feeling mystical, see
MysticalProgramming

Beware of introducing unnecessary coupling (CouplingAndCohesion) when
refactoring for OnceAndOnlyOnce.

Refactoring is the moving of units of functionality from one place to another

in your program. Refactoring has as a primary objective getting each piece of
functionality to eXist in exactly one place 1n tEe software. -- RonJeriries

Cp. with our multiple course calenwdars: Gradiance deadlines:

1) in gradiavce, 2) in Canvas, 3) on website

Source: https://wiki.c2.com/?DontRepeatYourself , https://wiki.c2.com/?0nceAndOnlyOnce
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

618

https://northeastern-datalab.github.io/cs3200/
https://wiki.c2.com/?DontRepeatYourself
https://wiki.c2.com/?OnceAndOnlyOnce

Normalization: What you should take away

« Understand the and why a normalized data
model is desirable (in short: we avoid redundancy)
— Be able to and how to avoid them: Insertion, deletion,

and modification
e Be able to explain and apply normal forms (NFs):

and
— Be able to identify when a relational model is in NF

— Actually apply normalization process

619

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

https://northeastern-datalab.github.io/cs3200/

Normalization

e Organizing data to minimize redundancy (repeated data)

e This is good for two reasons

— The database takes up less space

— You have a lower chance of inconsistencies in your data (cp with keeping
multiple calendars synched, say Piazza / Canvas / Website)

« If you want to make a change to a record, you only have to make it
in one place
— The relationships (via Foreign Keys) take care of the rest

« But you will usually need to link the separate tables together in
order to retrieve information (that's why we have joins...)

620

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

https://northeastern-datalab.github.io/cs3200/

First Normal Form (1NF)

« Database can only store "flat" tables (no "nested relations")

o A database schemaisin if all tables are flat.
Student
Name GPA Course
Vath How can we avoid
Alice 3.8 DB
o5 multi-valued attributes" =
DB
Bob 3.7
OS
Math
Carol 3.9
oS

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 621

https://northeastern-datalab.github.io/cs3200/

First Normal Form (1NF)

« Database can only store "flat" tables (no "nested relations")

« A database schemais in if all tables are flat.
Student Student
Name GPA Course
Name [GPA | Course BPut now we have
Alice 3.8 Math .
— E reduvdavcies @
Alice 3.8 DB
Alice 3.8 DB
0S Alice 3.8 OS
— Bob |37 DB How can we
Bob-— 137 s Bob |37 |05 avoid those? =
Math Carol 3.9 Math
Carol 3.9
0S Carol 3.9 0OS

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 622

https://northeastern-datalab.github.io/cs3200/

First Normal Form (INF): that is just the start

« Higher NFs avoid redundancies ©

May need +o add
uambiguons keys

Student
Name GPA Course
Math
Alice 3.8 DB
oS
DB
Bob 3.7
oS
Math
Carol 3.9
oS

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

Student

Name GPA Course
Alice 3.8 Math
Alice 3.8 DB
Alice 3.8 OS
Bob 3.7 DB
Bob 3.7 OS
Carol 3.9 Math
Carol 3.9 OS

Student
Name | GPA
Alice 3.8
Bob 3.7
Carol 3.9
Takes Course
Student | Course Course
Alice Math Math
Carol Math DB
Alice DB OS
Bob DB
Alice OS
Carol OS
623

https://northeastern-datalab.github.io/cs3200/

Data Anomalies

« When a database is poorly designed we get anomalies (those are
bad) resulting from redundancies:

— Update anomalies: need to change in several places

— Insert anomalies: need to repeat data for new inserts

— Deletion anomalies: may lose data when we don't want
(remember the chasm trap!)

)
TN

BCQ — E \

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 624

https://northeastern-datalab.github.io/cs3200/

Relational Schema Design

Recall multivalued (set) attributes (persons with several phones):

Employee
Name SSN PhoneNumber City
Alice 123-45-6789 | 617-555-1234 | Boston A person may have multiple phones,
; but lives in only one city. PK is thus
Alice 123-45-6789 617-555-6543 Boston (SSN, PhoneNumber)
Bob 987-65-4321 908-555-2121 Cambridge

e Update anomaly

e Insert anomaly Do you see any ﬂIVIOVV\ﬂIIiGS??

e Deletion anomaly

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 625

https://northeastern-datalab.github.io/cs3200/

Relational Schema Design

Recall multivalued (set) attributes (persons with several phones):

Employee
Name SSN PhoneNumber City
Alice 123-45-6789 617-555-1234 Boston
Alice 123-45-6789 617-555-6543 Boston
Bob 987-65-4321 908-555-2121 Cambridge

e Update anomaly

e Insert anomaly

e Deletion anomaly

A person may have multiple phones,
but lives in only one city. PK is thus
(SSN, PhoneNumber)

What if Alice moves to "New York"?

What if Alice gets a 3™ telephone number?

So what
do we do s

What if Bob deletes his phone number?
(or Joe has no phone number; recall chasm trap)

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

626

https://northeastern-datalab.github.io/cs3200/

Relation Decomposition

Employee
Name SSN PhoneNumber City
Alice 123-45-6789 | 617-555-1234 | Boston Break the single relation
Alice 123-45-6789 | 617-555-6543 Boston into two relations!
Bob 987-65-4321 | 908-555-2121 | Cambridge Hint: "separation of concerns"
Employee / Phone\‘
Name SSN City SSN PhoneNumber
Alice 123-45-6789 | Boston 123-45-6789 617-555-1234
Bob 987-65-4321 | Cambridge 123-45-6789 617-555-6543
987-65-4321 908-555-2121

Now Anomalies have gone ©

* No more repeated data

e Easy update for Alice to move to "New York" (how ?)

e Deleting Bob's single phone number (how ?) has no side-effects

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 627

https://northeastern-datalab.github.io/cs3200/

Good News / Bad News

« The good news: when you start with solid ER modeling and follow
the steps described to create relations then your relations will
usually be pretty well normalized

« The bad news: you often don't have the benefit of starting from a
well-designed model ("schema decay")

« The good news (part 2): the steps we will cover in class will help you

convert poorly normalized tables into highly normalized tables
("mechanical translation")

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 628

https://northeastern-datalab.github.io/cs3200/

. Normal forms
QNo
Functional Dependencies

https://northeastern-datalab.github.io/cs3200/

https://northeastern-datalab.github.io/cs3200/

Database design & Normal forms

« Normalization (and database design) is about how to represent your data to
avoid anomalies.

« Itis a mostly mechanical process

— Tools can carry out routine portions

« We have a Python notebook from the Stanford group that implements and
illustrates the algorithms!

— (If there is strong demand, | will post it again and you can play with it. In the past, it
created lots of confusion because students did not know Python)

630

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

https://northeastern-datalab.github.io/cs3200/

Data Normalization

« Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

e Goals of normalization include:
— Minimize data redundancy
— Simplifying the enforcement of referential integrity constraints
— Simplify data maintenance (inserts, updates, deletes)
— Improve representation model to match "the real world"

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 631

https://northeastern-datalab.github.io/cs3200/

Well-Structured Relations

« A well-structured relation contains minimal data redundancy and allows users
to insert, delete, and update rows without causing data inconsistencies

« Anomalies are errors or inconsistencies that may result when a user attempts
to update a table that contains redundant data.

e Three types of anomalies:
— Insertion Anomaly — adding new rows forces user to create duplicate data

— Deletion Anomaly — deleting rows may cause a loss of data that would be needed for
other future rows

— Modification Anomaly — changing data in a row forces changes to other rows because of
duplication

e General rule of thumb: a table should not pertain to more than one entity
type

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 632

https://northeastern-datalab.github.io/cs3200/

Normal Forms

Normal Form: a state of a relation

that results from applying simple
« 1st Normal Form (1NF) = All tables are flat rules regarding FDs ("Functional

Dependencies") to that relation

partial
 3rd Normal Form (3NF) DB designs baSIEd on
- no more transitive FDs (also "bad") FDs (functlc?na Our focus
dependencies), next
« Boyce-Codd Normal Form (BCNF) IR EE) U9 [PIEvE

: : : data anomalies
- every determinant is a candidate key

« 4th: any multivalued dependencies have been removed (we will give intuition)
« 5t any remaining anomalies have been removed (not covered)

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 633

https://northeastern-datalab.github.io/cs3200/

1st Normal Form (1NF)

Student Courses
Alice {CS3200, CS4240}
Bob {CS3200, CS4240}

Violates 1NF.

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 634

https://northeastern-datalab.github.io/cs3200/

1st Normal Form (1NF)

Student

Courses

Alice

{CS3200, CS4240}

Bob

{CS3200, CS4240}

Violates 1NF.

INF Constraint: Types must be atomic!

Student | Course
Alice CS3200
Alice CS4240
Bob CS3200
Bob CS4240
In 15t NF

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

635

https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room
Alice CS3200 | WVF20
Bob CS3200 | WVF20
Charlie |[CS3200 |WVF20

If every course is in
only one room,
contains redundant
information!

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 636

https://northeastern-datalab.github.io/cs3200/

A poorly designed database causes anomalies:

Constraints Prevent (some) Anomalies in the Data

Student | Course | Room
Alice CS3200 |WVF20
Bob CS3200 [B12

Charlie |CS3200 |WVF20

If we update the
room number for
one tuple, we get
inconsistent data =
an update anomaly

637

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student

Course

Room

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

638

https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student | Course | Room

Alice CS3200 |WVF20

Bob CS3200 |WVF20

Charlie |CS3200 |WVF20
1C54240 |B12

Similarly, we can’t
reserve a room
without students
= a variant of an
insert anomaly

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

639

https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

Course

Room

CS3200

WVF20

Student | Course
Alice CS3200
Bob CS3200
Charlie CS3200

CS4240

B12

Is this form better?

e Redundancy?

* Update anomaly?
* Delete anomaly?
* [nsert anomaly?

Next: develop theory to understand why this design may
be better and how to find this decomposition...

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

640

https://northeastern-datalab.github.io/cs3200/

StaffBranch

staffNo sName position |salary | branchNo | bAddress

SL21 John White | Manager 30000 | BOO5 22 Deer Rd, London
SG37 Ann Beech | Assistant | 12000 | B003 163 Main St, Glasgow
SG14 David Ford | Supervisor | 18000 | B003 163 Main St, Glasgow
SA9 Mary Howe | Assistant 9000 | BOO7 16 Argyll St, Aberdeen
SG5 Susan Brand | Manager | 24000 | B003 163 Main St, Glasgow
SL41 Julie Lee Assistant 9000 | BO0O5 22 Deer Rd, London

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 641

https://northeastern-datalab.github.io/cs3200/

StaffBranch "j —
staffNo sName position | salaiy IE:LanchNo bAddress
_—___;— -\—
SL21 John White | Manager 30000 BOOE) 22 Deer Rd, London
$G37 Ann Beech | Assistant | 12000 | B003 163 Main St, Glasgow LJ N : L
SG14 David Ford | Supervisor | 18000 | B0O03 163 Main St, Glasgow }A‘
SA9 Mary Howe | Assistant 9000 | BOO7 16 Argyll St, Aberdeen
SG5 Susan Brand | Manager | 24000 | B003 163 Main St, Glasgow
SL41 Julie Lee Assistant 9000 :BOO§ 22 Deer Rd, London
\ ‘ \ IR < ba
(
A\ e U0) By)

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 642

https://northeastern-datalab.github.io/cs3200/

StaffBranch

staffNo sName position |salary | branchNo | bAddress
SL21 John White | Manager 30000 | BOO5 22 Deer Rd, London
SG37 Ann Beech | Assistant | 12000 | B0O03 163 Main St, Glasgow
SG14 David Ford | Supervisor | 18000 | B003 163 Main St, Glasgow
SA9 Mary Howe | Assistant 9000 | BOO7 16 Argyll St, Aberdeen
SG5 Susan Brand | Manager | 24000 | B003 163 Main St, Glasgow
SL41 Julie Lee Assistant 9000 | BOO5 22 Deer Rd, London
Staff
staffNo sName position |salary | branchNo
SL21 John White | Manager | 30000 | B005
SG37 Ann Beech | Assistant | 12000 | B003
SG14 David Ford | Supervisor | 18000 | B003
SA9 Mary Howe | Assistant 9000 | BOO7
SG5 Susan Brand | Manager | 24000 | B0O3
SL41 Julie Lee Assistant 9000 | B0O5
Branch

branchNo | bAddress

B005 22 Deer Rd, London
B007 16 Argyll St, Aberdeen
B003 163 Main St, Glasgow

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 643

https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

EMPLOYEE2

Emp_D Name Dept_Name Salary Course_Tile Date_Completed !
100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X |
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X),
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X

110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X

110 Chris Lucero Info Systems 43,000 C++ 4/22/200X

190 Lorenzo Davis Finance 66,000

160 Susan Martin Marketing 42,000 SPSS 8/19/200X

150 Susan Martin Marketing 42,000 Java 8/12/200X

Does it contain anomalies?

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

N =y
EMPLRYEEQ ‘ D”/_r((’ V%
Emp_ID Name Dept_Name Salary Course_Tile Date_Completed !

100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X |
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X),
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X

110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X 3
110 Chris Lucero Info Systems 43,000 C++ 4/22/200X |
190 Lorenzo Dawis Finance 66,000

160 Susan Martin Marketing 42,000 SPSS 6/19/200X 2
150 Susan Martin Marketing 42,000 Java 8/12/200X C

1 4 j T
« Does it contain anomali U

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 647

https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

EMPLOYEE2

Emp_ID Name Dept_Name Salary Course_Title Date_Completed

100 Margaret Simpson Marketing 48,000 SPSS 6/18/200X |
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X),
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X

110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X 3
110 Chnis Lucero Info Systems 43,000 C++ 4/22/200X |
190 Lorenzo Davis Finance 66,000

160 Susan Martin Marketing 42,000 SPSS 8/19/200X 1
150 Susan Martin Marketing 42,000 Java 8/12/200X C

e Does it contain anomalies?

— Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
— Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class

— Modification: Giving a salary increase to employee 100 forces us to update multiple records

« Why do these anomalies exist?

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 648

https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

EMPLOYEE2

Emp_ID Name Dept_Name Salary Course_Title Date_Completed

100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X |
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X),
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X

110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X 3
110 Chris Lucero Info Systems 43,000 C++ 4/22/200X |
180 Lorenzo Davis Finance 66,000

160 Susan Martin Marketing 42,000 SPSS 8/19/200X 2
150 Susan Martin Marketing 42,000 Java 8/12/200X C

e Does it contain anomalies?

— Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
— Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class
— Modification: Giving a salary increase to employee 100 forces us to update multiple records

« Why do these anomalies exist?

— Because there are two themes (entity types) in one relation. This results in duplication, and an
unnecessary dependency between the entities

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 649

https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

EMPLOYEE2

- — —— \L N\
Emp_ID Name Dept_Name Salary [| Course_Title Dnte_Complated
100 Margaret Simpson Marketing 48, SPSS 6/19/200X
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X
110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X
110 Chris Lucero Info Systems 43,000 C++ 4/22/200X
190 Lorenzo Davis Finance 66,000
160 Susan Martin Marketing 42,000 SPSS 6/18/200X

w Marketing 42,000 Java 8/12/200X
N)

e Does it contain anomalies?

— Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
— Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class

— Modification: Giving a salary increase to employee 100 forces us to update multiple records

« Why do these anomalies exist?

— Because there are two themes (entity types) in one relation. This results in duplication, and an
unnecessary dependency between the entities

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 651

https://northeastern-datalab.github.io/cs3200/

Normalizing Previous Employee/Class Table

Employee This seems more complicated
E:;_’IE/ Name Dept_Name Salary
('S Margaret Simpson Marketing 48000 . .
Why might this approach be
140> Alan Beeton Accounting 52000 y) & PP .
superior to the previous one?
110 %%, Chris Lucero Info Sys 43000
» L
190% *“Lorenzo Davis Finance 55000
150 %, *Susan Martin Marketing 42000

v
. .
k "% . %
SN S
% * % £y °
DO
.
O .

"
e
. * . ..
A . . e
"‘ “ . . Ry -
~» {.Coukse Completlon
e .
LY . . “‘ —
.. * . . R
:

W Cw Date_Completed Course \>
1 00 ([6/1 9/2005 W Course_Title S
54, 100 R N SPSS
i e = O
45 10 e 112/2004- 1 e >3 Tax Ace
110 4 IROPEY Y17 37X 5211 11 Y NUURUNN NN S > 4 Ctt
F — 61912005 | ... e s |
150 5 8/12/2002

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 652

https://northeastern-datalab.github.io/cs3200/

Functional Dependencies ("FDs")

Definition:
If two tuples agree on the attributes

A, A, ..., A
then they must also agree on the attributes

B, B,, ..., B,

Formally:

A, A, ..,A >B,B,..,B,_

Based on slides from Stanford
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

653

https://northeastern-datalab.github.io/cs3200/

Functional Dependencies ("FDs")

Def: Let A,B be sets of attributes
We write A = B or say A functionally determines
B if, for any tuples t; and t,:

t,[A] = t,[A] implies t,[B] = t,[B]

and we call A 2 B a functional dependency

A (determinant) =2 B (dependent)

A = B means that
“Whenever two tuples agree on A then they agree on B.”

Based on slides from Stanford
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 654

https://northeastern-datalab.github.io/cs3200/

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B=1{B,..B,}inR,

Based on slides from Stanford
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 655

https://northeastern-datalab.github.io/cs3200/

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B=1{B,..B,}inR,

The functional dependency A-> B on
R holds if for any t,t; in R:

Based on slides from Stanford
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 656

https://northeastern-datalab.github.io/cs3200/

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A,} and
B=1{B,..B,}inR,

The functional dependency A-> B on
R holds if for any t,t; in R:

if t[A] = t[A,] AND t[A,]=t[A,] AND
L ANDt[A]=t [A]

If t,t; agree here..

Based on slides from Stanford
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 657

https://northeastern-datalab.github.io/cs3200/

A Picture Of FDs

| |

If t,t; agree here.. ...they also agree here!

Based on slides from Stanford
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

Defn (again):

Given attribute sets A={A,,...,A,} and
B=1{B,..B,}inR,

The functional dependency A-> B on
R holds if for any t,t; in R:

if t[A] = t[A,] AND t[A,]=t[A,] AND
L ANDt[A]=t [A]

then t[B,] = t;[B;] AND t;[B,]=t;[B,]
AND ... AND £[B,] = t[B,]

658

https://northeastern-datalab.github.io/cs3200/

FDs for Relational Schema Design

e High-level idea: why do we care about FDs?
— Start with some relational schema
— Find out its functional dependencies (FDs)

— Use these to design a better schema
* One which minimizes the possibility of anomalies

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 659

https://northeastern-datalab.github.io/cs3200/

Functional Dependencies as Constraints

A functional dependency is a form
of constraint

e Holds on some instances (but not
others) — can check whether there
are violations

* Part of the schema, helps define a
valid instance

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

Student | Course | Room

Mary CS3200 | WVF20

Joe

CS3200 | WVF20

Sam

CS3200 | WVF20

Note: The FD {Course}
- {Room} holds on
this instance

660

https://northeastern-datalab.github.io/cs3200/

Functional Dependencies as Constraints

Note that:

 You cancheckifan FD is
violated by examining a single
instance;

* However, you cannot prove
that an FD is part of the

schema by examining a single
Instance.

* This would require checking
every valid instance

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

Student | Course | Room

Mary CS3200 | WVF20

Joe

CS3200 | WVF20

Sam

CS3200 | WVF20

However, cannot prove
that the FD {Course} =
{Room} is part of the
schema

661

https://northeastern-datalab.github.io/cs3200/

More Examples

An FD is a constraint which holds, or does not hold on

an instance:
EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

662

https://northeastern-datalab.github.io/cs3200/

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 <« |Salesrep
E1111 Smith 9876 <« |Salesrep
E9999 Mary 1234 Lawyer

{Position} - {Phone}

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

663

https://northeastern-datalab.github.io/cs3200/

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 — |Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 — |Lawyer

but not {Phone} - {Position}

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

664

https://northeastern-datalab.github.io/cs3200/

Practice

Wia|la|lw|=|>
NINIANIN| D
ol lo|d|O
~lwlo|~|lw|lg
o o|N|o|o|m

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

Find at least 3 FDs which are
violated on this instance:

{
{
{

F2> A
F2> A
F2> A

L
}
}

Find at least 3 FDs which hold
on this instance:

{
{
{

}
}
}

\ 20 20\ 4

{
{
{

e adn alon =

?

665

https://northeastern-datalab.github.io/cs3200/

Practice

Wia|la|lw|=|>
NINIANIN| D
ol lo|d|O
~lwlo|~|lw|lg
o o|N|o|o|m

Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/

Find at least 3 FDs which are
violated on this instance:

{A }>{B }
{B }>{C 1}
{C }>{D 1}

Find at least 3 FDs which hold
on this instance:

{A }>{C
{C }>{A
{E }>4{D

e adhe adin =

666

https://northeastern-datalab.github.io/cs3200/

Practice

building | room_number | capacity

Packard 101 500
Painter 514 10 ?
Taylor 3128 70 0

Watson 100 30
Watson 120 50

Figure 7.5 An instance of the classroom relation.

Source: "SKS", Silberschatz, Korth, Sudarshan, Database system concepts, 7" ed, 2020. https://www.db-book.com/db7
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 667

https://northeastern-datalab.github.io/cs3200/
https://www.db-book.com/db7

Practice

building | room_number | capacity
Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50

Figure 7.5 An instance of the classroom relation.

FD room_number = capacity is
satisfied on this instance.

However, two classrooms in
different buildings can have the
same room number but have
different room capacities.

Thus, we would not include FD room
number - capacity in the set of FDs
that hold on the schema for the
classroom relation, in general.
However, we would expect the FD
{building, room number} - capacity
to hold on the classroom schema.

Source: "SKS", Silberschatz, Korth, Sudarshan, Database system concepts, 7" ed, 2020. https://www.db-book.com/db7
Wolfgang Gatterbauer. Introduction to Databases: https://northeastern-datalab.github.io/cs3200/ 668

https://northeastern-datalab.github.io/cs3200/
https://www.db-book.com/db7

