
677

Topic 2: Database design
L20: Normalization

Wolfgang Gatterbauer
CS3200 Database design (fa22)
https://northeastern-datalab.github.io/cs3200/fa22s3/
11/16/2022

Updated 11/17/2022

https://northeastern-datalab.github.io/cs3200/fa22s3/

678Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Overview
Database normalization

& Design Theory

https://northeastern-datalab.github.io/cs3200/

679Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Normalization: What you should take away

• Understand the normalization process and why a normalized data
model is desirable (in short: we avoid redundancy)
- Be able to explain anomalies and how to avoid them: Insertion, deletion,

and modification
• Be able to explain and apply normal forms (NFs):
- 3rd NF and Boyce-Codd NF.
- Be able to identify when a relational model is in NF
- Actually apply normalization process

https://northeastern-datalab.github.io/cs3200/

680Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Normalization

• Organizing data to minimize redundancy (repeated data)
• This is good for two reasons
- The database takes up less space
- You have a lower chance of inconsistencies in your data (cp with keeping

multiple calendars synched, say Piazza / Canvas / Website)
• If you want to make a change to a record, you only have to make it

in one place
- The relationships (via Foreign Keys) take care of the rest

• But you will usually need to link the separate tables together in
order to retrieve information (that's why we have joins...)

https://northeastern-datalab.github.io/cs3200/

681Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

First Normal Form (1NF)

• Database can only store "flat" tables (no "nested relations")
• A database schema is in First Normal Form (1NF) if all tables are flat.

?
Name GPA Course

Alice 3.8

Bob 3.7

Carol 3.9

Math

DB

OS

DB

OS

Math

OS

Student

How can we avoid
"multi-valued attributes"

https://northeastern-datalab.github.io/cs3200/

682Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

First Normal Form (1NF)

• Database can only store "flat" tables (no "nested relations")
• A database schema is in First Normal Form (1NF) if all tables are flat.

?

Name GPA Course

Alice 3.8

Bob 3.7

Carol 3.9

Math

DB

OS

DB

OS

Math

OS

Student

But now we have
redundancies L

How can we
avoid those?

Name GPA Course

Alice 3.8 Math

Alice 3.8 DB

Alice 3.8 OS

Bob 3.7 DB

Bob 3.7 OS

Carol 3.9 Math

Carol 3.9 OS

Student

https://northeastern-datalab.github.io/cs3200/

683Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

First Normal Form (1NF): that is just the start

• Higher NFs avoid redundancies J

Name GPA Course

Alice 3.8

Bob 3.7

Carol 3.9

Math

DB

OS

DB

OS

Math

OS

Name GPA

Alice 3.8

Bob 3.7

Carol 3.9

Student

Course

Math

DB

OS

Student Course

Alice Math

Carol Math

Alice DB

Bob DB

Alice OS

Carol OS

Takes Course

May need to add
unambiguous keys

Student

Name GPA Course

Alice 3.8 Math

Alice 3.8 DB

Alice 3.8 OS

Bob 3.7 DB

Bob 3.7 OS

Carol 3.9 Math

Carol 3.9 OS

Student

https://northeastern-datalab.github.io/cs3200/

684Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Data Anomalies

• When a database is poorly designed we get anomalies (those are
bad) resulting from redundancies:
- Update anomalies: need to change in several places
- Insert anomalies: need to repeat data for new inserts
- Deletion anomalies: may lose data when we don't want

(remember the chasm trap!)

https://northeastern-datalab.github.io/cs3200/

685Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Relational Schema Design

Do you see any anomalies?

A person may have multiple phones,
but lives in only one city. PK is thus
(SSN, PhoneNumber)

?

Name SSN PhoneNumber City

Alice 123-45-6789 617-555-1234 Boston

Alice 123-45-6789 617-555-6543 Boston

Bob 987-65-4321 908-555-2121 Cambridge

Employee

• Update anomaly

• Insert anomaly

• Deletion anomaly

Recall multivalued (set) attributes (persons with several phones):

https://northeastern-datalab.github.io/cs3200/

686Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Relational Schema Design
Recall multivalued (set) attributes (persons with several phones):

A person may have multiple phones,
but lives in only one city. PK is thus
(SSN, PhoneNumber)

Name SSN PhoneNumber City

Alice 123-45-6789 617-555-1234 Boston

Alice 123-45-6789 617-555-6543 Boston

Bob 987-65-4321 908-555-2121 Cambridge

Employee

What if Bob deletes his phone number?
(or Joe has no phone number; recall chasm trap)

• Update anomaly

• Insert anomaly

• Deletion anomaly

What if Alice moves to "New York"?

What if Alice gets a 3rd telephone number? So what
do we do ?

https://northeastern-datalab.github.io/cs3200/

687Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Relation Decomposition

Break the single relation
into two relations!
Hint: "separation of concerns"

Name SSN City

Alice 123-45-6789 Boston

Bob 987-65-4321 Cambridge

SSN PhoneNumber

123-45-6789 617-555-1234

123-45-6789 617-555-6543

987-65-4321 908-555-2121

Now Anomalies have gone J
• No more repeated data
• Easy update for Alice to move to "New York" (how ?)
• Deleting Bob's single phone number (how ?) has no side-effects

Employee Phone

Name SSN PhoneNumber City

Alice 123-45-6789 617-555-1234 Boston

Alice 123-45-6789 617-555-6543 Boston

Bob 987-65-4321 908-555-2121 Cambridge

Employee

https://northeastern-datalab.github.io/cs3200/

688Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Good News / Bad News

• The good news: when you start with solid ER modeling and follow
the steps described to create relations then your relations will
usually be pretty well normalized

• The bad news: you often don't have the benefit of starting from a
well-designed model.

• The good news (part 2): the steps we will cover in class will help you
convert poorly normalized tables into highly normalized tables
("mechanical translation")

https://northeastern-datalab.github.io/cs3200/

689Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

1. Normal forms
and

Functional Dependencies

https://northeastern-datalab.github.io/cs3200/

690Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Database design & Normal forms

• Normalization (and database design) is about how to represent your data to
avoid anomalies.

• It is a mostly mechanical process
- Tools can carry out routine portions

• We have a Python notebook from the Stanford group that implements and
illustrates the algorithms!
- (If there is strong demand, I will post it again and you can play with it. In the past, it

created lots of confusion because students did not know Python)

https://northeastern-datalab.github.io/cs3200/

691Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Data Normalization

• Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

• Goals of normalization include:
- Minimize data redundancy
- Simplifying the enforcement of referential integrity constraints
- Simplify data maintenance (inserts, updates, deletes)
- Improve representation model to match "the real world"

https://northeastern-datalab.github.io/cs3200/

692Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Well-Structured Relations
• A well-structured relation contains minimal data redundancy and allows users

to insert, delete, and update rows without causing data inconsistencies

• Anomalies are errors or inconsistencies that may result when a user attempts
to update a table that contains redundant data.

• Three types of anomalies:
- Insertion Anomaly – adding new rows forces user to create duplicate data
- Deletion Anomaly – deleting rows may cause a loss of data that would be needed for

other future rows
- Modification Anomaly – changing data in a row forces changes to other rows because of

duplication

• General rule of thumb: a table should not pertain to more than one entity
type

https://northeastern-datalab.github.io/cs3200/

693Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

DB designs based on
FDs (functional
dependencies),
intended to prevent
data anomalies

Normal Forms

• 1st Normal Form (1NF) = All tables are flat

• 2nd Normal Form = not used anymore
- no more "partial FDs" (those are part of the "bad" FDs)

• 3rd Normal Form (3NF)
- no more transitive FDs (also "bad")

• Boyce-Codd Normal Form (BCNF)
- every determinant is a candidate key

• 4th: any multivalued dependencies have been removed (we will give intuition)
• 5th: any remaining anomalies have been removed (not covered)

Our focus
next

Normal Form: a state of a relation
that results from applying simple
rules regarding FDs ("Functional
Dependencies") to that relation

https://northeastern-datalab.github.io/cs3200/

694Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

1st Normal Form (1NF)

Student Courses
Mary {CS3200, CS4240}
Joe {CS3200, CS4240}
… …

Violates 1NF.

https://northeastern-datalab.github.io/cs3200/

695Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

1st Normal Form (1NF)

Student Courses
Mary {CS3200, CS4240}
Joe {CS3200, CS4240}
… …

Violates 1NF.

1NF Constraint: Types must be atomic!

Student Course
Mary CS3200
Mary CS4240
Joe CS3200
Joe CS4240

In 1st NF

https://northeastern-datalab.github.io/cs3200/

696Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

If every course is in
only one room,
contains redundant
information!

A poorly designed database causes anomalies:

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

https://northeastern-datalab.github.io/cs3200/

697Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

If we update the
room number for
one tuple, we get
inconsistent data =
an update anomaly

Student Course Room
Mary CS3200 WVF20
Joe CS3200 B12
Sam CS3200 WVF20
..

A poorly designed database causes anomalies:

https://northeastern-datalab.github.io/cs3200/

698Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

A poorly designed database causes anomalies:

Student Course Room
..

https://northeastern-datalab.github.io/cs3200/

699Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Similarly, we can’t
reserve a room
without students
= a variant of an
insert anomaly… CS4240 B12

A poorly designed database causes anomalies:

https://northeastern-datalab.github.io/cs3200/

700Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Constraints Prevent (some) Anomalies in the Data

Student Course
Mary CS3200
Joe CS3200
Sam CS3200
.. ..

Course Room
CS3200 WVF20
CS4240 B12

Next: develop theory to understand why this design may
be better and how to find this decomposition…

Is this form better?

• Redundancy?
• Update anomaly?
• Delete anomaly?
• Insert anomaly?

https://northeastern-datalab.github.io/cs3200/

701Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/
Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

https://northeastern-datalab.github.io/cs3200/

703Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/
Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

https://northeastern-datalab.github.io/cs3200/

706Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

• Does it contain anomalies?

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

https://northeastern-datalab.github.io/cs3200/

707Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

• Does it contain anomalies?
- Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
- Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class
- Modification: Giving a salary increase to employee 100 forces us to update multiple records

• Why do these anomalies exist?

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

https://northeastern-datalab.github.io/cs3200/

708Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

• Does it contain anomalies?
- Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
- Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class
- Modification: Giving a salary increase to employee 100 forces us to update multiple records

• Why do these anomalies exist?
- Because there are two themes (entity types) in one relation. This results in duplication, and an

unnecessary dependency between the entities

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

https://northeastern-datalab.github.io/cs3200/

710Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Is This Table Well Structured?

• Does it contain anomalies?
- Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
- Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class
- Modification: Giving a salary increase to employee 100 forces us to update multiple records

• Why do these anomalies exist?
- Because there are two themes (entity types) in one relation. This results in duplication, and an

unnecessary dependency between the entities

Figure Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

https://northeastern-datalab.github.io/cs3200/

711Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Normalizing Previous Employee/Class Table

Course_Completion

Emp_ID Course_ID Date_Completed

100 1 6/19/2005

100 2 10/7/2004

140 3 12/8/2004

110 1 1/12/2004

110 4 4/22/2003

150 1 6/19/2005

150 5 8/12/2002

Employee

Emp_ID Name Dept_Name Salary

100 Margaret Simpson Marketing 48000

140 Alan Beeton Accounting 52000

110 Chris Lucero Info Sys 43000

190 Lorenzo Davis Finance 55000

150 Susan Martin Marketing 42000

Course

Course_ID Course_Title

1 SPSS

2 Surveys

3 Tax Acc

4 C++

5 Java

This seems more complicated

Why might this approach be
superior to the previous one?

https://northeastern-datalab.github.io/cs3200/

712

Functional Dependencies ("FDs")

Definition:

If two tuples agree on the attributes

then they must also agree on the attributes

Formally:

A1, A2, …, An à B1, B2, …, Bm

A1, A2, …, An

B1, B2, …, Bm

713Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Functional Dependencies ("FDs")

A à B means that
“whenever two tuples agree on A then they agree on B.”

Def: Let A,B be sets of attributes
We write A à B or say A functionally determines
B if, for any tuples t1 and t2:

t1[A] = t2[A] implies t1[B] = t2[B]

and we call A à B a functional dependency

A (determinant) à B (dependent)

https://northeastern-datalab.github.io/cs3200/

714Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A Picture Of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

https://northeastern-datalab.github.io/cs3200/

715Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A1 … Am B1 … Bn

A Picture Of FDs

ti

tj

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency Aà B on
R holds if for any ti,tj in R:

https://northeastern-datalab.github.io/cs3200/

716Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A Picture Of FDs

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency Aà B on
R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND
… AND ti[Am] = tj[Am]

A1 … Am B1 … Bn

ti

tj

If ti,tj agree here..

https://northeastern-datalab.github.io/cs3200/

717Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A Picture Of FDs

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency Aà B on
R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND
… AND ti[Am] = tj[Am]

then ti[B1] = tj[B1] AND ti[B2]=tj[B2]
AND … AND ti[Bn] = tj[Bn]

A1 … Am B1 … Bn

ti

tj

If ti,tj agree here.. …they also agree here!

https://northeastern-datalab.github.io/cs3200/

718Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

- Start with some relational schema

- Find out its functional dependencies (FDs)

- Use these to design a better schema
• One which minimizes the possibility of anomalies

https://northeastern-datalab.github.io/cs3200/

719Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Functional Dependencies as Constraints

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Note: The FD {Course}
à {Room} holds on
this instance

A functional dependency is a form
of constraint

• Holds on some instances (but not
others) – can check whether there
are violations

• Part of the schema, helps define a
valid instance

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

https://northeastern-datalab.github.io/cs3200/

720Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Functional Dependencies as Constraints

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

However, cannot prove
that the FD {Course} à
{Room} is part of the
schema

Note that:
• You can check if an FD is

violated by examining a single
instance;

• However, you cannot prove
that an FD is part of the
schema by examining a single
instance.
• This would require checking

every valid instance

https://northeastern-datalab.github.io/cs3200/

721Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

https://northeastern-datalab.github.io/cs3200/

722Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

More Examples

{Position} à {Phone}

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ¬ Salesrep
E1111 Smith 9876 ¬ Salesrep
E9999 Mary 1234 Lawyer

https://northeastern-datalab.github.io/cs3200/

723Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

More Examples

EmpID Name Phone Position
E0045 Smith 1234 ® Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 ® Lawyer

but not {Phone} à {Position}

https://northeastern-datalab.github.io/cs3200/

724Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Practice

A B C D E

1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

Find at least three FDs which
are violated on this instance:

{ } à { }
{ } à { }
{ } à { }

https://northeastern-datalab.github.io/cs3200/

