
556

Topic 2: Database design
L19: Extended ER diagrams

Wolfgang Gatterbauer
CS3200 Database design (fa22)
https://northeastern-datalab.github.io/cs3200/fa22s3/
11/14/2022

Updated 11/16/2022

https://northeastern-datalab.github.io/cs3200/fa22s3/


557Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Before class: Logistics ideas & suggestions
• Open Exam 2 discussion: any surprises?

- Exam room: did CH103 work well? Academic integrity vs. space to spread

• I observed repeated computer problems during exams:
- please test your setup before exams, possibly restart, switch off intensive processes

• Suggestion for exam 3: Gradescope uploads by students instead of instructor:
- also cheat sheet separately
- https://gradescope-static-assets.s3-us-west-2.amazonaws.com/help/submitting_hw_guide.pdf

• Why cheat sheets?
- Preparing cheat sheets ("synthesizing") is a highly reflective exercise that helps you rethink what you 

learned in class. Class slides for learning not a reference manual.
- What about repeating SDK notation on exam specification?

• Please treat in-class examples like homeworks: preparation for exams
• Please do use office hours to your advantage. We are here to help (and understand where 

problems are

https://northeastern-datalab.github.io/cs3200/
https://gradescope-static-assets.s3-us-west-2.amazonaws.com/help/submitting_hw_guide.pdf


558Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Class warm-up
• Class communication: 

- Several students did not see my Piazza announcements (e.g. posted L16 slides, example solutions to 
HW5). Reason: Piazza overload across different classes

• Suggestion: Instructor makes announcements only via Canvas, Students via Piazza

https://northeastern-datalab.github.io/cs3200/


559Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Study groups are great for learning material!

• Literature cited below:
- "... The groups of students who were doing best spontaneously formed study groups... 

Students who were not doing as well tended to do as the instructor suggested -- study 
two hours out of class for every hour in class -- but did it by themselves with little social 
support... even well-prepared students (high math SATs) are often disadvantaged by 
high school experiences that lead them to work alone... taught us that checking your 
homework with another student is cheating. "

• My goal with randomly assigned homework groups
- help students (who are not social / don't have friends in class) get started
- while avoiding people just splitting up the homework with their existing friends and 

then failing the exam

Source: Craig Nelson. 10 Dysfunctional Illusions of Rigor -- Lessons From the Scholarship of Teaching and Learning, 2010. http://dx.doi.org/10.3998/tia.17063888.0028.014

Slide from L01

https://northeastern-datalab.github.io/cs3200/
http://dx.doi.org/10.3998/tia.17063888.0028.014


560Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Class logistics: Breaking the "bamboo ceiling" (cp. glass ceiling)

"'The loudest duck gets shot' is a Chinese proverb. 'The 
nail that sticks out gets hammered down' is a Japanese 
one. Its Western correlative: 'The squeaky wheel gets the 
grease.'" http://nymag.com/news/features/asian-americans-2011-5/

Experiential Learning: We want you to be successful in 
real life. Thus, we like you to get out of your comfort 
zone to speak up and to contribute in class.

http://en.wikipedia.org/wiki/Bamboo_ceiling

https://northeastern-datalab.github.io/cs3200/
http://nymag.com/news/features/asian-americans-2011-5/
http://en.wikipedia.org/wiki/Bamboo_ceiling


561Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Class logistics

• Class participation

https://northeastern-datalab.github.io/cs3200/


562Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Class logistics

https://northeastern-datalab.github.io/cs3200/


563Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A suggestion on how to best use class time!

• It is ok to make mistakes in class. Making mistakes in class is actually the best 
thing that can happen to you. You learn and will never make it again J

• From Ray Dalio's Principles (2017):
- "Create a Culture in Which It Is Okay to Make Mistakes and Unacceptable Not to Learn 

from Them" 
- "Recognize that mistakes are a natural part of the evolutionary process." 
- "Don’t feel bad about your mistakes or those of others. Love them!"

Source: Ray Dalio. https://en.wikipedia.org/wiki/Principles_(book)

Slide from L01

https://northeastern-datalab.github.io/cs3200/
https://en.wikipedia.org/wiki/Principles_(book)


564Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

One reason why I don't post slides *before* lecture
From the preamble of one of the best physics books ever: „How to read this book“

...

...

Source: ”Thinking Physics: Understanding Practical Reality”, Lewis Carroll Epstein, 1979-2009. https://www.goodreads.com/book/show/268266.Thinking_Physics

Slide from L01

https://northeastern-datalab.github.io/cs3200/
https://www.goodreads.com/book/show/268266.Thinking_Physics


565Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

The year 2000 imagined in 1900

Source: https://publicdomainreview.org/collection/a-19th-century-vision-of-the-year-2000

Slide from L01

https://northeastern-datalab.github.io/cs3200/
https://publicdomainreview.org/collection/a-19th-century-vision-of-the-year-2000


566Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

The "Surfer Analogy" for time management

• Please do use office hours to your advantage. We are here to help 
(and understand where problems are)

Slide from L01

Source: http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg

https://northeastern-datalab.github.io/cs3200/
http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg


569Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A quick primer on 
OOP

(Object-Oriented 
Programming)

https://northeastern-datalab.github.io/cs3200/


570Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

If you used Python, you have already used OOP

All values in 
Python are 
objects J

>>> a = 123

>>> type(a)

<class 'int'>

>>> b = "abc"

>>> type(b)

<class 'str'>

>>> c = [1, 2]

>>> type(c)

<class 'list'>

Source: Peter Larsson-Green, Jönköping University, Autumn 2018

https://northeastern-datalab.github.io/cs3200/


571Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Procedural vs Object-Oriented Programming (OOP)

Source: https://www.enjoyalgorithms.com/blog/introduction-to-oops-concepts-in-cpp

https://northeastern-datalab.github.io/cs3200/
https://www.enjoyalgorithms.com/blog/introduction-to-oops-concepts-in-cpp


572Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Key features of OOP

Source: https://www.enjoyalgorithms.com/blog/introduction-to-oops-concepts-in-cpp

https://northeastern-datalab.github.io/cs3200/
https://www.enjoyalgorithms.com/blog/introduction-to-oops-concepts-in-cpp


573Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Class vs 
Instance (= Object)

Source: https://www.educative.io/blog/object-oriented-programming

https://northeastern-datalab.github.io/cs3200/
https://www.educative.io/blog/object-oriented-programming


574Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Inheritance in Python (Object-Oriented Programming)

Source: https://realpython.com/python3-object-oriented-programming/

https://northeastern-datalab.github.io/cs3200/
https://realpython.com/python3-object-oriented-programming/


575Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Inheritance in Object-Oriented Programming

Source: https://www.geeksforgeeks.org/introduction-of-object-oriented-programming/

https://northeastern-datalab.github.io/cs3200/
https://www.geeksforgeeks.org/introduction-of-object-oriented-programming/


576Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

• Object are analogous to real-word objects (e.g. a vehicle). 
Compare to entities.

• Objects have properties (e.g. number of wheels, max speed)
• Related objects are grouped into classes (i.e. vehicles). 

Compare to entitiy sets.

• Can also be grouped into sub-classes (e.g. cars, trucks, bikes)
• Subclass “inherits” properties of parent class (now referred 

to as the superclass)
• Subclass can be modified to have different properties 

from parent class (i.e. they are similar, but different)
• Reduces code duplicationk: Coders can produce objects with 

reduced codebase. 
• Future changes only need to be made in one place.

Inheritance in OOP and connection to Enhanced ERDs 

Superclass: Vehicles

Class: Engine-
powered

Human-
powered

Bikes

Subclass: Cars Subclass: Trucks

Source: Adapted from Steven Wingett, Babraham Bioinformatics

https://northeastern-datalab.github.io/cs3200/


582Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

EER (Enhanced ER)

Subtypes
in ER diagrams

https://northeastern-datalab.github.io/cs3200/


583Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Common Modeling Dilemna

• You want to represent multiple things in your data model that are 
similar, but not exactly the same
- Many shared attributes (usually also including keys)
- Each specific thing has some unique attributes

• Two options with traditional E-R diagrams:
1. Create a new entity type for each thing with its own attributes
2. Create one generic entity type with all of the possible attributes for any of 

the things

https://northeastern-datalab.github.io/cs3200/


584Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Modeling Example

• Model food stocked by a grocery 
store

• Two basic types of food:

- Food_Item
• Name
• Category
• Size

- Perishable_Food_Item
• Name
• Category
• Size
• ExpirationDate

Option 1: Two Entity Types

Name
Category
Size
ExpirationDate

Perishable_Food_Item

Name
Category
Size

Food_Item

https://northeastern-datalab.github.io/cs3200/


585Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Modeling Example

• Model food stocked by a grocery 
store

• Two basic types of food:

- Food_Item
• Name
• Category
• Size

- Perishable_Food_Item
• Name
• Category
• Size
• ExpirationDate

Option 2: One Entity Type

Name
Category
Size
ExpirationDate
Perishable

Food_Item

Optional attribute
that is not relevant
for many instances

https://northeastern-datalab.github.io/cs3200/


586Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Modeling Example: Supertypes and Subtypes

• Food_Item is a supertype

• Perishable_Food_Item is a subtype

• Expiration_Date is an attribute 
unique to the 
Perishable_Food_Item subtype

Option 3: Super/Sub Types

ExpirationDate

Perishable_Food_Item

Name
Category
Size

Food_Item

Notice: we never repeat attributes in 
the subentities, not even the key!
-> That is Inheritance, and similar to 
subtyping in UML or OO design

https://northeastern-datalab.github.io/cs3200/


588Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Generalization and Specialization

• Generalization: The process of defining a more general entity type 
from a set of more specialized entity types.
- Also known as the bottom-up approach

• Specialization: The process of defining one or more subtypes of the 
supertype, and forming supertype/subtype relationships. 
- Also known as the top-down approach

https://northeastern-datalab.github.io/cs3200/


589Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Specialization Example

1. Disjointness constraints:
- Overlapping – employee and student
- Disjoint – instructor and secretary

2. Participation (covering) constraints:
- partial (optional, not total)
- total (or mandatory)

Disjoint constraint: overlapping

Disjoint constraint: disjoint

Source: Silberschatz, Korth, Sudarshan, "Database system concepts," 7th ed, 2020. Fig 6.18

https://northeastern-datalab.github.io/cs3200/


590Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Please use the notation from our 
textbook even though I will use 
slides with various notation

Notations for specialization ("ISA relationship")

[Stanford book'03]

[Silberschatz+'20]

[Cow book'03]

Partial-overlapping

UML

[Elmasri+'15],
[Hoffer+'10]

also by Gradiance

[Connolly+'15]

Partial-disjoint Total-disjoint

{optional, and}

Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

{optional, or}
Sup

Sub1 Sub2

{mandatory, or}
Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

or

Sup

Sub1 Sub2

ISA

Sup

Sub1 Sub2

ISA

Sup

Sub1 Sub2

ISA

Sub1 overlaps Sub2

Total-overlapping

Sup

Sub1 Sub2

{mandatory, and}
Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

ISA

total total

Sub1 overlaps Sub2 Sub1 and Sub2 cover Sup
Sub1 and Sub2 cover Sup

Participation (or covering) constraint
(optional=partial | mandatory=total)

Overlap (or disjoint) constraints
(or=disjoint | and=overlapping)

Super entity
(more generalized,
higher-level)

Sub entity
(more specialized,
lower-level)

optional mandatory

11/16/2022

d do o

https://northeastern-datalab.github.io/cs3200/


591Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

1. Disjointness Constraints

• Describes whether an instance of a supertype may simultaneously be a 
member of two (or more) subtypes

Disjoint Rule: An instance of the supertype 
can be only ONE of the subtypes

Overlap (nondisjoint) Rule: An instance of the 
supertype could be more than one of the subtypes

[Silberschatz+'20]

[Elmasri+'15],
[Hoffer+'10]

Sup

Sub1 Sub2

d

Sup

Sub1 Sub2

o

Sup

Sub1 Sub2

Sup

Sub1 Sub2

https://northeastern-datalab.github.io/cs3200/


592Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

[Silberschatz+'20]

[Elmasri+'15],
[Hoffer+'10]

2. Participation Constraints

• Describes whether every instance of a superclass must also be a member of at 
least one subtype

Total (mandatory) specialization: yesPartial (optional) specialization: no

Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

Sup

Sub1 Sub2

total

https://northeastern-datalab.github.io/cs3200/


595Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Exercise: Generalize With Sub/Super Types

• Three entity types: CAR, TRUCK, and MOTORCYCLE

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

Motorcycle
vehicle_id
price
engine_displacement
Vehice_name

make
model

Truck
vehicle_id
price
engine_displacement
Vehice_name

make
model

capacity
cab_type

Car
vehicle_id
price
engine_displacement
Vehice_name

make
model

no_of_passengers

How to use 
subtyping to 
create a more 
general solution

?

https://northeastern-datalab.github.io/cs3200/


596Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Solution: Generalize With Sub/Super Types

Vehicle
vehicle_id
price
engine_displacement
Vehice_name

make
model

Car

no_of_passengers

Truck
capacity
cab_type

• Put the shared attributes in a supertype
• Note: no subtype for motorcycle necessary, 

since it has no unique attributes. Thus 
participation is partial

• A vehicle cannot be a car and a truck at the 
same time, thus a disjoint specialization

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

Partial (superclass does not need to be 
specialized), disjoint (can only be car or truck)

https://northeastern-datalab.github.io/cs3200/


597Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Solution: Generalize With Sub/Super Types

Vehicle
vehicle_id
price
engine_displacement
Vehice_name

make
model

classification

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

Car

no_of_passengers

Truck
capacity
cab_type

subtype discriminator with 3-valued domain: 
"M", "C", "T". Enforces that each vehicle 
(instance of superclass) can be only exactly 
one of those three.

• Put the shared attributes in a supertype
• Note: no subtype for motorcycle necessary, 

since it has no unique attributes. Thus 
participation is partial

• A vehicle cannot be a car and a truck at the 
same time, thus a disjoint specialization

https://northeastern-datalab.github.io/cs3200/


598Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Solution: Generalize With Sub/Super Types [Hoffer+'10]

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

[Hoffer+'10],
[Elmasri+15]

Vehicle
vehicle_id
price
engine_displacement
Vehice_name

make
model

classification

Car

no_of_passengers

Truck
capacity
cab_type

https://northeastern-datalab.github.io/cs3200/


601Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Subtype Discriminators

• Subtype discriminator: An attribute of the supertype whose values 
determine the target subtype(s)
- If disjoint: a simple attribute with alternative values to indicate the possible 

subtypes
- if overlapping: a composite attribute whose subparts pertain to different 

subtypes. Each subpart contains a boolean value to indicate whether or not 
the instance belongs to the associated subtype

https://northeastern-datalab.github.io/cs3200/


602Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Exercise: Specialize with Sub/Super Types
• Assume parts can be both manufactured and purchased (sometimes you make a screw, 

sometimes you purchase one)
• Assume certain attributes only apply to manufactured parts, others only to purchased parts

Part
part_no
description
location
qty_on_hand
routing_number
{supplier

supplier_id
unit_price}

Applies only to manufactured parts

Applies only to purchased parts

How to specialize 
with subtypes ?

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

[Hoffer+'10],
[Elmasri+15]

https://northeastern-datalab.github.io/cs3200/


604Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Ex: Subtype Discriminator w/ Overlap Constraint

Part
part_no
description
location
qty_on_hand

Manufactured Part

routing_number

Purchased part
{supplier

supplier_id
unit_price}

total

A part must be specialized ("total") and 
may be both purchased and manufactured

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

Do you see a better way to express 
the list of suppliers for each part ?

https://northeastern-datalab.github.io/cs3200/


608Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Ex: Subtype Discriminator w/ Overlap Constraint

Part
part_no
description
location
qty_on_hand

Manufactured Part

routing_number

Purchased part

total

supplies

unit_price

Supplier

supplier_id

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

Replace multivalued attribute with a relationship to another entity

How to add a subtype discriminator
(although you don't need one here) ?

https://northeastern-datalab.github.io/cs3200/


609Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Ex: Subtype Discriminator w/ Overlap Constraint

Part
part_no
description
location
qty_on_hand
Part_type

manufactured
purchased

Manufactured Part

routing_number

Purchased part

total

supplies

unit_price

Supplier

supplier_id

A composite attribute with sub-attributes 
indicating "yes" or "no" to determine whether 
it is of each subtype

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

What to change if every part is 
manufactured or puchased, but not both ?

https://northeastern-datalab.github.io/cs3200/


610Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Ex: Subtype Discriminator w/ Overlap Constraint

Part
part_no
description
location
qty_on_hand
Part_type

Manufactured Part

routing_number

Purchased part

total

supplies

unit_price

Supplier

supplier_id

A mandatory discriminator (becomes "not null" 
when translated into relations) that has two 
possible values, e.g. "M" and "P"

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

https://northeastern-datalab.github.io/cs3200/


611Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A composite 
attribute with 
sub-attributes 
indicating 
“yes” or “no”
to determine 
whether it is of 
each subtype

Ex: Subtype Discriminator w/ Overlap Constraint

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

[Hoffer+'10],
[Elmasri+15]

Part
part_no
description
location
qty_on_hand
Part_type

manufactured
purchased

Manufactured Part

routing_number

Purchased part

total

supplies

unit_price

Supplier

supplier_id

https://northeastern-datalab.github.io/cs3200/


612Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Quiz: translate from SDK to Hoffer

[Silberschatz+'20] Sup

Sub3 Sub4

total

Sub1 Sub2

total

?
[Elmasri+'15],
[Hoffer+'10]

https://northeastern-datalab.github.io/cs3200/


613Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Quiz: translate from SDK to Hoffer

[Silberschatz+'20]

Sup

Sub3 Sub4

o

Sup

Sub3 Sub4

total

Sub1 Sub2

o

Sub1 Sub2

total

Sup

Sup

Sub1 Sub2

o

Sub1 Sub2

total

[Elmasri+'15],
[Hoffer+'10]

https://northeastern-datalab.github.io/cs3200/


615Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

UML notation [Connolly+15]
Participation (or covering) constraint
(optional=partial | mandatory=total)

Overlap (or disjoint) constraints
(or | and)

Source: Connolly, Begg: Database systems, 6th ed, 2015. Fig 13.3

https://northeastern-datalab.github.io/cs3200/


617Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

UML notation [Connolly+15]

Source: Connolly, Begg: Database systems, 6th ed, 2015. Fig 13.4

https://northeastern-datalab.github.io/cs3200/


618Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

UML notation [Connolly+15]

Source: Connolly, Begg: Database systems, 6th ed, 2015. Fig 13.5

https://northeastern-datalab.github.io/cs3200/


619Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Example: Hospital

Model following situation as ERD
• Patients (id, name, admit date) are either outpatients or resident patients
• Both outpatients and resident patients are cared for by a single responsible 

physician (id, name)
• Each outpatients has a checkback date. Each resident patient has a discharge 

date and is assigned to exactly one bed (id)

https://northeastern-datalab.github.io/cs3200/


620Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Supertype/Subtype Relationships in a Hospital

Patient
patient_id
name
admit_date

Outpatient

checkback_date

total

Resident patient

date_discharged

A patient needs to be out- or resident patient (total, mandatory)
And can only be one or the other but not both (disjoint).

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

https://northeastern-datalab.github.io/cs3200/


621Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Supertype/Subtype Relationships in a Hospital

Patient
patient_id
name
admit_date

Outpatient

checkback_date

total

Bed

bed_id

is_cared_for
Responsible 

physician
physician_id

Resident patient

date_discharged
assigned_to

A patient needs to be out- or resident patient (total, mandatory)
And can only be one or the other but not both (disjoint).

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

Relationships at the supertype level indicate that all subtypes will 
participate in the relationship: Both outpatients and resident patients are 
cared for by a responsible physician

Only resident patients are assigned to a bed

https://northeastern-datalab.github.io/cs3200/


622Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Supertype/Subtype Relationships in a Hospital

Patient
patient_id
name
admit_date

Outpatient

checkback_date

total

is_cared_for
Responsible 

physician
physician_id

Resident patient

date_discharged

bed_id

Source: Example from Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010. Redrawn using notation from SDK

A possibly defensible but arguably inferior way to model. 
- we cannot enforce that two different resident 

patients are not assigned to the same bed
- we cannot reason about the set of beds (the bed ids 

become a domain just like colors of cars)
- definitely wrong if beds have additional attributes 

(e.g. maximal weight)

https://northeastern-datalab.github.io/cs3200/


623Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

A patient can be either
outpatient or resident, but 
not both

Supertype/Subtype Relationships in a Hospital

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

[Hoffer+'10],
[Elmasri+15]

https://northeastern-datalab.github.io/cs3200/


628Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Hierarchical Subtyping (1/2)

• An entity can be both a supertype 
and a subtype

• Subtyping relationships can be 
arbitrarily deep
- But don't go crazy, they get confusing 

pretty quickly
- Two levels of subtyping is usually the 

practical maximum (I tend to see only 
one level)

[Hoffer+'10],
[Elmasri+15]

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

https://northeastern-datalab.github.io/cs3200/


629Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

1. Participation 
(Completeness Constraints)

Total Specialization
Partial Specialization

Disjointness Constraints
Overlap Rule
Disjoint Rule

Hierarchical Subtyping

[Hoffer+'10],
[Elmasri+15]

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

• An entity can be both a 
supertype and a subtype

• Subtyping relationships can 
be arbitrarily deep
- But don't go crazy, they get 

confusing pretty quickly
- Two levels of subtyping is 

usually the practical maximum 
(I tend to see only one level)

https://northeastern-datalab.github.io/cs3200/

