Updated 11/2/2022

Topic 2: Database design L14: ER modeling

Wolfgang Gatterbauer

CS3200 Database design (fa22)

https://northeastern-datalab.github.io/cs3200/fa22s3/

10/26/2022

Class warm-up

- Last class summary
- Project overview: web page
 - We stop 15min early / group self-assignment
- Thanks for feedback
 - homework groups: everything goes
 - more interactive questions in class ("checkpoints", "examples")
 - Please continue use our various options for feedback. Constructive feedback ("I suggest doing X instead of Y because it helps me do Z") is more helpful than feedback without concrete suggestions for changes ("exam question format was confusing")
- We continue with Database Design, hands-on

More Practice

Moral: be faithful to the specifications of the application!

Multiple relationships

Multiple relationships

Associative entity: Surrogate identifier would loose the business rule that the combination of the PROFESSOR identifier, COURSE identifier, and Semester must be unique for each

Here, min cardinality constraint is 2: At least two professors must be qualified to teach each course

Connection Traps (join path problems)

We have a problem

We have a problem: a "fan trap"

We have a problem: a "fan trap"

ER diagram (entity types)

- instances
- occurrences
- actual entities

How to resolve a "fan trap"

ER diagram (entity types)

Department Location Employee employs Department Location Employee For which department does a particular employee work?

- instances
- occurrences
- actual entities

Solution: Flip from N:1, 1:N to 1:N, 1:n

Source: https://www.techtud.com/example/traps-entity-relationship-diagrams-fan-trap-and-chasm-trap

Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Another fan trap, different notation which member of staff works at a particular branch?

has one or more staff

Has Operates > Staff Division Branch 1..* 1..1 1..1 A single division A single division

operates one or more branches

Another fan trap, different notation which member of staff works at a particular branch?

Another fan trap, different notation which member of staff works at a particular branch?

Fan Trap: Where a model represents a relationship between entity types, but the <u>pathway between certain</u> entity occurrences is ambiguous (too many join paths).

May exist when two or more 1:n relationships fan out from the same entity

Restructuring the model helps here again

Solution: here restructuring helped. More general solution: add a new relationship

319

Chinook: For each customer with at least one purchase, sum the total and the quantities purchased.

[FirstName, LastName, sum_total, sum_quantity]

SELECT C.firstname, C.lastname, sum(total) sum_total, sum(quantity) sum_quantity

FROM

?

319

Chinook: For each customer with at least one purchase, sum the total and the quantities purchased.

[FirstName, LastName, sum_total, sum_quantity]

?

SELECT C.firstname, C.lastname,

sum(total) sum_total, sum(quantity) sum_quantity

FROM Customer C

JOIN Invoice I ON C.customerId=I.customerId

JOIN InvoiceLine IL ON LinvoiceId=IL.invoiceId

GROUP BY C.customerid, C.firstname, C.lastname

ORDER BY sum_total desc

				InvoiceLine	
			8	InvoiceLineId	
				InvoiceId	
				TrackId	
I	Customer 🌣			UnitPrice	
7	CustomerId			Quantity	
	FirstName			8	
	LastName			- 3	
	Company		1	Invoice	
	Address	∞ 0=00	00	InvoiceId	
	City			CustomerId	
	State			InvoiceDate	
	Country			BillingAddress	
	PostalCode			BillingCity	
	Phone			BillingState	
	Fax			BillingCountry	
	Email			BillingPostalCode	
	SupportRepId			Total	

firstname	lastname	sum_total	sum_quantity
Helena	Holý	502.62	38
Richard	Cunningham	474.62	38
		/	

319

Chinook: For each customer with at least one purchase, sum the total and the quantities purchased.

[FirstName, LastName, sum_total, sum_quantity]

SELECT C.firstname, C.lastname, sum(total) sum_total, sum(quantity) sum_quantity

FROM Customer C

JOIN Invoice I ON C.customerId=I.customerId

JOIN InvoiceLine IL ON LinvoiceId=IL.invoiceId

GROUP BY C.customerid, C.firstname, C.lastname ORDER BY sum total desc

firstname	lastname	sum_total
Helena	Holý	49.62
Richard	Cunningham	47.62

319

Chinook: For each customer with at least one purchase, sum the total and the quantities purchased.

[FirstName, LastName, sum_total, sum_quantity]

SELECT C.firstname, C.lastname, sum_total, sum_quantity

FROM Customer C

JOIN (SELECT customerid, sum(total) sum_total

FROM Invoice I

GROUP BY customerid) X on C.customerid=X.customerid

JOIN (SELECT customerid, sum(quantity) sum_quantity

FROM Invoice I JOIN InvoiceLine IL

ON LinvoiceId=IL.invoiceId

GROUP BY customerid) Y on C.customerid=Y.customerid

ORDER BY sum_total desc

			M	InvoiceLine 🔝				
				3	InvoiceLine	eId		
				InvoiceId				
ı					П	TrackId		
ı	1	Customer	<u> </u>		П	UnitPrice		
١	8	CustomerId				Quantity		
ı	FirstName				8			
ı		LastName	astName		_	<u> </u>		
ı	Company			1	Invoice		৷	
ı		Address City State Country		∞ 0⊃∞	8	InvoiceId		
ı						CustomerId		
ı						InvoiceDate		
ı						BillingAddress		
ı	PostalCode Phone				BillingCity			
ı					BillingState			
1		Fax				BillingCountry		
	Email				BillingPostalCode			
ı		SupportRepId	d			Total		

Careful when you aggregate over several different tables!

firstname	lastname	sum_total	sum_quantity	
Helena	Holý	49.62	38	
Richard	Cunningham	47.62	38	

We have yet another problem

Now we seem to have avoided a fan trap. Do we still have a problem?

Yet another problem: "chasm traps"

Now we seem to have avoided a fan trap. Do we still have a problem?

Yet another problem: "chasm traps"

Yet another problem: "chasm traps"

Chasm Trap: Where a model suggests the existence of a relationship between entity types, but the pathway does not exist between certain entity occurrences (a join path is lost).

May exist when there is a relationship with optional participation between the related entities.

Adding a relationship helps here

281

Chasm Trap

In which building are all computers, even those outside the rooms (e.g., in the reception counter)?

Chasm Trap

In which building are all computers, even those outside the rooms (e.g., in the reception counter)?

 \rightarrow Failure to capture all the relationships that exist in the real world in the model.

Chasm Trap

In which building are all computers, even those outside the rooms (e.g., in the reception counter)?

 \rightarrow Failure to capture all the relationships that exist in the real world in the model.

Fan trap

ER diagram (entity types)

Fan trap

ER diagram (entity types)

- occurrences
- actual entities

Source: Howe. Data Analysis for Database Design, 3rd ed, p. 117, 2001. Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Fan trap resolved

ER diagram (entity types)

Now relationships are unambiguous ☺

- occurrences
- actual entities

Another resolution?

ER diagram (entity types)

Division 1 DivIncludes N Employee N DeptIncludes 1 Department

Another resolution? Not really!

ER diagram
(entity types)

Division

1 DivIncludes N
Employee N DeptIncludes 1
Department

Explain why the structure above contains a potential chasm trap.

Another resolution? Not really!

ER diagram (entity types)

Explain why the structure above contains a potential chasm trap.

The association between a division and a department depends on there being at least one employee in the department.

Thus some instances of the 1:many relationship between division and department may be lost (may have fallen of "the chasm")

Examples: Entity vs. Attribute

How do we handle employees with multiple addresses?

Should address pe an attribute?

Examples: Entity vs. Attribute

How do we handle employees with multiple addresses?

Examples: Entity vs. Attribute

How do we handle employees with multiple addresses?

Should address pe an attribute?

Or be an entity?

Or as a multivalued attribute!

Examples: Entity vs. Attribute preferred when internal structure of the

address (e.g. zip code, state) is useful

Should address pe an attribute?

Or be an entity?

Or as a multivalued attribute!

In general, when we want to record several values, we choose new entity or model as multivalued attributes!

Examples: Unary Degree Relationship

Person
Is married to

Managers manage other employees

Team
Stands After

Examples: Unary Degree Relationship

Managers manage other employees

Team
Stands After

Examples: Unary Degree Relationship

Notice that this notation is ambiguous: according to our textbook, that would be many-to-many (no arrow = no constraint). Here is meant 1:1

Example: Married to with participation

type (or entity set)

instance (or entity)

There is a problem with our ERD

There is a problem with our ERD

This assumes every order contains only one product. So if I want two products, I have to make two orders!

The problem: Product is defined as an attribute, not an entity. (Because we didn't define our requirements clearly enough?)

Here is a solution

Now

- A product can be part of multiple orders

Example: multiple relationships

For this exercise, ignore attributes:

- Each employee is assigned to one department
- Each employee has one supervisor
- Each department is manged by one manager

Example: multiple relationships

For this exercise, ignore attributes:

- Each employee is assigned to one department
- Each employee has one supervisor
- 3
- Each department is manged by one manager

Example: multiple relationships

For this exercise, ignore attributes:

- Each employee is assigned to one department
- Each employee has one supervisor
- Each department is manged by one manager

Recall: Entities can be related to one another in more than one way