
401

Topic 1: SQL
L07: SQL advanced

Wolfgang Gatterbauer
CS3200 Database design (fa22)
https://northeastern-datalab.github.io/cs3200/fa22s3/
9/28/2022

Updated 9/28/2022

https://northeastern-datalab.github.io/cs3200/fa22s3/

402Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Class warm-up

• Last class summary
• Grading philosophy: full points if correct over any database (unless

something explicitly specified); if question ambiguous, we will fix

• SQL today: Nulls, outer joins

https://northeastern-datalab.github.io/cs3200/

404Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Sorting Strings

https://northeastern-datalab.github.io/cs3200/

405Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Side topic: sorting of strings

ASCII # char
48 0
49 1
... ...
57 9
65 A
... ...
90 Z
97 a
... ...
122 z

SELECT 'A' < 'a' as eval

ASCII encoding

SELECT '1' < 'A' as eval

SELECT 'a' < 'ab' as eval

SELECT 'a' < 'B' as eval

true or false?

?
?

?

?

https://northeastern-datalab.github.io/cs3200/

406Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Side topic: sorting of strings

ASCII # char
48 0
49 1
... ...
57 9
65 A
... ...
90 Z
97 a
... ...
122 z

SELECT 'A' < 'a' as eval

ASCII encoding

SELECT '1' < 'A' as eval

SELECT 'a' < 'ab' as eval

SELECT 'a' < 'B' as eval

eval
true

true or false?

?

?

?

https://northeastern-datalab.github.io/cs3200/

407Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Side topic: sorting of strings

ASCII # char
48 0
49 1
... ...
57 9
65 A
... ...
90 Z
97 a
... ...
122 z

SELECT 'A' < 'a' as eval

ASCII encoding

eval
true

SELECT '1' < 'A' as eval

SELECT 'a' < 'ab' as eval

SELECT 'a' < 'B' as eval

eval
true

true or false?

?

?

https://northeastern-datalab.github.io/cs3200/

408Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Side topic: sorting of strings

ASCII # char
48 0
49 1
... ...
57 9
65 A
... ...
90 Z
97 a
... ...
122 z

SELECT 'A' < 'a' as eval

ASCII encoding

eval
true

SELECT '1' < 'A' as eval

SELECT 'a' < 'ab' as eval

SELECT 'a' < 'B' as eval

eval
true

eval
true

true or false?

?
(lexicographical order)

https://northeastern-datalab.github.io/cs3200/

409Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Side topic: sorting of strings

ASCII # char
48 0
49 1
... ...
57 9
65 A
... ...
90 Z
97 a
... ...
122 z

SELECT 'A' < 'a' as eval

ASCII encoding

eval
true

SELECT '1' < 'A' as eval

SELECT 'a' < 'ab' as eval

SELECT 'a' < 'B' as eval
eval
false

eval
true

eval
true

true or false?

(lexicographical order)

https://northeastern-datalab.github.io/cs3200/

410Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Null Values

https://northeastern-datalab.github.io/cs3200/

411Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

3-valued logic example

• Three logicians walk into a bar. The bartender asks:
"Do all of you want a drink?"

• The 1st logician says: "I don't know."
• The 2nd logician says: "I don't know."
• The 3rd logician says: "Yes!"

What is going on here ?

https://northeastern-datalab.github.io/cs3200/

412Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nulls in SQL

• Whenever we don't have a value, we can put a NULL

• Can mean many things, e.g.:

?

https://northeastern-datalab.github.io/cs3200/

413Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nulls in SQL

• Whenever we don't have a value, we can put a NULL

• Can mean many things, e.g.:
- Value exists but is unknown
- Value not applicable

• The schema specifies for each attribute if it can be NULL (nullable
attribute) or not ("NOT NULL")

• Lots of ongoing research on NULLs
• Next: How does SQL cope with tables that have NULLs ?

sid Name GPA
101 Alice 3.2
123 Bob null

A new student without GPA

https://northeastern-datalab.github.io/cs3200/

414Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Null Values

• In SQL there are three Boolean values ("ternary logic")
- FALSE, TRUE, UNKNOWN

• If x= NULL then
- Boolean conditions are also NULL. E.g: x='Joe'
- Arithmetic operations produce NULL. E.g: 4*(3-x)/7
- But aggregates ignore NULL values (exception: count(*))

• Logical reasoning:
- FALSE = 0 x AND y = min(x,y)
- TRUE = 1 x OR y = max(x,y)
- UNKNOWN = 0.5 NOT x = (1 – x)

we will practice
in a moment!

https://northeastern-datalab.github.io/cs3200/

416Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Null Values: example
SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

Age Height Weight
20 NULL 200
NULL 6.5 170

Person

?

https://northeastern-datalab.github.io/cs3200/

417Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Age Height Weight
20 NULL 200
NULL 6.5 170

Null Values: example

Rule in SQL: include only tuples
that yield TRUE

Person

SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

https://northeastern-datalab.github.io/cs3200/

418Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Age Height Weight
20 NULL 200
NULL 6.5 170

Null Values: example

SELECT *
FROM Person
WHERE age < 25 or age >= 25

Person

SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

?

Rule in SQL: include only tuples
that yield TRUE

https://northeastern-datalab.github.io/cs3200/

419Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Null Values: example

Rule in SQL:
include only tuples that
yield TRUE

Age Height Weight
20 NULL 200
NULL 6.5 170

SELECT *
FROM Person
WHERE age < 25 or age >= 25

Unexpected behavior

SELECT *
FROM Person
WHERE age < 25 or age >= 25 or age IS NULL

Test NULL
explicitly

Person

SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

https://northeastern-datalab.github.io/cs3200/

420Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Null Values and Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

T

373

?

SELECT gid,
MAX(val) maxv,
MIN(val) minv,
COUNT(*) ctr,
COUNT(val) ctv,
COUNT(DISTINCT val) ctdv

FROM T
GROUP BY gid
ORDER BY gid

Key rule: NULL is
ignored by aggregate
functions if you
reference the column
specifically.
Exception: COUNT(*)

https://northeastern-datalab.github.io/cs3200/

421Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

ctdv
0
3
2

Null Values and Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT gid,
MAX(val) maxv,
MIN(val) minv,
COUNT(*) ctr,
COUNT(val) ctv,
COUNT(DISTINCT val) ctdv

FROM T
GROUP BY gid
ORDER BY gid

T

gid
1
2
3

maxv
NULL
z
Z

ctv
0
4
3

ctr
2
5
3

minv
NULL
B
A

Key rule: NULL is
ignored by aggregate
functions if you
reference the column
specifically: count(col)
starts with 0, sum(col)
starts wtih null.
Exception: COUNT(*)

373

https://northeastern-datalab.github.io/cs3200/

422Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Null Values and Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT val,
COUNT(*) ctr

FROM T
GROUP BY val

T

NULL is included by "GROUP BY".
Relative sorting of NULL by
"ORDER BY" is DBMS-specific

373

?

https://northeastern-datalab.github.io/cs3200/

423Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Null Values and Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT val,
COUNT(*) ctr

FROM T
GROUP BY val

T

val
A
B
Z
a
z
NULL

ctr
2
1
1
1
2
3

373

NULL is included by "GROUP BY".
Relative sorting of NULL by
"ORDER BY" is DBMS-specific

https://northeastern-datalab.github.io/cs3200/

433Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Theta joins (𝜃)

https://northeastern-datalab.github.io/cs3200/

434Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a ?
SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a ?

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

305R
a
1
2

U
a
2
3
4

https://northeastern-datalab.github.io/cs3200/

435Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

a b
1 2
1 3
1 4
2 3
2 4

?

a
1
2

a
2
3
4

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

https://northeastern-datalab.github.io/cs3200/

436Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R U

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

a b
1 2
1 3
1 4
2 3
2 4

a b
2 2

a
1
2

a
2
3
4

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

Think about these two
queries as a partition of
the Cartesian product

https://northeastern-datalab.github.io/cs3200/

438Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Processing Multiple Tables–Joins

• Join: a relational operation that causes two or more tables with a
common domain to be combined into a single table or view

• Equi-join: a join in which the joining condition is based on equality
between values in the common columns; common columns appear
redundantly in the result table

• Natural join: an equi-join in which one of the duplicate columns is
eliminated in the result table

• A Theta-join allows for arbitrary comparison relationships (e.g., ≥).
An equijoin is a theta join using the equality operator.

The common columns in joined tables are usually the primary key of the dominant
table and the foreign key of the dependent table in 1:M relationships

https://northeastern-datalab.github.io/cs3200/

439Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Inner Joins
vs. Outer Joins

https://northeastern-datalab.github.io/cs3200/

440Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

An "inner join":

?

https://northeastern-datalab.github.io/cs3200/

441Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

etext eid fid ftext
One 1 1 Un
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

SELECT *
FROM English JOIN French
ON eid = fid

Same as:

An "inner join":

"JOIN"
same as

"INNER JOIN"

https://northeastern-datalab.github.io/cs3200/

442Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English JOIN French
ON eid = fid

361

Null also sometimes
just shown as empty

?How do we get a join
with the full data

https://northeastern-datalab.github.io/cs3200/

443Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

SELECT *
FROM English JOIN French
ON eid = fid

"FULL JOIN"
same as

"FULL OUTER JOIN"

361

Null also sometimes
just shown as empty

https://northeastern-datalab.github.io/cs3200/

444Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English LEFT JOIN French
ON English.eid = French.fid

361

https://northeastern-datalab.github.io/cs3200/

445Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

2 7,81,3,
4-6

Join Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.

= FULL (OUTER) JOIN

= (INNER) JOIN

361

= LEFT (OUTER) JOIN

https://northeastern-datalab.github.io/cs3200/

446Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/
Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Check this web page for illustrating examples

Detailed Illustration with Examples (follow the link)

also called
"anti-join"

https://northeastern-datalab.github.io/cs3200/
http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

447Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

?
Results

https://northeastern-datalab.github.io/cs3200/

448Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

?

How to write in SQL?

eText eid
Two 2

Results

https://northeastern-datalab.github.io/cs3200/

449Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

How to write in SQL? Any alternative?

?

eText eid
Two 2

Results

https://northeastern-datalab.github.io/cs3200/

450Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Let's practice anti-joins

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

How to write in SQL?

eText eid
Two 2

Results

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

Any alternative?

https://northeastern-datalab.github.io/cs3200/

451Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

"Semi-joins:" kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?

https://northeastern-datalab.github.io/cs3200/

452Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

"Semi-joins:" kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

?
What if fid is not a key?

https://northeastern-datalab.github.io/cs3200/

453Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

"Semi-joins:" kind of the anti-anti-joins...

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NOT NULL

eText eid
One 1
Three 3
Four 4
Five 5
Six 6

Results

What do we have to
change to these queries
to get the tuples in
English that have a
partner in French?

What if fid is not a key?

DISTINCT

https://northeastern-datalab.github.io/cs3200/

454Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Outer Joins
with aggregates

https://northeastern-datalab.github.io/cs3200/

455Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Missing sales

SELECT Item.name, Purchase.store
FROM Item JOIN Purchase
ON Item.name = Purchase.iName

SELECT Item.name, Purchase.store
FROM Item, Purchase
WHERE Item.name = Purchase.iName

Same as:

An "inner join":

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

334

We will have a group exercise in
a few slides. Please ask
questions if things are not
clear, or make screenshots to
discuss later also in your group

Item(name, category)
Purchase(iName, store, month)

https://northeastern-datalab.github.io/cs3200/

456Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

SELECT Item.name, Purchase.store
FROM Item JOIN Purchase
ON Item.name = Purchase.iName

Missing sales

SELECT Item.name, Purchase.store
FROM Item, Purchase
WHERE Item.name = Purchase.iName

Same as:

Products that never sold will be lost L

An "inner join":

Item
Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz

ResultPurchase

334Item(name, category)
Purchase(iName, store, month)

We will have a group exercise in
a few slides. Please ask
questions if things are not
clear, or make screenshots to
discuss later also in your group

https://northeastern-datalab.github.io/cs3200/

457Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Missing sales

SELECT Item.name, Purchase.store
FROM Item INNER JOIN Purchase
ON Item.name = Purchase.iName

SELECT Item.name, Purchase.store
FROM Item, Purchase
WHERE Item.name = Purchase.iName

Same as:

Products that never sold will be lost L

An "inner join":

Item ResultPurchase

"INNER JOIN"
same as
"JOIN"

334

What if you want to include
never-sold products?

Item(name, category)
Purchase(iName, store, month)

Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz

https://northeastern-datalab.github.io/cs3200/

458Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Outer Joins

If we want to include the never-sold products,
then we need an "outer join":

Item
Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz
OneClick NULL

Result

Now we include those products J

Purchase

SELECT Item.name, Purchase.store
FROM Item LEFT JOIN Purchase
ON Item.name = Purchase.iName

"LEFT OUTER JOIN"
same as

"LEFT JOIN"

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

https://northeastern-datalab.github.io/cs3200/

459Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Outer Joins

Item
Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz
OneClick NULL

ResultPurchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Same question, but now only for sales in month = 9:
SELECT Item.name, Purchase.store
FROM Item LEFT JOIN Purchase
ON Item.name = Purchase.iName
WHERE month = 9

?

https://northeastern-datalab.github.io/cs3200/

460Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Outer Joins w/ selection

SELECT Item.name, Purchase.store
FROM Item LEFT JOIN Purchase
ON Item.name = Purchase.iName
WHERE month = 9

Same question, but now only for sales in month = 9:

Item
Name Store
Camera Wiz

Result

The products disappeared *despite* outer join L

Purchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9 What just happened????

?

https://northeastern-datalab.github.io/cs3200/

461Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Outer Joins w/ selection

SELECT Item.name, Purchase.store
FROM Item LEFT JOIN Purchase
ON Item.name = Purchase.iName
WHERE month = 9

Same question, but now only for sales in month = 9:

Item
Name Store
Camera Wiz

Result

The products disappeared *despite* outer join L

Purchase

Explanation: the filter ("month = 9") applies to the
result of the outer join. Any tuple that has NULL as
month, does not pass the filter

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9 What just happened????

?

https://northeastern-datalab.github.io/cs3200/

462Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Outer Joins w/ selection

Item
Name Store
Camera Wiz
Gizmo NULL
OneClick NULL

ResultPurchase

Same question, but now only for those sold in month = 9:

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

SELECT Item.name, Purchase.store
FROM Item LEFT JOIN Purchase
ON Item.name = Purchase.iName
WHERE month = 9

What do we need to do to
get back all names??

https://northeastern-datalab.github.io/cs3200/

463Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT Item.name, Purchase.store
FROM Item LEFT JOIN Purchase
ON (Item.name = Purchase.iName
AND month = 9)

Outer Joins w/ selection

Item
Name Store
Camera Wiz
Gizmo NULL
OneClick NULL

Result

Now they are back again J

Purchase

parenthesis
not required,
and just for
illustration

Same question, but now only for those sold in month = 9:

Explanation: now the filter ("month = 9") applies to the
right side of the left join *before* joining. NULLs are
appended only after filter, during join

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

https://northeastern-datalab.github.io/cs3200/

464Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Outer Joins w/ selection

SELECT Item.name, X.store
FROM Item LEFT JOIN

(SELECT iName, store FROM Purchase WHERE month = 9) X
ON Item.name = X.iName

Item
Name Store
Camera Wiz
Gizmo NULL
OneClick NULL

ResultPurchase

Same question, but now only for those sold in month = 9:

Explanation: now the filter ("month = 9") applies to the
right side of the left join *before* joining. NULLs are
appended only after filter, during join

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Now they are back again J

https://northeastern-datalab.github.io/cs3200/

466Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Empty Group Problem

Item Purchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

SELECT name, count(*) ct
FROM Item, Purchase
WHERE name = iName
AND month = 9
GROUP BY name

Q: Compute, for each product, the total number of sales in Sept (= month 9)

?

https://northeastern-datalab.github.io/cs3200/

467Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Empty Group Problem

Item
Name ct
Camera 1

ResultPurchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

SELECT name, count(*) ct
FROM Item, Purchase
WHERE name = iName
AND month = 9
GROUP BY name

Q: Compute, for each product, the total number of sales in Sept (= month 9)

Whats wrong ?

https://northeastern-datalab.github.io/cs3200/

468Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Empty Group Problem

Item
Name ct
Camera 1
Gizmo 0
OneClick 0

ResultPurchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

That's what we want: the
count for *all* products.
How do we get this anwer?

SELECT name, count(*) ct
FROM Item, Purchase
WHERE name = iName
AND month = 9
GROUP BY name

Q: Compute, for each product, the total number of sales in Sept (= month 9)

?

https://northeastern-datalab.github.io/cs3200/

469Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT name, count(store) ct
FROM Item LEFT JOIN Purchase
ON name = iName
AND month = 9
GROUP BY name

Empty Group Problem

Item
Name ct
Camera 1
Gizmo 0
OneClick 0

ResultPurchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Q: Compute, for each product, the total number of sales in Sept (= month 9)

Now we also get the products with 0 sales J

We need to use any attribute from
"Purchase" to get the correct 0
count.
→ Try "iname" from "Purchase".
Then try "name" from "Item".

https://northeastern-datalab.github.io/cs3200/

470Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT name, count(store) ct
FROM Item LEFT JOIN Purchase
ON name = iName
AND month = 9
GROUP BY name

Empty Group Problem

Item
Name ct
Camera 1
Gizmo 0
OneClick 0

ResultPurchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Q: Compute, for each product, the total number of sales in Sept (= month 9)

What happens if you
add "sum(month)" to
the SELECT clause? ?
Tip: "COALESCE"
function (comes later)

https://northeastern-datalab.github.io/cs3200/

471Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT *
FROM Item LEFT JOIN Purchase
ON name = iName
AND month = 9

Empty Group Problem
Item

Name ct s sc
Camera 1 9 9
Gizmo 0 null 0
OneClick 0 null 0

Result

Purchase

334Item(name, category)
Purchase(iName, store, month)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

SELECT name,
count(iname) c,
sum(month) s,
sum(coalesce(month,0)) sc

FROM Item LEFT JOIN Purchase
ON name = iName
AND month = 9
GROUP BY name

Name Category iName Store Month
Gizmo Gadget null null null
Camera Photo Camera Wiz 9
OneClick Photo null null null

https://northeastern-datalab.github.io/cs3200/

473Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Repeated use of WITH

https://northeastern-datalab.github.io/cs3200/

474Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Witnesses: with aggregates per group (8/10)

Product sales
Banana 70

Purchase
Find the product that is sold with max sales?

308

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) = (

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X

SELECT sum(quantity) Q
FROM Purchase
GROUP BY product

https://northeastern-datalab.github.io/cs3200/

475Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

WITH clause
WITH X AS

308

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) = (

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X

SELECT sum(quantity) Q
FROM Purchase
GROUP BY product

?

https://northeastern-datalab.github.io/cs3200/

476Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

WITH clause
WITH X AS

(SELECT product, SUM(quantity) sales
FROM Purchase
GROUP BY product)

308

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) = (

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X

SELECT sum(quantity) Q
FROM Purchase
GROUP BY product

https://northeastern-datalab.github.io/cs3200/

477Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

WITH clause
WITH X AS

(SELECT product, SUM(quantity) sales
FROM Purchase
GROUP BY product)

SELECT *
FROM X
WHERE

308

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) = (

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X

SELECT sum(quantity) Q
FROM Purchase
GROUP BY product

https://northeastern-datalab.github.io/cs3200/

478Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

WITH clause
WITH X AS

(SELECT product, SUM(quantity) sales
FROM Purchase
GROUP BY product)

SELECT *
FROM X
WHERE sales =

(SELECT MAX (sales)
FROM X)

308

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) = (

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X

SELECT sum(quantity) Q
FROM Purchase
GROUP BY product

https://northeastern-datalab.github.io/cs3200/

479Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

WITH clause
WITH X AS

(SELECT product, SUM(quantity) sales
FROM Purchase
GROUP BY product),

Y AS
(SELECT MAX (sales) ms
FROM X)

SELECT *
FROM X
WHERE sales = (SELECT ms FROM Y))

308

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) = (

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X

SELECT sum(quantity) Q
FROM Purchase
GROUP BY product

https://northeastern-datalab.github.io/cs3200/

480Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Understanding
nested queries

https://northeastern-datalab.github.io/cs3200/

481Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/
Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

The sailors database
340

Sailor Reserves Boat

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

https://northeastern-datalab.github.io/cs3200/
http://pages.cs.wisc.edu/~dbbook/

482Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 1

Q:

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

https://northeastern-datalab.github.io/cs3200/

483Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

https://northeastern-datalab.github.io/cs3200/

484Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 1

Q: Find the names of sailors who have reserved a red boat.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT DISTINCT S.sname
FROM Sailor S
WHERE EXISTS

(SELECT R.sid
FROM Reserves R
WHERE R.sid=S.sid
AND EXISTS

(SELECT B.bid
FROM Boat B
WHERE B.color='red'
AND B.bid=R.bid))

This is an alternative way to write the
previous query with EXISTS and
correlated nested queries that
matches the Relational Calculus below.

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

485Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 2

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

Dashed lines represent
not exists ∄

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

486Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 2

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Dashed lines represent
not exists ∄

They must have reserved at least one boat
in another color. They can also have reserved
a red boat in addition.

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∃R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

487Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 3

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

488Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 3

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

They can have reserved 0 or more
boats in another color, but must
not have reserved any red boat.

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: Find the names of sailors who have not reserved a red boat.

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

489Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Q3: Find the names of sailors who have not reserved a red boat.
Q2: Find the names of sailors who have reserved a boat that is not red.

Should Dustin be in the output
of either of the two queries?

?

https://northeastern-datalab.github.io/cs3200/
http://pages.cs.wisc.edu/~dbbook/

490Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Quiz: Dustin?
340

Sailor Reserves Boat

Schema and several of the following queries taken from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000). http://pages.cs.wisc.edu/~dbbook/

Q3: Find the names of sailors who have not reserved a red boat.
Q2: Find the names of sailors who have reserved a boat that is not red.

Should Dustin be in the output
of either of the two queries?

Yes!
No!

https://northeastern-datalab.github.io/cs3200/
http://pages.cs.wisc.edu/~dbbook/

491Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 4

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Q: ?

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

492Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

They can have reserved 0 or more boats in red, just no other color.

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

493Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 4 (universal)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boat B
WHERE B.color='red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

Double lines represent for all ∀

{S.sname | ∃S∈Sailor.(∀R∈Reserves.(R.sid=S.sid ⇒ ∃B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

They can have reserved 0 or more boats in red, just no other color.

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∄B∈Boat.(B.bid=R.bid ⋀ B.color='red')))}

https://northeastern-datalab.github.io/cs3200/

494Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 4 (another variant)

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boat B
WHERE B.color<>'red'))

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color<>'red'

They can have reserved 0 or more
boats in red, just no other color.

{S.sname | ∃S∈Sailor.(∄R∈Reserves.(R.sid=S.sid ⋀ ∃B∈Boat.(B.bid=R.bid ⋀ B.color<>'red')))}

https://northeastern-datalab.github.io/cs3200/

495Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Nested query 5
340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Q: ?
SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

https://northeastern-datalab.github.io/cs3200/

496Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Nested query 5

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

I don't know of a way to write that query
with IN instead of EXISTS and without an
explicit cross product between sailors and
red boats. (More on that in a moment)

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

https://northeastern-datalab.github.io/cs3200/

497Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Nested query 5 (universal)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

{S.sname | ∃S∈Sailor.(∀B∈Boat.(B.color='red' ⇒ ∃R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT B.bid
FROM Boat B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

SELECT
sname

Sailor

sid
sname

Reserves

sid
bid

Boat
bid

color = 'red'

{S.sname | ∃S∈Sailor.(∄B∈Boat.(B.color='red' ⋀ ∄R∈Reserves.(B.bid=R.bid ⋀ R.sid=S.sid)))}

https://northeastern-datalab.github.io/cs3200/

498Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT
sname

Nested query 5 (w/o correlation)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

SELECT DISTINCT S.sname
FROM Sailor S
WHERE S.sid not in

(SELECT S2.sid
FROM Sailor S2, Boat B
WHERE B.color = 'red'
AND (S2.sid, B.bid) not in

(SELECT R.sid, R.bid
FROM Reserves R))

Sailor

sid
sname

Sailor

sid

Boat
bid

color = 'red'

Reserves

sid
bid

{S.sname | ∃S∈Sailor.(∀S2∈Sailor ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid ⇒ ∃R∈Reserves.(B.bid=R.bid ⋀ S2.sid=R.sid)))}

https://northeastern-datalab.github.io/cs3200/

499Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT
sname

Nested query 5 (w/o correlation)

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by the sailor.

340

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Sailor

sid
sname

Sailor

sid

Boat
bid

color = 'red'

Reserves

sid
bid

SELECT DISTINCT S.sname
FROM Sailor S
WHERE not exists

(SELECT *
FROM Sailor S2, Boat B
WHERE B.color = 'red'
AND S.sid = S2.sid
AND not exists

(SELECT *
FROM Reserves R
WHERE B.bid=R.bid
AND S2.sid = R.sid))

{S.sname | ∃S∈Sailor.(∀S2∈Sailor ∀B∈Boat.(B.color='red' ⋀ S2.sid=S.sid ⇒ ∃R∈Reserves.(B.bid=R.bid ⋀ S2.sid=R.sid)))}

https://northeastern-datalab.github.io/cs3200/

500Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND R.bid = B.bid))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

https://northeastern-datalab.github.io/cs3200/

501Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Sailors who have not reserved a red boat Sailors who reserved only red boats Sailors who reserved all red boats

SQL

QV
SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Towards SQL patterns

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND R.bid = B.bid))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

https://northeastern-datalab.github.io/cs3200/

502Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

have not reserved
a red boat

Sailors
renting
boats

Students
taking
classes

Actors
playing in
movies

reserved only
red boats

reserved all
red boats

took no art
class

took only art
classes

took all art
classes

did not play in a
Hitchcock movie

played only
Hitchcock movies

played in all
Hitchcock movies

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs3200/

503Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT DISTINCT S.sname
FROM Sailor S
WHERENOT EXISTS(

SELECT *
FROM Reserves R, Boat B
WHERE R.sid = S.sid
AND R.bid = B.bid
AND B.color = 'red')

SELECT DISTINCT S.sname
FROM Sailor S
WHERENOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND B.bid = R.bid))

SELECT DISTINCT S.sname
FROM Sailor S
WHERE NOT EXISTS(

SELECT *
FROM Boat B
WHERE B.color = 'red'
AND NOT EXISTS(

SELECT *
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

SELECT DISTINCT S.sname
FROM Student S
WHERENOT EXISTS(

SELECT *
FROM Takes T, Class C
WHERE T.sid = S.sid
AND C.cid = T.cid
AND C.department ='art')

SELECT DISTINCT S.sname
FROM Student S
WHERENOT EXISTS(

SELECT *
FROM Takes T
WHERE T.sid = S.sid
AND NOT EXISTS(

SELECT *
FROM Class C
WHERE C.department = 'art'
AND C.cid= T.cid))

SELECT DISTINCT S.sname
FROM Student S
WHERE NOT EXISTS(

SELECT *
FROM Class C
WHERE C.department= 'art'
AND NOT EXISTS(

SELECT *
FROM Takes T
WHERE T.cid= C.cid
AND T.sid= S.sid))

SELECT DISTINCT A.aname
FROM Actor A
WHERE NOT EXISTS(

SELECT *
FROM Movie M
WHERE M.director = 'Hitchcock'
AND NOT EXISTS(

SELECT *
FROM Plays P
WHERE P.mid = M.mid
AND P.aid = A.aid))

SELECT DISTINCT A.aname
FROM Actor A
WHERENOT EXISTS(

SELECT *
FROM Plays P
WHERE P.aid = A.aid
AND NOT EXISTS(

SELECT *
FROM Movie M
WHERE M.director = 'Hitchcock'
AND M.mid = P.mid))

SELECT DISTINCT A.aname
FROM Actor A
WHERENOT EXISTS(

SELECT *
FROM Plays P, Movie M
WHERE P.aid = A.aid
AND M.mid = P.mid
AND M.director = 'Hitchcock')

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs3200/

504Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

not only all

Sa
ilo

rs
St

ud
en

ts
Ac

to
rs

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Sailor

sid

sname

Reserves

sid

bid

Boat

bid

color = 'red'

SELECT

sname

Student

sid

sname

Takes

sid

cid

Class

cid

department = 'art'

SELECT

sname

Student

sid

sname

Takes

sid

cid

Class

cid

department = 'art'

SELECT

sname

Student

sid

sname

Takes

sid

bid

Class

cid

department = 'art'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

SELECT

aname

Actor

aid

aname

Plays

aid

mid

Movie

mid

director = 'Hitchcock'

Actor (aid, aname)
Plays (aid, mid, role)
Movie (mid, mname, director)

Sailor (sid, sname, rating, age)
Reserves (sid, bid, day)
Boat (bid, bname, color)

Student (sid, sname)
Takes (sid, cid, semester)
Course (cid, cname, department)

https://northeastern-datalab.github.io/cs3200/

505Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Logical SQL Patterns
Logical patterns are the building blocks of most SQL queries.

Patterns are very hard to extract from the SQL text.

A pattern can appear across different database schemas.

Think of queries like:
• Find sailors who reserved all red boats
• Find students who took all art classes
• Find actors who played in all movies by Hitchcock

https://northeastern-datalab.github.io/cs3200/

506Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)What does this query return ?

https://northeastern-datalab.github.io/cs3200/

507Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

What does this query return

QueryVis scoping

https://northeastern-datalab.github.io/cs3200/

508Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

Q: Finder drinkers with a unique beer taste

QueryVis scoping

https://northeastern-datalab.github.io/cs3200/

509Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

QueryVis scoping

https://northeastern-datalab.github.io/cs3200/

510Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

QueryVis scoping Relational Diagrams scoping

https://northeastern-datalab.github.io/cs3200/

511Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

QueryVis scoping Relational Diagrams scoping

https://northeastern-datalab.github.io/cs3200/

512Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

SELECT L1.drinker
FROM Likes L1
WHERE not exists
(SELECT *
FROM Likes L2
WHERE L1.drinker <> L2.drinker
AND not exists
(SELECT *
FROM Likes L3
WHERE L3.drinker = L2.drinker
AND not exists
(SELECT *
FROM Likes L4
WHERE L4.drinker = L1.drinker
AND L4.beer = L3.beer))

AND not exists
(SELECT *
FROM Likes L5
WHERE L5. drinker = L1. drinker
AND not exists
(SELECT *
FROM Likes L6
WHERE L6.drinker = L2.drinker
AND L6.beer= L5.beer)))

Likes(drinker,beer)Q: Finder drinkers with a unique beer taste

Likes
drinker

Likes

drinker
SELECT
drinker

Likes
drinker
beer

Likes
drinker
beer

Likes
drinker
beer

Likes
beer

drinker

<>

QueryVis scoping Relational Diagrams scoping

https://northeastern-datalab.github.io/cs3200/

513Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

https://demo.queryvis.com

http://www.youtube.com/watch?v=kVFnQRGAQls

Danaparamita, G. [EDBT'11]
https://queryvis.com/

Source: Danaparamita, Gatterbauer: QueryViz: Helping users understand SQL queries and their patterns. EDBT 2011. https://doi.org/10.14778/3402755.3402805

https://northeastern-datalab.github.io/cs3200/
https://demo.queryvis.com/
http://www.youtube.com/watch?v=kVFnQRGAQls
https://queryvis.com/
https://doi.org/10.14778/3402755.3402805

514Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Amazon Turk user study with SQL users
Each bar below corresponds to one participant (42 bars/participants in total)

Mean Δ = -17.3 s
Median Δ = -19.7 s

71% of users
faster with QV

29% of users
faster with SQL

QV - SQL Time Differences (seconds)

QV faster SQL faster

Mean Δ = -0.08
Median Δ =0

36% of users
with less
errors using
QV

26% of users
with more
errors using
QV

38% of users
with same
errors using
QV

QV - SQL Error Rate Differences

QV fewer errors SQL fewer errors

Leventidis+ [SIGMOD'20]

Source: Leventidis, Zhang, Dunne, Gatterbauer, Jagadish, Riedewald: QueryVis: Logic-based Diagrams help Users Understand Complicated SQL Queries Faster. SIGMOD 2020. https://doi.org/10.1145/3318464.3389767

https://northeastern-datalab.github.io/cs3200/
https://doi.org/10.1145/3318464.3389767

515Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/

https://queryvis.com

https://northeastern-datalab.github.io/cs3200/
https://www.khoury.northeastern.edu/the-story-of-queryvis-not-just-another-visual-programming-language/
https://queryvis.com/

516Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Practice with
groupings

https://northeastern-datalab.github.io/cs3200/

517Wolfgang Gatterbauer. Database design: https://northeastern-datalab.github.io/cs3200/

Grouping variants

L F M V
Smith Alice C. 1
Smith Alice NULL 2
Smith Alice NULL 3
Smith Bob NULL 4
Tiger Alice NULL 5

350

Person SELECT L, F, M, max(V) MV
FROM Person
GROUP BY L, F, M ?

SELECT L, F, max(V) MV
FROM Person
GROUP BY L, F

SELECT L, max(V) MV
FROM Person
GROUP BY L

SELECT max(V) MV
FROM Person

?

?

?

https://northeastern-datalab.github.io/cs3200/

