
1

L23: Course Evaluation & Review

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 12/03/2018

https://northeastern-datalab.github.io/cs3200/

2

Announcements!

• Today
- Course evaluations

- Review of all 5 class topics

• Admin:
- all last HWs are due this Wednesday: HW8, HW10, Q11, Optional PPTX, peer evaluation

- Extended office hours: Wolfgang: TH and MON during regular class time
• See course web page

• For final exam:
- topics: everything that was covered in the course: slides, homeworks, solutions & FMs,

in-class discussions, discussion on Piazza, Gradiance, Jupyther

- "Professor: I am starting to prepare for the final exam. How should I best study?"
• I will ask some random people in class how they would answer.

3

The world is increasingly
driven by data…

This class teaches the basics of
how to use & manage data.

4

Lectures outline

1. SQL: Relational data models & Queries
- ~ 5-6 lectures -> 6.5 lectures
- How to manipulate data with SQL, a declarative language
• reduced expressive power but the system can do more for you

2. Database Design: Design theory and constraints
- ~ 5-6 lectures -> 6 lectures
- Designing relational schema to keep your data from getting corrupted

3. Transactions: Syntax & supporting systems
- ~ 3-4 lectures -> 3 lectures
- A programmer’s abstraction for data consistency

5

Lectures outline

4. NoSQL
- ~2-3 lectures -> 2.5 lectures
- Key-Value Stores, Column Stores, Document stores, Graph DBs
- (More in CS6240: Large-Scale Parallel Data Processing)

5. Database internals: Query Processing
- ~ 3-4 lectures -> 2.5 lectures
- Indexing
- External Memory Algorithms (IO model) for sorting and joins
- Basics of query optimization (Cost Estimates)
- Relational algebra

6

Studying new material: "Under which study condition do
you think you learn better?"

Source: Karpicke & Blunt, "Retrieval Practice Produces More Learning than Elaborative Studying with Concept Mapping," Science, 2011.

Judged performance
(=what people think)

Actual performance
(=what is actually working)

passive reading active Q&A

⇒ name plates,
class participation

7

Sequencing Material: "Under which teaching
condition do you think you learn better?"

Source: Bjork & Bjork, "Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning," Psychology and the real world (...), 2011.

⇒ exams are
comprehensive

8

My pedagogic goals for classroom effectiveness

Increased learning Fair assessment

signal
noise ratio

Δ learning
time invested ratio

Goal

Metric

Implications minimize chores, have group HWs,
"soft" graded HWs, no attendance
check, in-class problems, class
contributions, interleaved, discuss
student solutions, ...

exam: hard,
comprehensive,
individual, time-
constrained

Risks "Slacking off" Stress, "not fun"

9

0%#

100%#
To

ta
l&P
oi
nt
s&

Student&Popula0on&

Grading Philosophy
• no fixed percentages (e.g., top 30% get A)
• no fixed cut-offs (e.g., 80/100 points for A)

A B

cut-off points depend on
overall class interactivity as
compared to other years

I will not disclose the actual cut-off points. Don't ask for an exception.

Actual point distribution from a
past final exam: long, but fair!

C

10

Ideas for next year

• Allowing arbitrary groups to work on HWs (as long as acknowledged)
• Renaming Office Hours (focus on TA) to study meetings (TA available)
• All submissions via Gradescope
• More hands-on Jupyter notebooks, even for SQL
• Topics:
- 1 SQL: no change
- 2 Database design: shorten and completely replace the Stanford arrow notation

with crow foot / UML; requires working with Gradiance to change examples
- 3 Transactions: extend and include hands-on exercises
- 4 NoSQL: extend with hands-on with all 4 types of NoSQL databases; all in

Jupyter, but MongoDB all setting up on their computers in addition
- 5 Database internals: Re-introduce basics on IO-aware algorithms

11

Reminder: Faculty Course Evaluations

• Please take the next 10 minutes to complete your Faculty Course
Evaluation ("TRACE") for this course.

• Your feedback:
- Helps me improve the course

- Helps your fellow students make better decisions about courses and professors

- Is anonymous – I get a report with results and comments 2-3 weeks after grades
are in

- Should only take 10 minutes to complete (I will walk outside)

- Written comments with explanations and suggestions are especially valuable

12

Thanks for leaving *detailed* Feedback J
1. Topics: what was most interesting, what not, why, what would you have liked to have covered?
2. Pace: what parts most difficult / too slow or too fast?
3. Class organization / Website: did you find what you were looking for? / what was difficult to find or

follow? What would have helped? Suggestions website or Piazza or Gradescope?
4. Gradescope: in the future, everything graded on Gradescope
5. Assessment & cheating: I am following a more British style: homeworks = practice / final = test is "hard"

(lower points). "hard exams" & soft cut-offs: what is a good alternative and why?
6. Class diversity: from freshman to senior; thus no groups project; suggestions of splitting up the class?
7. Homeworks: keep random assignments. Perhaps allow arbitrary collaborations? But then homework

points give *no* predictions for grade. Thus homework = practice, exams = assessment
8. Jupyter notebooks: what went well or wrong? how to improve?
9. Pedagogy: What aspects helped you learn and not forget: cold calling / group exercises / short slide

exercises (SQL) / hands-on SQL typing vs SQL animations / FMs on homework solutions / Office Hours /
TA Office Hours / animated slides vs whiteboard drawings (attention vs time needed) / reading material

10.Use of computers & social media in class: yes / no
11.Best practice from other classes / what to copy *to* other classes. Other ways I can help: office hours /

anonymous feedback form / 5min breaks / 5min "social breaks" where I assign you to talk to somebody
12.How to make you engage more actively? SQL worked really well. More random calling from class list?
13.New exercise next year: Creating and answering MCQs
14.Textbooks: no single textbook to buy, but all digitally available from different sources

13

Review

• A quick tour d'horizon through the 5 topics we discussed in class

14

1. SQL

15

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2
ORDER BY S2

Evaluation
1. Evaluate FROM
2. WHERE, apply condition C1
3. GROUP BY the attributes a1,…,ak
4. Apply condition C2 to each group (may have aggregates)
5. Compute aggregates in S and return the result
6. Sort rows by ORDER BY clause

1
2
3
4

5

C1: is any condition on the attributes in
R1,…,Rn

C2: is any condition on aggregates and
on attributes a1,…,ak

S: may contain attributes a1,…,ak and/or
any aggregates but no other attributes

General form of SQL Query

6
The logical order is useful for under-
standing, but not always correct. The
ANSI SQL standard does not require
a specific processing order and
leaves that to the implementation.
Recall our intro example with
SELECT DISTINCT and order by!
Notice that that example can't be
explained with the order shown here

16

From ® Where ® Group By ® Select

SELECT product, sum(quantity) as TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity

Bagel 3 20

Bagel 2 20

Banana 1 50

Banana 2 10

Banana 4 10

1
2
3

4

Select contains
• grouped attributes
• and aggregates

Purchase
308

17

Let's confuse the database engine

SELECT product, quantity
FROM Purchase
GROUP BY product

Product Quantity
Bagel ?
Banana ?

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

What quantity should the
DB return for Banana?

The DB engine is confused, there
is no single quantity for banana
(it's an ill-defined query). It
should thus return an error (only
SQLite misbehaves and returns
something, but which makes no
sense). Please think this through
carefully!

Purchase
308

18

Don't use new Alias in HAVING clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING SumQ > 35

What does this query return over the given database?

Product SumQ
Bagel 40
Banana 50

Error in SQL server!
Reason: HAVING is
evaluated before SELECT!
(However, SQLite works:
different implementation)

Source: http://stackoverflow.com/questions/2068682/why-cant-i-use-alias-in-a-count-column-and-reference-it-in-a-having-clause

308

http://stackoverflow.com/questions/2068682/why-cant-i-use-alias-in-a-count-column-and-reference-it-in-a-having-clause

19

Don't use new Alias in HAVING clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING sum(quantity) > 35
ORDER BY sumQ desc

What does this query return over the given database?

Product SumQ
Banana 50
Bagel 40

308

Works! Notice
that new sorting

20

etext eid fid ftext
One 1 1 Un
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

SELECT *
FROM English JOIN French
ON eid = fid

Same as:

An "inner join":

"JOIN"
same as

"INNER JOIN"

21

etext eid fid ftext

One 1 1 Un

Two 2 NULL NULL

Three 3 3 Trois

Four 4 4 Quatre

Five 5 5 Cinq

Six 6 6 Siz

NULL NULL 7 Sept

NULL NULL 8 Huit

Illustration
fid fText

1 Un

3 Trois

4 Quatre

5 Cinq

6 Siz

7 Sept

8 Huit

English
eText eid

One 1

Two 2

Three 3

Four 4

Five 5

Six 6

French

SELECT *

FROM English FULL JOIN French

ON English.eid = French.fid

SQLite does not support "FULL OUTER JOIN"s L (but "LEFT JOIN")

361

SELECT *

FROM English JOIN French

ON eid = fid

"FULL JOIN"
same as

"FULL OUTER JOIN"

22

2 7,81,3,
4-6

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French 361

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.

= FULL (OUTER) JOIN

= (INNER) JOIN

23

Empty Group Problem

What’s wrong?

SELECT name, count(*)
FROM Item, Purchase2
WHERE name = iName

and month = 9
GROUP BY name

Item(name, category)
Purchase2(iName, store, month)

334

Compute, for each product, the total number
of sales in Sept (= month 9)

24

SELECT name, count(store)
FROM Item LEFT JOIN Purchase2 ON

name = iName
and month = 9

GROUP BY name

Empty Group Problem

Now we also get the products with 0 sales

We need to use an attribute from
"Purchase2" to get the correct 0
count. Try "name" from "Item".

Item(name, category)
Purchase2(iName, store, month)

Compute, for each product, the total number
of sales in Sept (= month 9)

334

25

2. DB design

26

Data modeling and Database Design Process

DoctorPatient

name

zip name dno

patient_ofConceptual Model:
("technology independent")
describe main data items

Logical Model
("for relational databases"):
Tables, Constraints
Functional Dependencies
Normalization:
Eliminates anomalies

Physical storage details

1. ER Diagram

2. Relational Database Design

3. Database Implementation

Result: Physical Schema

Physical Model

27

From E/R Diagrams to Relational Schema

• Key concept
• Entity sets become relations, Relationships can become relations (tables in RDBMS)
• Tables are connected with foreign key constraints

• A database schema
- A map of the tables and fields (attributes) in the database
- This is what is implemented in the database management system
- Part of the “design” process

28

Example: translate this ERD v1 into tables

Customer

First
name

makes Order

Last
name

City

State Zip

Price

Product
name

Order DateOrder
number

Product

contains

Customer
ID

Quantity

What do we do?

29

Example: translate this ERD v2 into tables

Product

ProductID

ProductName

Price

Order

OrderNumber

OrderDate

Customer

CustomerID

FirstName

LastName

City

State

Zip

Quantity

Contains
Makes

What do we do?

30

Example: Our Order Database schema
Original 1:n relationship

Original n:n relationship

• Order-Product is a decomposed many-to-many relationship
- Order-Product has a 1:n relationship with Order and Product
- Now an order can have multiple products, and a product can be associated

with multiple orders

Product

ProductID

ProductName

Price

Order-Product

OrderProductID

OrderNumber

ProductID

Quantity

Order

OrderNumber

OrderDate

CustomerID

Customer

CustomerID

FirstName

LastName

City

State

Zip

31

A) Associative Entity Relations (No Identifier)

32

A) Associative Entity Relations (No Identifier)

Default primary key for the
association relation is
composed of the primary
keys of the two entities (as
in M:N relationship)

33

B) Associative Entity Relations (With Identifier)

34

B) Associative Entity Relations (With Identifier)

• Identifier attribute becomes
new primary key in relation

• Foreign keys reference all
related entities

Do we need the key?

35

Relational Schema Design

Do you see any anomalies?

Recall set attributes (persons with several phones):

• One person may have multiple phones, but lives in only one city
• Primary key is thus (SSN, PhoneNumber)

Name SSN PhoneNumber City

Fred 123-45-6789 412-555-1234 Boston

Fred 123-45-6789 412-555-6543 Boston

Joe 987-65-4321 908-555-2121 Westfield

Employee

36

Relational Schema Design

Do you see any anomalies?

Recall set attributes (persons with several phones):

What do we do????

• One person may have multiple phones, but lives in only one city

• Primary key is thus (SSN, PhoneNumber)

Name SSN PhoneNumber City

Fred 123-45-6789 412-555-1234 Boston

Fred 123-45-6789 412-555-6543 Boston

Joe 987-65-4321 908-555-2121 Westfield

Employee

• Deletion anomalies: what if Joe deletes his phone number?

(what if Joe had no phone #)

• Insert anomalies: what if Joe gets a second phone number

• Update anomalies: what if Fred moves to "New York"?

37

Relation Decomposition
Break the relation into two:

Name SSN City

Fred 123-45-6789 Boston

Joe 987-65-4321 Westfield

SSN PhoneNumber

123-45-6789 412-555-1234

123-45-6789 412-555-6543

987-65-4321 908-555-2121
Anomalies have gone:
• No more repeated data
• Easy to move Fred to "New York" (how ?)
• Easy to delete all Joe's phone numbers (how ?)

Name SSN PhoneNumber City

Fred 123-45-6789 412-555-1234 Boston

Fred 123-45-6789 412-555-6543 Boston

Joe 987-65-4321 908-555-2121 Westfield

Employee

Employee Phone

38

Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.
for any other attribute B in R,
we have {A1, …, An} à B

A key is a minimal superkey
(also called "candidate key")

I.e. all attributes are
functionally determined
by a superkey

This means that no subset of a key
is also a superkey (i.e., dropping
any attribute from the key makes
it no longer a superkey)

39

Quick recap FDs
• Functional Dependency (FD): The value of one set of attributes (the determinant) uniquely determines the

value of another set of attributes (the dependents)
• A superkey (SK) is as a set of attributes of a relation schema upon which all attributes of the schema are

functionally dependent.
• A candidate key (CK) is a non-redundant (minimal) SK
• Prime attribute: belonging to some candidate key
• Partial FD: FD in which more non-prime attributes are functionally dependent on part (but not all) of any CK
• Transitive FD: An FD between two (or more) nonkey attributes
• 3NF: no partial nor transitive FD

40

Boyce-Codd Normal Form (BCNF)

• Boyce-Codd normal form (BCNF)
- A relation is in BCNF, if and only if, every (non-trival) determinant is a

superkey.

• The difference between 3NF and BCNF is that for a FD AàB,
- 3NF allows this dependency in a relation if B is a primary-key attribute and

A is not a candidate key,
- whereas BCNF insists that for this dependency to remain in a relation, A

must be a SK (contain a CK).

41

3NF to BCNF

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

42

3NF to BCNF

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

43

3NF to BCNF

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

44

BCNF vs 3NF
• BCNF: For every functional dependency X->Y in a set F of functional

dependencies over relation R, either:
- X is a superkey of R
- (or Y is a subset of X, thus the FD is trivial)

• 3NF: For every functional dependency X->Y in a set F of functional
dependencies over relation R, either:
- X is a superkey of R
- or Y is a subset of K for some CK (Y is prime)
• N.b., no subset of a key is a key

- (or Y is a subset of X, thus the FD is trivial)

45

A problem with BCNF
{Unit} à {Company}
{Company,Product} à {Unit}

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product

… …

{Unit} à {Company}

46

So Why is that a Problem?

No problem so far.
All local FD’s are
satisfied.

Unit Company
Galaga99 NEU
Bingo NEU

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 NEU Databases
Bingo NEU Databases

Let’s put all the
data back into a
single table again:

{Unit} à {Company}

Violates the FD {Company,Product} à {Unit}!!

{Unit} à {Company}
{Company,Product} à {Unit}

47

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy their local FDs
but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct
R—on each insert!

48

3. Transactions

49

ACID

• Atomicity
- Either all operations applied or none are (hence, we need not worry about the effect of

incomplete / failed transactions)
• Consistency
- Each transaction can start with a consistent database and is required to leave the

database consistent (bring the DB from one to another consistent state)
• Isolation
- The effect of a transaction should be as if it is the only transaction in execution (in

particular, changes made by other transactions are not visible until committed)
• Durability
- Once the system informs a transaction success, the effect should hold without regret,

even if the database crashes (before making all changes to disk)

50

Transfer Example

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Begin
Read(A,x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)
Commit

txn1 txn2

• Scheduling is the operation of interleaving transactions
• Why is it good?

• A serial schedule executes transactions one at a time, from
beginning to end

• A good (“serializable”) scheduling is one that behaves like
some serial scheduling (typically by locking protocols)

51

Scheduling Example 1

Begin
Read(A,x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)
Commit

txn1 txn2

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Read(A,v)
v = v-100
Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)
x = x-100
Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

52

Scheduling Example 2

Begin
Read(A,x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)
Commit

txn1 txn2

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Read(A,v)
v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)
x = x-100
Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

53

Recall: Concurrency as Interleaving TXNs

We call the particular
order of interleaving a
schedule

T1

T2

R(A) R(B)W(A) W(B)

Serial Schedule:

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

Interleaved Schedule:

R(A) R(B)W(A) W(B)

• For our purposes, having
TXNs occur concurrently
means interleaving their
component actions (R/W)

54

Recall: “Good” vs. “bad” schedules

We want to develop ways of discerning “good” vs. “bad” schedules

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Why?

55

Ways of Defining “Good” vs. “Bad” Schedules

• Recall: we call a schedule serializable if it is equivalent to some
serial schedule
- We used this as a notion of a “good” interleaved schedule, since a

serializable schedule will maintain isolation & consistency

• Now, we’ll define a stricter, but very useful variant:
- Conflict serializability

We’ll need to define
conflicts first..

56

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)W-R Conflict

W-W Conflict

57

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All “conflicts”!

58

Conflict Serializability

• Two schedules are conflict equivalent if:

- They involve the same actions of the same TXNs

- Every pair of conflicting actions of two TXNs are ordered in the same way

• Schedule S is conflict serializable if S is conflict equivalent to some
serial schedule

Conflict serializable ⇒ serializable
So if we have conflict serializable, we have consistency & isolation!

59

Recall: “Good” vs. “bad” schedules

59

Conflict serializability also provides us with an operative
notion of “good” vs. “bad” schedules!

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Note that in the “bad” schedule, the
order of conflicting actions is different
than the above (or any) serial
schedule!

60

Note: Conflicts vs. Anomalies

• Conflicts are things we talk about to help us characterize different
schedules
- Present in both “good” and “bad” schedules

• Anomalies are instances where isolation and/or consistency is
broken because of a “bad” schedule
- We often characterize different anomaly types by what types of conflicts

predicated them

61

The Conflict Graph

• Let’s now consider looking at conflicts at the TXN level

• Consider a graph where the nodes are TXNs, and there is an edge
from Ti àTj if any actions in Ti precede and conflict with any actions
in Tj

T1 T2

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

62

What can we say about “good” vs. “bad” conflict graphs?

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

A bit complicated…

63

What can we say about “good” vs. “bad” conflict graphs?

Serial Schedule:

X

Interleaved Schedules:

T1 T2
T1 T2

T1 T2

Theorem: Schedule is conflict serializable if and
only if its conflict graph is acyclic

Simple!

64

Examples of Transactions

• Airline ticketing
- Verify that the seat is vacant, with the price quoted, then charge credit

card, then reserve
• Textbook example: bank money transfer
- Read from acct#1, verify funds, update acct#1, update acct#2

• Online purchasing
- Similar

• “Transactional file systems” (MS NTFS)
- Moving a file from one directory to another: verify file exists, copy, delete

65

Strict Two-Phase Locking ("2PL")

• Two-phase locking is a way to deal with concurrency, because it
guarantees conflict serializability (if it completes…)

• Also (conceptually) straightforward to implement, and transparent
to the user!

66

Strict Two-Phase Locking (Strict 2PL) Protocol:

• TXNs obtain:

• An X (exclusive) lock on object before writing

- If a TXN holds, no other TXN can get a lock (S or X) on that object.

• An S (shared) lock on object before reading

- If a TXN holds, no other TXN can get an X lock on that object

• All locks held by a TXN are released when TXN completes.

Note: Terminology
here- “exclusive”,
“shared”- meant to
be intuitive- no tricks!

67

Picture of 2-Phase Locking (2PL)

Time
0 locks

Locks the
TXN has

Locked point

Lock Acquisition
(Expanding phase)

Lock Release
(Shrinking phase)

68

Picture of Strict 2-Phase Locking (S2PL)

Time

Locks the
TXN has

Lock Acquisition
(Expanding phase)

Lock Release
(all at once)

Locked point

Strict 2PL

Lock Release
On TXN commit!

0 locks

69

Picture of 2-Phase Locking (2PL)

Source: https://www.guru99.com/dbms-concurrency-control.html

https://www.guru99.com/dbms-concurrency-control.html

70

Strict 2PL

• If a schedule follows strict 2PL and locking, it is conflict serializable…
- …and thus serializable
- …and thus maintains isolation & consistency!

• Not all serializable schedules are allowed by strict 2PL.

• So let’s use strict 2PL, what could go wrong?

71

Deadlock Detection: Example

First, T1 requests a shared lock
on A to read from it

T1

T2

S(A) R(A)

Waits-for graph:

T1 T2

72

Deadlock Detection: Example

Next, T2 requests a shared lock
on B to read from it

T1

T2 S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

73

Deadlock Detection: Example

T2 then requests an exclusive
lock on A to write to it- now T2
is waiting on T1…

T1

T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)Waiting…

74

Deadlock Detection: Example

Finally, T1 requests an exclusive
lock on B to write to it- now T1
is waiting on T2… DEADLOCK!

T1

T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)

W(B)

Cycle =
DEADLOCK

Waiting…

Waiting…

75

76

77

78

79

4. NoSQL

80

Concluding Remarks on Common NoSQL

• Aim to avoid join & ACID overhead
- Joined within, correctness compromised for quick answers; believe in best

effort
• Avoid the idea of a schema
• Query languages are more imperative
- And less declarative
- Developer better knows what’s going on; less reliance on smart

optimization plans
- More responsibility on developers

• No standard well studied languages (yet)

81

SQL Means More than SQL

• SQL stands for the query language
• But commonly refers to the traditional RDBMS:
- Relational storage of data
• Each tuple is stored consecutively

- Joins as first-class citizens
• In fact, normal forms prefer joins to maintenance

- Strong guarantees on transaction management
• No consistency worries when many transactions operate simultaneously on common

data

• Focus on scaling up
- That is, make a single machine do more, faster

82

Vertical vs. Horizontal Scaling

"scaling up"

• Vertical scaling ("scale up"): you scale by
adding more power (CPU, RAM)

• Horizontal scaling ("scale out"): you
scale by adding more machines

"scaling out"

83

Vertical vs. Horizontal partitioning

Source: http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html, http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html
http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

84

“Data Model”

• Applications need to model real-world data
- Typically includes entities and relationships between them
- Entities: e.g. students, courses, products, clients
- Relationships: e.g. course registrations, product purchases

• A data model enables a user to define the data using high-level
constructs without worrying about many low-level details of how
data will be stored on disk

85

Levels of Abstraction

Disk

External Schema External Schema External Schema

Conceptual Schema

Physical Schema

schema as seen by apps

logical schema describes stored
data in terms of data model

includes storage details,
file organization, indexes

86

Different Types of Data

• Structured data

• Semistructured data

• Unstructured data

87

Different Types of Data

• Structured data
- All data conforms to a schema.
- Ex: business data

• Semistructured data
- Some structure in the data but implicit and irregular
- Ex: resume, ads

• Unstructured data
- No structure in data.
- Ex: text, sound, video, images

• What is more important?

88

Physical Independence

• Definition: Applications are insulated from changes in physical
storage details

• Early models (IMS and CODASYL): No

• Relational model: Yes
- Yes through set-at-a-time language: algebra or calculus
- No specification of what storage looks like
- Administrator can optimize physical layout

89

Logical Independence

• Definition: Applications are insulated from changes to logical
structure of the data

• Early models
- IMS: some logical independence
- CODASYL: no logical independence

• Relational model
- Yes through views (think fixed SQL queries: give me first and last name of

all students)

90

Great Debate

• Pro relational
- What where the arguments ?

• Against relational
- What where the arguments ?

91

Great Debate

• Pro relational
- CODASYL is too complex
- CODASYL does not provide sufficient data independence
- Record-at-a-time languages are too hard to optimize
- Trees/networks not flexible enough to represent common cases

• Against relational
- COBOL programmers cannot understand relational languages
- Impossible to represent the relational model efficiently
- CODASYL can represent tables
- Transitive closure (initially) performance
- (initially) too complex and mathematical languages

• Ultimately settled by the market place

92

Summary "What goes around ..."

• Data independence is desirable
- Both physical and logical

- Early data models provided very limited data independence

- Relational model facilitates data independence
• Set-at-a-time languages facilitate physical indep.
• Simple data models facilitate logical indep.

• Flat models are also simpler, more flexible

• User should specify what they want not how to get it (declarative)
- Query optimizer does better job than human

• New data model proposals must
- Solve a “major pain” or provide significant performance gains

93

We Will Look at 4 Data Models

Column-Family Store
(e.g. Cassandra)

Key/Value Store
(e.g. REDIS)

Document Store
(e.g. MongoDB)

Graph Databases
(e.g. Neo4J

Source: Benny Kimelfeld

94

ACID May Be Overly Expensive

• In quite a few modern applications:
- ACID contrasts with key desiderata: high volume, high availability
- We can live with some errors, to some extent
- Or more accurately, we prefer to suffer errors than to be

significantly less functional
• Can this point be made more “formal”?

95

CAP Service Properties

• Consistency:
- every read (to any node) gets a response that reflects the most recent

version of the data
• More accurately, a transaction should behave as if it changes the entire state

correctly in an instant, Idea similar to serializability

• Availability:
- every request (to a living node) gets an answer: set succeeds, get retunes a

value (if you can talk to a node in the cluster, it can read and write data)
• Partition tolerance:
- service continues to function on network failures (cluster can survive
• As long as clients can reach servers

96

The CAP Theorem

Eric Brewer’s CAP Theorem:

A distributed service
can support at most two

out of C, A and P

97

Simple Illustration

set(x,1)

set(x,1)

ok

ok

get(x)

1

CA
Consistency, Availability

set(x,2)

set(x,2)

wait...

get(x) CP
Consistency, Partition tolerance

set(x,2)

set(x,2)

ok

get(x) AP
Availability, Partition tolerance

1

1

Availability

Consistency

Our Relational Database world so far …

In a system that may suffer partitions, you
have to trade off consistency vs. availability

98Source: http://blog.nahurst.com/visual-guide-to-nosql-systems , 2010

http://blog.nahurst.com/visual-guide-to-nosql-systems

99

CAP theorem

Source: http://guide.couchdb.org

http://guide.couchdb.org/

100

The BASE Model

• Applies to distributed systems of type AP

• Basic Availability
- Provide high availability through distribution: There will be a response to any request.

Response could be a ‘failure’ to obtain the requested data, or the data may be in an
inconsistent or changing state.

• Soft state
- Inconsistency (stale answers) allowed: State of the system can change over time, so

even during times without input, changes can happen due to ‘eventual consistency’

• Eventual consistency
- If updates stop, then after some time consistency will be achieved

• Achieved by protocols to propagate updates and verify correctness of propagation (gossip protocols)

• Philosophy: best effort, optimistic, staleness and approximation allowed

101

5. Relational Algebra

102

RDBMS Architecture

• How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

103

Relational Algebra (RA)

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Auxiliary operators (sometimes counted as basic):
- Renaming: P

• Derived or Intersection, complement
- Joins (natural,equi-join, theta join, semi-join)
- Division

104

Theta Join (⋈q)

• A join that involves a predicate
• R1 ⋈q R2 = s q (R1 ´ R2)
• Here q can be any condition

SELECT *
FROM

Students,People
WHERE q;

SQL:

RA:
"#$%&'#(⋈) *&+,-&

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a
theta join + a projection.

105

Semijoin (⋉)

• R ⋉ S = P A1,…,An (R ⋈ S)
- where A1, …, An are the attributes in R

• Intuition:
- remove "dangling tuples"
- Whiteboard: how to specify in SQL?

• 3 variants

• Example:
- Employee ⋉ Dependents

SELECT DISTINCT
sid,sname,gpa

FROM
Students,People

WHERE
sname = pname;

SQL:

RA:

#$%&'($) ⋉ *'+,-'

Students(sid,sname,gpa)
People(ssn,pname,address)

106

Semijoins in Distributed Databases

• Semijoins are often used to compute natural joins in distributed databases

Send less data to
reduce network
bandwidth!

107

Division

• Consider two relations R(X,Y) and S(Y)
- Here, X and Y are tuples of attributes

• R ÷ S is the relation T(X) that contains all the Xs that occur with
every Y in S

108

Formal Definition

• Legal input: (R,S) such that R has all the attributes of S

• R÷S is the relation T with:
- The header of R, with all attributes of S removed
- Tuple set {t[X] | t[X,Y]∊R for every s[Y]∊S}
• This is an abuse of notation, since the attributes in X need not necessarily

come before those of Y

109

Questions

÷ course
AI

sid student course
861 Alma DB
861 Alma PL
753 Amir DB
753 Amir AI
955 Ahuva PL
955 Ahuva DB
955 Ahuva AI

=

÷
course
DB
PL
AI

=

(RxS)÷S =

(RxS)÷R =

Q: If R has 1000 tuples and S
has 100 tuples, how many tuples

can be in R÷S?

Q: If R has 1000 tuples and S
has 1001 tuples, how many

tuples can be in R÷S?

110

course type
DB core
PL core
AI elective
DC elective

sid student course
861 Alma DB
861 Alma PL
753 Amir DB
753 Amir AI
955 Ahuva PL
955 Ahuva DB
955 Ahuva AI

Who took all core courses?

Studies CourseType

Studies ÷ πcoursestype=‘core’CourseType

111

R÷S in Primitive RA

πXR \ πX((πXR � S) \ R)

R(X,Y) S(Y)

Each X of R w/ each Y of S

(X,Y) s.t. X in R, Y in S, but (X,Y) not in R

Xs in R where for some Y in S, (X,Y) is not in R

R÷S

112

Exercise

Student
sid name year
861 Alma 2
753 Amir 1
955 Ahuva 2

Course
cid topic
23 PL
45 DB
76 OS

Studies
sid cid
861 23
861 45
753 45

Write a query in RA that finds the names of
students who get "private lessons"

(i.e., the student takes a course that no one else takes)

113

Recap: High-level overview: indexes

id age salary other

006 19 50k ...

005 20 55k ...

004 25 50k ...

007 30 80k ...

002 35 75k ...

003 35 70k ...

001 40 65k ...

id age salary other

006 19 50k ...

004 25 50k ...

005 20 55k ...

001 40 65k ...

003 35 70k ...

002 35 75k ...

007 30 80k ...

data file = index file
clustered (primary) index

index file
unclustered (secondary) index

114

Questions on final exam & grading

… or anything else?

