
1

L21: Relational Algebra

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 11/26/2018

https://northeastern-datalab.github.io/cs3200/

2

Our next focus

• The Relational Model

• Relational Algebra

• Relational Algebra Pt. II [Optional: may skip]

3

1. The Relational Model & Relational Algebra

4

Algebra

• Algebra is the study of mathematical symbols and the rules for
manipulating these symbols;

• e.g., Linear Algebra
• e.g., Relational Algebra
• e.g., Boolean Algebra
• e.g., Abstract algebra (groups, rings, fields, ...)
• e.g., Elementary algebra

5

What you will learn about in this section

• The Relational Model

• Relational Algebra: Basic Operators

• Execution

6

Motivation

The Relational model is precise,
implementable, and we can operate on it

(query/update, etc.)

Database maps internally into this
procedural language.

7

A Little History

• Relational model due to Edgar
“Ted” Codd, a mathematician at
IBM in 1970
- A Relational Model of Data for Large

Shared Data Banks". Communications
of the ACM 13 (6): 377–387

• IBM didn’t want to use relational
model (take money from IMS)
- Apparently used in the moon landing…

Won Turing
award 1981

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM

8

The Relational Model: Schemata

• Relational Schema:

Students(sid: string, name: string, gpa: float)

AttributesString, float, int, etc.
are the domains of
the attributes

Relation name

9

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An attribute (or
column) is a typed
data entry present
in each tuple in
the relation

The number of
attributes is the arity of
the relation

10

The Relational Model: Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A tuple or row (or record) is a single
entry in the table having the
attributes specified by the schema

The number of
tuples is the
cardinality of
the relation

11

The Relational Model: Data

A relational instance is a set of tuples
all conforming to the same schema

Recall: In practice
DBMSs relax the set
requirement, and
use multisets (or
bags).

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

12

To Reiterate

• A relational schema describes the data that is contained in a relational
instance

Let R(f1:Dom1,…,fm:Domm) be a relational schema then,
an instance of R is a subset of Dom1 x Dom2 x … x Domn

In this way, a relational schema R is a total function from attribute
names to types

13

One More Time

• A relational schema describes the data that is contained in a relational
instance

A relation R of arity t is a function:
R : Dom1 x … x Domt à {0,1}

Then, the schema is simply the signature of the function

I.e. returns whether or not a tuple
of matching types is a member of it

Note here that order matters, attribute name doesn’t…
We’ll (mostly) work with the other model (last slide) in

which attribute name matters, order doesn’t!

14

A relational database

• A relational database schema is a set of relational schemata, one for each
relation

• A relational database instance is a set of relational instances, one for each
relation

Two conventions:
1. We call relational database instances as simply databases
2. We assume all instances are valid, i.e., satisfy the domain constraints

15

A Course Management System (CMS)

• Relation DB Schema
- Students(sid: string, name: string, gpa: float)
- Courses(cid: string, cname: string, credits: int)
- Enrolled(sid: string, cid: string, grade: string)

Sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relation
Instances

Note that the schemas
impose effective domain /
type constraints, i.e. Gpa
can’t be “Apple”

16

2nd Part of the Model: Querying

“Find names of all students
with GPA > 3.5”

We don’t tell the system how or
where to get the data- just what we
want, i.e., Querying is declarative

Actually, I showed how to do this
translation for a much richer language!

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To make this happen, we need to
translate the declarative query into
a series of operators… we’ll see this
next!

17

Virtues of the model

• Physical independence (logical too), Declarative

• Simple, elegant clean: Everything is a relation

• Why did it take multiple years?
- Doubted it could be done efficiently.

18

2. Relational Algebra

19

RDBMS Architecture

• How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Declarative
query (from
user)

Translate to
relational algebra
expression

Find logically
equivalent- but
more efficient- RA
expression

Execute each
operator of the
optimized plan!

20

RDBMS Architecture

• How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan Execution

Relational Algebra allows us to translate declarative (SQL)
queries into precise and optimizable expressions!

21

Relational Algebra (RA)

• Five basic operators:
1. Selection: s
2. Projection: P
3. Cartesian Product: ´
4. Union: È
5. Difference: -

• Derived or auxiliary operators:
- Intersection, complement
- Joins (natural,equi-join, theta join, semi-join)
- Renaming: r
- Division

We’ll look at these first!

And also at one example of a
derived operator (natural
join) and a special operator
(renaming)

22

Keep in mind: RA operates on sets!

• RDBMSs use multisets, however in relational algebra formalism we will
consider sets!

• Also: we will consider the named perspective, where every attribute must
have a unique name
- àattribute order does not matter…

Now on to the basic RA operators…

23

1. Selection (!)

• Returns all tuples which satisfy a condition
• Notation: sc (R)
• Examples
- sSalary > 40000 (Employee)
- sname = “Smith” (Employee)

• The condition c can be =, <, £, >, ³, <>

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
!"#$ %&.((*+,-./+0)

Students(sid,sname,gpa)

24

sSalary > 40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another example:

25

2. Projection (Π)

• Eliminates columns, then removes
duplicates (set perspective!)

• Notation: P A1,…,An (R)
• Example: project social-security

number and names:
- P SSN, Name (Employee)
- Output schema: Answer(SSN, Name)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π"#$%&,()$(+,-./0,1)

Students(sid,sname,gpa)

26

P SSN (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Another example:

SSN
1234545
5423341
4352342

27

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another example:

28

Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

Π"#$%&,()$(+()$,-./(01234516))

+()$,-./(Π"#$%&,()$(01234516))

Are these logically equivalent?

29

3. Cross-Product (×)

• Each tuple in R1 with each tuple in
R2

• Notation: R1 ´ R2
• Example:
- Employee ´ Dependents

• Rare in practice; mainly used to
express joins

SELECT *
FROM Students, People;

SQL:

RA:
"#$%&'#(×)&*+,&

Students(sid,sname,gpa)
People(ssn,pname,address)

30

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&"' ×)%*+,%

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

31

4. Renaming (!)

• Changes the schema, not the
instance

• A ‘special’ operator- neither basic
nor derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the
proper form (since names, not
order matters!):
- r A1àB1,…,AnàBn (R)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students(sid,sname,gpa)

We care about this operator because we
are working in a named perspective

32

sid sname gpa
001 John 3.4

002 Bob 1.3

!"#$%&%,()*+,,-)%+.#/0,(23456738)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another example:

33

5. Natural Join (⋈)

• Notation: R1 ⋈ R2

• Joins R1 and R2 on equality of all shared attributes
- If R1 has attribute set A, and R2 has attribute set B, and

they share attributes A⋂B = C, can also be written:
R1 ⋈ # R2

• Our first example of a derived RA operator:
- Meaning: R1 ⋈ R2 = PA U B(sC=D($%→'(R1) ´ R2))

- Where:
• The rename $%→' renames the shared attributes in one of

the relations
• The selection sC=D checks equality of the shared attributes
• The projection PA U B eliminates the duplicate common

attributes

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
)*+,-.*/ ⋈ 0-123-

Students(sid,name,gpa)
People(ssn,name,address)

34

ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

!"#$%&"' ⋈)%*+,%

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example:

35

Natural Join practice

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

36

Example: Converting SFW Query -> RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
S.name = P.name;

How do we represent
this query in RA?

Π"#$,$&&'())(+"#$,-./(0 ⋈ 2))

Students(sid,name,gpa)
People(ssn,name,address)

