
1

L21: Data models & Relational Algebra

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 11/26/2018

https://northeastern-datalab.github.io/cs3200/

2

Announcements!

• Exam 2 comments
- Based on feedback: Separate "select all" and negative points

• We may have "select all" again: but minimum points is 0
• We may have negative points again: but for MCQ only (select one single answer)

• Please don't yet submit HW7
- We are adopting Gradescope to handle your submissions too!

• Today
- Exam 2 take-aways
- Data models
- Relational Algebra

3

Schedule

4

From 1 = Q3 to 11 = Q13 (thus add 2 to the number)

5

6

Grading from the "other side"

7

Q6

8

Q6

9

Answer: only the first!
Also see post on Piazza: https://piazza.com/class/jj55fszwtpj7fx?cid=135

Q12

https://piazza.com/class/jj55fszwtpj7fx?cid=135

10

11

L21: A short history of data models

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 11/26/2018

Based on article "What goes around comes around", Hellerstein, Stonebraker, 2005.
Several slides courtesy of Dan Suciu

https://northeastern-datalab.github.io/cs3200/

12

Hierarchical data

Source: https://en.wikipedia.org/wiki/Nested_set_model

https://en.wikipedia.org/wiki/Nested_set_model

13

Hierarchies are powerful,
but can be misleading...

14

“Data Model”

• Applications need to model real-world data
- Typically includes entities and relationships between them
- Entities: e.g. students, courses, products, clients
- Relationships: e.g. course registrations, product purchases

• A data model enables a user to define the data using high-level
constructs without worrying about many low-level details of how
data will be stored on disk

15

Levels of Abstraction

Disk

External Schema External Schema External Schema

Conceptual Schema

Physical Schema

schema as seen by apps

logical schema describes stored
data in terms of data model

includes storage details,
file organization, indexes

16

Outline

• Different types of data

• Early data models
- IMS
- CODASYL

• Relational model

• Other data models: E/R Diagrams, XML

17

Different Types of Data

• Structured data
- What is this?
- Examples ?

• Semistructured data
- What is this?
- Examples?

• Unstructured data
- What is this?
- Examples?

18

Different Types of Data

• Structured data

• Semistructured data

• Unstructured data

19

Different Types of Data

• Structured data
- All data conforms to a schema.
- Ex: business data

• Semistructured data
- Some structure in the data but implicit and irregular
- Ex: resume, ads

• Unstructured data
- No structure in data.
- Ex: text, sound, video, images

• What is more important?

20

Early Proposal 1: IMS

• What is it?
- Hierarchical data model

• Record
- Type: collection of named fields with data types (+)
- Instance: must match type definition (+)
- Each instance must have a key (+)
- Record types must be arranged in a tree (-)

• IMS database ("IBM Information Management System") is
collection of instances of record types organized in a tree

21

Early Proposal 1: IMS

How does a programmer retrieve data in IMS ?

22

How to retrieve data? Data Manipulation Language: DL/1

• Each record has a hierarchical sequence key (HSK)
- Records are totally ordered: depth-first and left-to-right

• HSK defines semantics of commands:
- get_next
- get_next_within_parent

• DL/1 is a record-at-a-time language
- Programmer constructs an algorithm for solving the query
- Programmer must worry about query optimization

23

Early Proposal 1: IMS

How is data physically stored?

24

Data storage

• Root records
- Stored sequentially (sorted on key)
- Indexed in a B-tree using the key of the record
- Hashed using the key of the record

• Dependent records
- Physically sequential
- Various forms of pointers

25

Data Independence: What is that?

• Physical data independence
- Applications are insulated from changes in physical storage details

• Logical data independence
- Applications are insulated from changes to logical structure of the data

• Why are these properties important?
- Reduce program maintenance
- Logical database design changes over time
- Physical database design tuned for performance

26

IMS Limitations

• Tree-structured data model
- Redundant data, repetition of information (m-to-n relationships)
- existence depends on parent, artificial structure

• Record-at-a-time user interface
- User must specify algorithm to access data

• Very limited physical independence
- Phys. organization limits possible operations
- Application programs break if organization changes

• Provides some logical independence
- DL/1 program runs on logical database
- Difficult to achieve good logical data independence with a tree model

27

Early Proposal 2: CODASYL

• What is it?
- Networked data model

• Primitives are also record types with keys (+)
• Network model is more flexible than hierarchy (+)
- Ex: no existence dependence

• Record types are organized into network (-)
- A record can have multiple parents

- Arcs between records are named

- At least one entry point to the network

• Record-at-a-time data manipulation language (-)
20

28

CODASYL example

29

CODASYL Limitations

• No physical data independence
- Application programs break if organization changes

• No logical data independence
- Application programs break if organization changes

• Very complex
- multi-dimensional space (i.e., A space of records)

• Programs must “navigate the hyperspace”
- Charles Bachmann, 1973 ACM Turing Award,

Turing Lecture: “The Programmer As Navigator”

- Access data by following pointers between records

• Load and recover as one gigantic object

30

Navigational Database Era (Early1960 – Early 1970)

• Representative Navigational Database Systems
• Integrated Data Store (IDS), 1964, GE
• Information Management System (IMS), 1966, IBM
• Integrated Database Management System (IDMS), 1973, Goodrich

• CODASYL
• Short for “Conference/Committee on Data Systems Languages”
• Define navigational data model as standard database interface (1969)

31

The Birth of Relational Model

• Ted Codd

- Born in 1923

- PHD in 1965

- “A Relational Model of Data for Large Shared Data Banks” in 1970

• Relational Model

- Organize data into a collection of relations

- Access data by a declarative language

(i.e., tell me what you want, not how to find it)

• Some early work by David L. Childs (somewhat forgotten by history)

Data

Independence

32

Relational Model Overview

• Proposed by Ted Codd in 1970

• Motivation: better logical and physical data independence

• Defines logical schema only
- No physical schema

• Set-at-a-time query language

33

Physical Independence

• Definition: Applications are insulated from changes in physical
storage details

• Early models (IMS and CODASYL): No

• Relational model: Yes
- Yes through set-at-a-time language: algebra or calculus
- No specification of what storage looks like
- Administrator can optimize physical layout

34

Logical Independence

• Definition: Applications are insulated from changes to logical
structure of the data

• Early models
- IMS: some logical independence
- CODASYL: no logical independence

• Relational model
- Yes through views (think fixed SQL queries: give me first and last name of

all students)

35

Great Debate

• Pro relational
- What where the arguments ?

• Against relational
- What where the arguments ?

36

Great Debate

• Pro relational
- CODASYL is too complex
- CODASYL does not provide sufficient data independence
- Record-at-a-time languages are too hard to optimize
- Trees/networks not flexible enough to represent common cases

• Against relational
- COBOL programmers cannot understand relational languages
- Impossible to represent the relational model efficiently
- CODASYL can represent tables
- Transitive closure (initially) performance
- (initially) too complex and mathematical languages

• Ultimately settled by the market place

37

• Don Chamberlin of IBM was an early CODASYL advocate (later co-invented
SQL)
- “He (Codd) gave a seminar and a lot of us went to listen to him. This was as I say a

revelation for me because Codd had a bunch of queries that were fairly complicated
queries and since I’d been studying CODASYL, I could imagine how those queries would
have been represented in CODASYL by programs that were five pages long that would
navigate through this labyrinth of pointers and stuff. Codd would sort of write them
down as one-liners. These would be queries like, "Find the employees who earn more
than their managers." [laughter] He just whacked them out and you could sort of read
them, and they weren’t complicated at all, and I said, "Wow." This was kind of a
conversion experience for me, that I understood what the relational thing was about
after that.”

Source: http://www.mcjones.org/System_R/SQL_Reunion_95/sqlr95-Prehisto.html , http://wiki.c2.com/?HistoryOfRelational

http://www.mcjones.org/System_R/SQL_Reunion_95/sqlr95-Prehisto.html
http://wiki.c2.com/?HistoryOfRelational

38

Other Data Models

• Entity-Relationship: 1970’s
- Successful in logical database design

• Extended Relational: 1980’s
- e.g., Aggregation

• Object-oriented: late 1980’s and early 1990’s
- Address impedance mismatch: relational dbs !" OO languages
- Interesting but ultimately failed (several reasons, see paper)

• Object-relational: late 1980’s and early 1990’s
- User-defined types, ops, functions, and access methods

• Semi-structured: late 1990’s to early 2000's
- reborn as document stores, JSON

39

ERD: Subclasses in ERD to Relations

Product

name
categoryprice

isa isa

Educational ProductSoftware Product

ageGroupplatforms

Name Price Category
Gizmo 99 gadget
Camera 49 photo
Toy 39 gadget

Name platforms
Gizmo unix

Name ageGroup

Gizmo toddler

Camera adult

Product

Software Product

Educational Product

40

XML Syntax

<bibliography>
<book> <title> Foundations… </title>

<author> Abiteboul </author>
<author> Hull </author>
<author> Vianu </author>
<publisher> Addison Wesley </publisher>
<year> 1995 </year>

</book>
…

</bibliography>

Tags: book, title, author, …
Start tag: <book>, end tag: </book>
Elements: <book>…</book>,<author>…</author>
Elements are nested
An XML document: single root element

4141

<data>
<person id=“o555” >

<name> Mary </name>
<address>

<street>Maple</street>
<no> 345 </no>
<city> Seattle </city>

</address>
</person>
<person>

<name> John </name>
<address>Thailand
</address>
<phone>23456</phone>

</person>
</data>

data

Mary

person

person

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

id

o555

Element
node

Text
node

Attribute
node

Order matters !!!

XML Semantics: a Tree !
DOM = Document Object Model

42

XML Data

• XML is self-describing

• Schema elements become part of the data
- Relational schema: person(name,phone)

- In XML <person>, <name>, <phone> are part of the data, and are repeated
many times

• Consequence: XML is much more flexible

• XML = semistructured data

43

Summary

• Data independence is desirable
- Both physical and logical

- Early data models provided very limited data independence

- Relational model facilitates data independence
• Set-at-a-time languages facilitate physical indep.
• Simple data models facilitate logical indep.

• Flat models are also simpler, more flexible

• User should specify what they want not how to get it (declarative)
- Query optimizer does better job than human

• New data model proposals must
- Solve a “major pain” or provide significant performance gains

