L19: NoSQL

CS3200 Database design (fal8 s2)
https://northeastern-datalab.github.io/cs3200/

Version 11/15/2018 Several slides courtesy of Benny Kimelfeld

https://northeastern-datalab.github.io/cs3200/

Announcements!

19 R Nov 15 NoSQL Q11 (Nov 29)
20 M Nov 19 NoSQl Harrison

R Nov 22 No class: Thanksgiving
21 M Nov 26 NoSQl Sadalage, Fowler
22 RNov29 Relational Algebra & Query Optimization Q12, HW7
Z3 M Dec 3 Course Evaluation, Class Review HW8, HW10

Optional PPTX

R Dec 6 No class: Reading day
T Dec 11 Exam 3: 8am-10am, location: TBD
o 4, NoSQl

» Sadalage, Fowler: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. 2012 [Safari books eBock (NEU free online
access)]
» Harrison: Harrison. Next Generation Databases: NoSQL, NewSQL, and Big Data. 2016 [Safari books eBook (NEU free online access)]

Announcements!

« HW7: extra time and merged (Thanksgiving!)
« Today

— NoSQL (for 2-3 lectures): big pictures and hands-on example
— Pollin class: install systems, or with Jupyter interface

* Jupyter: easy to get started, same concepts, but no hands dirty
* Real deal: takes time to setup, but you get hands-on experience

— Monday: lessons learned from exam 2

Outline

* Introduction

* Transaction Consistency

* 4 main data models
Key-Value Stores (e.g., Redis)

Column-Family Stores (e.g., Cassandra)

Document Stores (e.g., MongoDB)

Graph Databases (e.g., Neo4j)
* Concluding Remarks

SQL Means More than SQL

e SQL stands for the query language

« But commonly refers to the traditional RDBMS:
— Relational storage of data

e Each tuple is stored consecutively (per row, row-wise)
— Joins as first-class citizens

* |n fact, normal forms prefer joins to maintenance
- Strong guarantees on transaction management

* No consistency worries when many transactions operate simultaneously
(concurrently) on common data

e Focus on

— That is, make a single machine do more, faster

Vertical vs. Horizontal Scaling
——"\

— « Vertical scaling ("scale up"): you scale by
_/ adding more power (CPU, RAM)

« Horizontal scaling ("scale out"): you

1 scale by adding more machines
3 YEAVVEAVEE

Trends Drive Common Requirements

Social media + mobile Cloud computing +
computing open source
* Explosion in data, always * Affordable resources for
available, constantly read management / analysis of data
and updated * People of various skills / budgets
* High load of simple requests need software solutions for
of a common nature distributed analysis of massive data

* Some consistency can be
compromised (e.g., ==)

Database solutions need to
(utilize distribution, “scale horizontally”)

Compromises Required

PRELEEEEELER T

What is needed for effective distributed, data-
and user-intensive applications?

1. Use data models and storage that allow to
avoid joins of big objects

2. Relax the guarantees on consistency

NoSQL

« Not Only SQL

— May still support SQL-type languages

— Term introduced by Carlo Strozzi in 1998 to describe an alternative
database model

— Became following Eric Evans’s reuse for a
distributed-database event

e Seminal papers:
— Google’s BigTable

Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber: Bigtable: A Distributed Storage System for
Structured Data. OSDI 2006: 205-218

— Amazon’s DynamoDB

DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, Vogels: Dynamo: amazon's highly
available key-value store. SOSP 2007: 205-220

10

NoSQL from nosqgl-database.org

(]

« Next Generation Databases mostly addressing some of the points: being non-
relational, distributed, open-source and horizontally scalable.

« The original intention has been modern web-scale databases. The movement
began early 2009 and is growing rapidly. Often more characteristics apply

such as: schema-free, easy replication support, simple API, eventually
consistent / BASE (not ACID), a huge amount of data and more.

e So the misleading term “nosql” (the community now translates it mostly with
“not only sql”) should be seen as an alias to something like the definition
above.

14

11

What is NoSQL?

Source: Geek and Poke: http://geekandpoke.typepad.com/geekandpoke/2011/01/nosgl.html

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE
IN SQL?

geek & poke

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sQ@L"

Leverage the NoSQL boom

12

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

Common NoSQL Features

 Non-relational data models
e Flexible structure
— No need to fix a schema, attributes can be added and replaced on the fly

o Massive read/write performance; availability via horizontal scaling
- and (data partitioning, we'll discuss that next)
— Potentially thousands of machines worldwide

« Open source (very often)
e APIls to impose (opposite of joins)

13

When the database grows: Partitioning Tables

Key Product Name Short Description Review Picture

01 Americano @ Starbucks | Black, no sugar I'd buy again i

02 BB @ Seattle’s Best Black, no sugar The best H

03 TB @ Zoka Coffee Black, no sugar It's okay .

04 BC @ Coffee Black, no sugar Never again ﬂ

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

14

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

Vertical Partitioni

8

Key Prﬁme Short Description \ Picture
01 .W‘ricano @ Starbucks : I'd "
—————
02 BB @ Seattle’s Best Black, no sugar The best
03 TB @ Zoka Coffee Black, no sugar It’s okay
04 BC @ Coffee Black, no sugar Never again

Key Product Name Review

01 Americano @ Starbucks I’d buy again
02 BB @ Seattle’s Best The best

03 TB @ Zoka Coffee It's okay

04 BC @ Coffee Never again

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

Key Short Description Picture
01 Black, no sugar 'i
02 Black, no sugar

03 Black, no sugar

04 Black, no sugar

15

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

Horizontal Partitioning ("sharding")
o [[rsrome]

01

Americano @ Starbucks

01 Americano @ Starbucks Black, no sugar I'd buy again
02 BB @ Seattle’s Best Black, no sugar The best

03 TB @ Zoka Coffee Black, no sugar It’s okay

04 BC @ Coffee Black, no sugar Never again

Black, no sugar

/

I'd buy again ‘

02

BB @ Seattle’s Best

Black, no sugar

The best M

TB @ Zoka Coffee

Black, no sugar

It's okay

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

04 |BC @ Coffee

Black, no sugar

Never again

16

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

Vertical VS.

R

1D Name Avatar

1 Shaun | <Binaries>
2 Tao E <Binaries>
3 Ray | <Binaries>
4 Jesse E <Binaries>
5 Robin E <Bin

| Avatar
: Shaun 1 <Binaries>
2 Tao 2 <Binaries>
3 Ray 3 <Binaries>
d Jesse 4 <Binarjes>
5 Robin 5 <Binaries>

Horizontal partitioning

o Name W Shaun

1 Shaun 2 Tao
—
2 Tao 1 Ray

3 Ray

-

: e B0 Name |
5 Robin 4 Jesse
Reobin

Source: http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html, http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

17

http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html
http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

Cp. to concepts in Linear Algebra

TRt © I i)
d, d, - d cﬂ d, - d d d d.
d

-l’-ﬂ[ﬂlr:,l e "'-"In '“":

41

dul.

==y

d.: :d,: «=:d iy ol dy d, = d,

dy dy o ody # dlyy ﬂl:ﬂ '”rna ﬂ' o,
- 17 i L _ fo iy nen ol

i gl ':"I:hlr '“r:n 14 ‘:‘rJI.':I 'u:l.l:l d;'n "I' I:::F::lu'l'

T r

Yertical Partition Horizontal Partition

Source: "An efficient scheme for probabilistic skyline queries over distributed uncertain data," Xiaoyong Li, Yijie Wang, Jie Yu, Telecommunication systems 2015.

Database Replication

« Data replication: storing the same data on several machines (“nodes”)

o Useful for:
(parallel requests are made against replicas)
(data can survive hardware faults)
(system stays alive when nodes/network fail)
e Typical architecture: master-slave [e |
| MySQL@ (MysaLsiave1] (MysaLSlave2] [MySQL Slave3
* Yy 1 1
Reads Reads Reads

Writes |

L (wenciem }—{ WeoGien }—{ WebGiem)
a

Y/

C LoadBalancer)
Replication example in MySQL
(dev.mysqgl.com)

Clients

19

Open Source

e Free software, source provided
— Users have the right to use, modify and distribute the software

— But restrictions may still apply, e.g., adaptations need to be opensource

e |dea: community development
— Developers fix bugs, add features, ...

e How can that work?

— See [Bonaccorsi, Rossi, 2003. Why open source software can succeed. Research policy,
32(7), pp.1243-1258]

« A major driver of OpenSource is Apache

20

Apache Software Foundation ——

e Non-profit organization
« Hosts communities of developers

— Individuals and small/large companies

e Produces open-source software
e Funding from grants and contributions

e Hosts very significant projects

— Apache Web Server, Hadoop, Zookeeper, Cassandra, Lucene, OpenOffice,
Struts, Tomcat, Subversion, Tcl, UIMA, ...

21

We Will Look at 4 Data Models

Source: Benny Kimelfeld

4 —0 N
0
i

U

Key/Value Store
(e.g. REDIS)

-
i

Document Store
(e.g. MongoDB)

.\fi_).\
B

\. .Jk)

Column-Family Store
(e.g. Cassandra)

-

.

v

Graph Databases
(e.g. Neo4J

22

Database engines ranking by "popularity”

348 systems in ranking, November 2018

Rank Score

Nov Oct Nov DBMS Database Model Nov Oct Nov
2018 2018 2017 2018 2018 2017
1. 1 1. Oracle 2 Relational DBMS 1301.11 -18.16 -58.94
1 2 2. MySQLE Relational DBMS 1159.89 -18.22 -162.14
3. 3 3. Microsoft SQL Server (3 Relational DBMS 1051.55 -6.78 -163.53
4, 4 4. PostgreSQL £3 Relational DBMS 440.24 +20.85 +60.33
5 5. 5. MongoDB Document store 369.48 +6.30 +39.01
6. 6 6. IBM Db2 g2 Relational DBMS 179.87 +0.19 -14.19

p 4 7 9. Redis 2 Key-value store 144.17 -1.12 +22.99
8. 8. #10. Elasticsearch (2 Search engine 143.46 +1.13 +24.05
0. 9 ¥ 7. Microsoft Access Relational DBMS 138.44 +1.64 +5.12
10. a11. 411, SQLite E3 Relational DBMS 122.71 +5.96 +9.95
11. $10. 8. Cassandra 2 Wide column store 121.74 -1.64 -2.47

Source: https://db-engines.com/en/ranking , 11/2018

23

https://db-engines.com/en/ranking

Database engines ranking by "popularity”

DB-Engines Ranking - Oracle
- MySQL
2k Microsoft SQL Server
-+ PostgreSQL
1k - e -#- IBM Db2
Redis

- Elasticsearch
- Microsoft Access

400 e TrTr T et SQLite
. - kel -»- Cassandra
200 4 & in . -+~ Splunk
NS N, = Teradata
gor oS & 5 -G @ S RS FEEsERERS -+ MariaDB
100 = =% Hive

40 e
. v . Tor -

Score (logarithmic scale)

20
10
4
2
© November 2018, DB-Engines.com
1
2013 2014 2015 2016 2017 2018 1/12V

Source: https://db-engines.com/en/ranking trend , 11/2018

https://db-engines.com/en/ranking_trend

Highlighted Database Features

« Data model

— What data is being stored?

« CRUD interface
— API for Create, Read, Update, Delete

* 4 basic functions of persistent storage (insert, select, update, delete)

— Sometimes preceding S for Search

» [ransaction consistency guarantees

» Replication and sharding model

— What’s automated and what’s manual?

25

True and False Conceptions

e True:

— SQL does not effectively handle common Web needs of massive
(datacenter) data

— SQL has guarantees that can sometimes be compromised for the sake of
scaling

— Joins are not for free, sometimes undoable

— NoSQL says NO to SQL
— Nowadays NoSQL is the only way to go
— Joins can always be avoided by structure redesign

26

Strategy Canvas: Example Nintendo Wii (1/3)
Nintendo Wii Strategy Canvas

High
0]
>
o
-
o
£
3
@)

Low
Price Non—_gam_irjng Processing Desigr_1 Motion
functionalities power aesthetics
High resolution HDTV Online Available game Family friendly
graphics capabilities gaming titles games

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

SIDE TOPIC

27

Strategy Canvas: Example Nintendo Wii (2/3)
Nintendo Wii Strategy Canvas

High
./\:deo Game Console Industry Nintendo Wi
(]
>
o
-
o
=
k2
o
Low O
Price Nonjgam_ir)g Processing Desigr_m Motion
functionalities power aesthetics
High resolution HDTV Online Available game Family friendly

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

graphics capabilities gaming titles games

SIDE TOPIC

28

Strategy Canvas: Example Nintendo Wii (3/3)
Nintendo Wii Strategy Canvas

Eliminate Reduce Raise Create
High ™1 i | i
',./o e o o | o—+—0—0

. i i . .

: Video Game Console {ndustry i Nintendo Wi
| | | |
sl | | |
it 1 1 1 1
2 I i i)
= 1 1 1 1
o 1 1 1 1
& 1 I 1 1
@) 1 1 1 1
1 1 1
1 1 1
I 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
I i))
Low| ! ® : : :

. Non-gaming Processing Design .
Price functionalities power aesthetics Motion
High resolution HDTV Online Available game Family friendly
graphics capabilities gaming titles games

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

SIDE TOPIC

29

Redefine the Market

SIDE TOPIC

30

Outline

* Introduction
* Transaction Consistency

* 4 main data models
Key-Value Stores (e.g., Redis)

Column-Family Stores (e.g., Cassandra)

Document Stores (e.g., MongoDB)

Graph Databases (e.g., Neo4j)
* Concluding Remarks

Transaction

« A sequence of operations (over data) viewed as a single higher-level
operation

— Transfer money from account 1 to account 2

« DBMSs execute transactions in parallel
— No problem applying two “disjoint” transactions
— But what if there are dependencies (conflicts)?

e Transactions can either commit (succeed) or abort (fail)

— Failure due to violation of program logic, network failures, credit-card
rejection, etc.

« DBMS should not expect transactions to succeed

32

Examples of Transactions

 Airline ticketing

— Verify that the seat is vacant, with the price quoted, then charge credit
card, then reserve

« Textbook example: bank money transfer
— Read from acct#1, verify funds, update acct#1, update acct#2
e Online purchasing
— Similar
e “Transactional file systems” (MS NTFS)
— Moving a file from one directory to another: verify file exists, copy, delete

33

Transfer Example

Begin
Read (A,V)
v = v-100
Write(A,V)
Read (B, w)
w=w+100
Write(B,w)

Commit

txnq

Begin
Read (A, V)
v = v-100
Write(A,v)
Read (B, w)
w=w+100
Write(B,w)

Commit

txno

Begin
Read (A, x)
x = x-100
Write(A,Xx)
Read(C,vy)
y=y+100
Write(C,vy)

Commit

« Scheduling is the operation of interleaving transactions

- Why 1s 1t good?

« A serial schedule executes transactions one at a time, from

beginning to end

« A good (“serializable”) scheduling is one that behaves like

some serial scheduling (typically by locking protocols)

34

txnq

Scheduling Example 1

txno

Begin
Read (A, V)
v = v-100
Write(A,V)
Read(B,w)
w=w+100
Write(B,w)

Commit

Read (A, V)
v = v-100
Write(A,V)

Read(B,w)

w=w+100

Write(B,w)

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)

y=y+100

Write(C,y)

Begin

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)

Commit

35

txnq

Scheduling Example 2

txno

Begin
Read (A, V)
v = v-100
Write(A,V)
Read(B,w)
w=w+100
Write(B,w)

Commit

Read (A, V)
v = v-100

Write(A,V)

Read(B,w)

w=w+100

Write(B,w)

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)

y=y+100

Write(C,y)

Begin

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)

Commit

36

ACID

e Atomicity
— Either all operations applied or none are (hence, we need not worry about the effect of
incomplete / failed transactions)
« Consistency
— Each transaction can start with a consistent database and is required to leave the
database consistent (bring the DB from one to another consistent state)
« Isolation
— The effect of a transaction should be as if it is the only transaction in execution (in
particular, changes made by other transactions are not visible until committed)
e Durability
— Once the system informs a transaction success, the effect should hold without regret,
even if the database crashes (before making all changes to disk)

37

ACID May Be Overly Expensive

e In quite a few modern applications:
— ACID contrasts with key desiderata: high volume, high availability
— We can live with some errors, to some extent

— Or more accurately, we prefer to suffer errors than to be
significantly less functional

e Can this point be made more “formal”?

38

Simple Model of a Distributed Service

Context: distributed service

- e.g., social network

o Clients make get / set requests
- e.g., setlLike(user,post), getlLikes(post)

— Each client can talk to any server

e Servers return responses

- e.g., ack, {user,....,user,}

o Failure: the network may occasionally disconnect due to failures (e.g., switch
down)

« Desiderata: Consistency, Availability, Partition tolerance

39

CAP Service Properties

e Consistency:

— every read (to any node) gets a response that reflects the most recent
version of the data

* More accurately, a transaction should behave as if it changes the entire state
correctly in an instant, Idea similar to serializability

e Availability:

— every request (to a living node) gets an answer: set succeeds, get retunes a
value (if you can talk to a node in the cluster, it can read and write data)

e Partition tolerance:
— service continues to function on network failures (cluster can survive

* Aslong as clients can reach servers

40

Simple lllustration

ok

<>

set(x,1)

-

set(x,1)

<€

>

o)
b

Q

(0]

(_'.

b
€«
=

Our Relational Database world so far ...

CA

Consistency, Availability

& o

Sjt(x’ 2),, S In a system that may suffer partitions, you
7 have to trade off consistency vs. availability

wait... 1

set(x,Z)I get(x)I CP Avaitakility
ﬂ & Consistency, Partition tolerance
i set(x,2)

ok I 1

set(x,2) get (x) AP Consisténcy

s

<o

Availability, Partition tolerance 41

The CAP Theorem

Eric Brewer’s CAP Theorem:

A distributed service
can support at most two

out of G, A and P

42

Historical Note

« Brewer presented it as the in a 1999 article

— Then as an informal conjecture in his keynote at the PODC 2000 conference

e In 2002 a formal proof was given by Gilbert and Lynch, making CAP
a theorem

— [Seth Gilbert, Nancy A. Lynch: Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33(2): 51-59 (2002)]

— It is mainly about making the statement formal; the proof is
straightforward

43

Visual Guide to NoSQL Systems

A Data Models

Availability:

Pick Two

C

Consistency:

Source: http://blog.nahurst.com/visual-guide-to-nosgl-systems , 2010

http://blog.nahurst.com/visual-guide-to-nosql-systems

CAP theorem

Source: http://quide.couchdb.org

Consensus protocols
for HA consistency

Availability

Enforced consistency

Partition
tolerence

Eventual consistency

45

http://guide.couchdb.org/

The BASE Model

Applies to distributed systems of type AP
Basic Availability

— Provide high availability through distribution: There will be a response to any request.
Response could be a ‘failure’ to obtain the requested data, or the data may be in an
inconsistent or changing state.

Soft state

— Inconsistency (stale answers) allowed: State of the system can change over time, so
even during times without input, changes can happen due to ‘eventual consistency’

Eventual consistency

— If updates stop, then after some time consistency will be achieved

* Achieved by protocols to propagate updates and verify correctness of propagation (gossip protocols)
Philosophy: best effort, optimistic, staleness and approximation allowed

46

Outline

* Introduction
* Transaction Consistency

* 4 main data models
Key-Value Stores (e.g., Redis)

Column-Family Stores (e.g., Cassandra)

Document Stores (e.g., MongoDB)

Graph Databases (e.g., Neo4j)
* Concluding Remarks

Key-Value Stores

ORACLE

BERKELEY DB

o Essentially, big distributed hash maps R
e Origin attributed to Dynamo — Amazon’s DB for world-scale

catalog/cart collections
— But Berkeley DB has been here for >20 years
 Store pairs (key, opaque-value)

— Opaque means that DB does not associate any structure/semantics with
the value; oblivious to values

— This may mean more work for the user: retrieving a large value and parsing
to extract an item of interest

via partitioning of the key space

— Hashing, gossip and remapping protocols for load balancing and fault

tolerance

amazon

48

Hashing (Hash tables, dictionaries)

h:U—{01,..., m—1} hash table T [0...m-1]

U

(universe of keys)

K k'

(actual k,o—
keys)

n=|K| <<|U|.

key k “hashes” to slot T[h[K]]

0

h(k1)
h(k4)

h(kz)

h(ks)

49

Hashing (Hash tables, dictionaries)

hash table T [0...m-1]

0
U
universe of keys
(ys) hik,)
h(k,)
K k7
(actual .= R hik
keyS) (2)
h(ks)
m—1

50

Example Databases

« Amazon’s DynamoDB
— Originally designed for Amazon’s workload at peaks
— Offered as part of Amazon’s Web services

— Next slides and in our Jupyter notebooks
« Riak

— Focuses on high availability, BASE

— “As long as your Riak client can reach one Riak server, it should be able to write data.”
e FoundationDB

— Focus on transactions, ACID
« Berkeley DB (and Oracle NoSQL Database)

— First release 1994, by Berkeley, acquired by Oracle

— ACID, replication

51

Redis & redis

« Basically a data structure for strings, numbers, hashes, lists, sets
« Simplistic “transaction” management

— Queuing of commands as blocks, really
— Among ACID, only Isolation guaranteed

* A block of commands that is executed sequentially; no transaction interleaving; no roll back on errors

e In-memory store

— Persistence by periodical saves to disk

e Comes with

— A command-line API

— Clients for different programming languages
 Perl, PHP, Rubi, Tcl, C, C++, CH#, Java, R, ...

52

Example of Redis Commands

key maps to:

53

Example of Redis Commands

key maps to: key value
(simple value) set x 10 X 10
(hash table) hset h v 5 h y=25
hset hl name two name—>two
hset hl value 2 hl value—>2
hmset p:22 name Alice age 25| p:22 name—>Alice
age—2>25
(set) sadd s 20
sadd s Alice
sadd s Alice S {20,Alice}
(list) rpush 1 a
rpush | b
lpush 1 c 1 (c,a,b)
get = hget = v hkeys : 2~ smembers - scard -
>> 10 >> 5 >> name , age >> 20 , Alice >> 2
llen | lrange | 1 2 lindex | 2 lpop | rpop |
>> > a , b >> b >> >> b

54

