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Announcements!

19 R Nov 15 NoSQL Q11 (Nov 29)
20 M Nov 19 NoSQl Harrison

R Nov 22 No class: Thanksgiving
21 M Nov 26 NoSQl Sadalage, Fowler
22 RNov29 Relational Algebra & Query Optimization Q12, HW7
Z3 M Dec 3 Course Evaluation, Class Review HW8, HW10

Optional PPTX

R Dec 6 No class: Reading day
T Dec 11 Exam 3: 8am-10am, location: TBD
o 4, NoSQl

» Sadalage, Fowler: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. 2012 [Safari books eBock (NEU free online
access)]
» Harrison: Harrison. Next Generation Databases: NoSQL, NewSQL, and Big Data. 2016 [Safari books eBook (NEU free online access)]



Announcements!

« HW7: extra time and merged (Thanksgiving!)
« Today

— NoSQL (for 2-3 lectures): big pictures and hands-on example
— Pollin class: install systems, or with Jupyter interface

* Jupyter: easy to get started, same concepts, but no hands dirty
* Real deal: takes time to setup, but you get hands-on experience

— Monday: lessons learned from exam 2






Outline

* Introduction

* Transaction Consistency

* 4 main data models
Key-Value Stores (e.g., Redis)

Column-Family Stores (e.g., Cassandra)

Document Stores (e.g., MongoDB)

Graph Databases (e.g., Neo4j)
* Concluding Remarks



SQL Means More than SQL

e SQL stands for the query language

« But commonly refers to the traditional RDBMS:
— Relational storage of data

e Each tuple is stored consecutively (per row, row-wise)
— Joins as first-class citizens

* |n fact, normal forms prefer joins to maintenance
- Strong guarantees on transaction management

* No consistency worries when many transactions operate simultaneously
(concurrently) on common data

e Focus on

— That is, make a single machine do more, faster



Vertical vs. Horizontal Scaling
——"\

— « Vertical scaling ("scale up"): you scale by
\_/ adding more power (CPU, RAM)

« Horizontal scaling ("scale out"): you

1 scale by adding more machines
3 YEAVVEAVEE



Trends Drive Common Requirements

Social media + mobile Cloud computing +
computing open source
* Explosion in data, always * Affordable resources for
available, constantly read management / analysis of data
and updated * People of various skills / budgets
* High load of simple requests need software solutions for
of a common nature distributed analysis of massive data

* Some consistency can be
compromised (e.g., == )

Database solutions need to
(utilize distribution, “scale horizontally”)



Compromises Required

PRELEEEEELER T

What is needed for effective distributed, data-
and user-intensive applications?

1. Use data models and storage that allow to
avoid joins of big objects

2. Relax the guarantees on consistency



NoSQL

« Not Only SQL

— May still support SQL-type languages

— Term introduced by Carlo Strozzi in 1998 to describe an alternative
database model

— Became following Eric Evans’s reuse for a
distributed-database event

e Seminal papers:
— Google’s BigTable

Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber: Bigtable: A Distributed Storage System for
Structured Data. OSDI 2006: 205-218

— Amazon’s DynamoDB

DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, Vogels: Dynamo: amazon's highly
available key-value store. SOSP 2007: 205-220
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NoSQL from nosqgl-database.org

(]

« Next Generation Databases mostly addressing some of the points: being non-
relational, distributed, open-source and horizontally scalable.

« The original intention has been modern web-scale databases. The movement
began early 2009 and is growing rapidly. Often more characteristics apply

such as: schema-free, easy replication support, simple API, eventually
consistent / BASE (not ACID), a huge amount of data and more.

e So the misleading term “nosql” (the community now translates it mostly with
“not only sql”) should be seen as an alias to something like the definition
above.

14
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What is NoSQL?

Source: Geek and Poke: http://geekandpoke.typepad.com/geekandpoke/2011/01/nosgl.html

HOW TO WRITE A CV

DO YOU HAVE
ANY EXPERTISE
IN SQL?

geek & poke

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sQ@L"

Leverage the NoSQL boom
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Common NoSQL Features

 Non-relational data models
e Flexible structure
— No need to fix a schema, attributes can be added and replaced on the fly

o Massive read/write performance; availability via horizontal scaling
- and (data partitioning, we'll discuss that next)
— Potentially thousands of machines worldwide

« Open source (very often)
e APIls to impose (opposite of joins)
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When the database grows: Partitioning Tables

Key Product Name Short Description Review Picture

01 Americano @ Starbucks | Black, no sugar I'd buy again i

02 BB @ Seattle’s Best Black, no sugar The best H

03 TB @ Zoka Coffee Black, no sugar It's okay .

04 BC @ Coffee Black, no sugar Never again ﬂ

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/
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http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

Vertical Partitioni

8

Key Prﬁme Short Description \ Picture
01 .W‘ricano @ Starbucks : I'd "
—————
02 BB @ Seattle’s Best Black, no sugar The best
03 TB @ Zoka Coffee Black, no sugar It’s okay
04 BC @ Coffee Black, no sugar Never again

Key Product Name Review

01 Americano @ Starbucks I’d buy again
02 BB @ Seattle’s Best The best

03 TB @ Zoka Coffee It's okay

04 BC @ Coffee Never again

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

Key Short Description Picture
01 Black, no sugar 'i
02 Black, no sugar

03 Black, no sugar

04 Black, no sugar
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Horizontal Partitioning ("sharding")
o [[rsrome ]

01

Americano @ Starbucks

01 Americano @ Starbucks Black, no sugar I'd buy again
02 BB @ Seattle’s Best Black, no sugar The best

03 TB @ Zoka Coffee Black, no sugar It’s okay

04 BC @ Coffee Black, no sugar Never again

Black, no sugar

/

I'd buy again ‘

02

BB @ Seattle’s Best

Black, no sugar

The best M

TB @ Zoka Coffee

Black, no sugar

It's okay

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

04  |BC @ Coffee

Black, no sugar

Never again
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Vertical VS.

R

1D Name Avatar

1 Shaun | <Binaries>
2 Tao E <Binaries>
3 Ray | <Binaries>
4 Jesse E <Binaries>
5 Robin E <Bin

| Avatar
: Shaun 1 <Binaries>
2 Tao 2 <Binaries>
3 Ray 3 <Binaries>
d Jesse 4 <Binarjes>
5 Robin 5 <Binaries>

Horizontal partitioning

o Name W Shaun

1 Shaun 2 Tao
—
2 Tao 1 Ray

3 Ray

-

: e B0 Name |
5 Robin 4 Jesse
Reobin

Source: http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html, http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg
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Database Replication

« Data replication: storing the same data on several machines (“nodes”)

o Useful for:
(parallel requests are made against replicas)
(data can survive hardware faults)
(system stays alive when nodes/network fail)
e Typical architecture: master-slave [ e |
| MySQL@ (MysaLsiave1]  (MysaLSlave2 ] [ MySQL Slave3
* Yy 1 1
Reads Reads Reads

Writes |

L ( wenciem }—{ WeoGien }—{ WebGiem )
a

Y/

C  LoadBalancer )
Replication example in MySQL
(dev.mysqgl.com)

Clients
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Open Source

e Free software, source provided
— Users have the right to use, modify and distribute the software

— But restrictions may still apply, e.g., adaptations need to be opensource

e |dea: community development
— Developers fix bugs, add features, ...

e How can that work?

— See [Bonaccorsi, Rossi, 2003. Why open source software can succeed. Research policy,
32(7), pp.1243-1258]

« A major driver of OpenSource is Apache

20



Apache Software Foundation ——

e Non-profit organization
« Hosts communities of developers

— Individuals and small/large companies

e Produces open-source software
e Funding from grants and contributions

e Hosts very significant projects

— Apache Web Server, Hadoop, Zookeeper, Cassandra, Lucene, OpenOffice,
Struts, Tomcat, Subversion, Tcl, UIMA, ...
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We Will Look at 4 Data Models

Source: Benny Kimelfeld

4 —0 N
0
i

U

Key/Value Store
(e.g. REDIS)

-
i

Document Store
(e.g. MongoDB)

.\fi_).\
B

\. .Jk )

Column-Family Store
(e.g. Cassandra)

-

.

v

Graph Databases
(e.g. Neo4J
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Database engines ranking by "popularity”

348 systems in ranking, November 2018

Rank Score

Nov Oct Nov DBMS Database Model Nov Oct Nov
2018 2018 2017 2018 2018 2017
1. 1 1. Oracle 2 Relational DBMS 1301.11 -18.16 -58.94
1 2 2. MySQLE Relational DBMS 1159.89 -18.22 -162.14
3. 3 3. Microsoft SQL Server (3 Relational DBMS 1051.55 -6.78 -163.53
4, 4 4. PostgreSQL £3 Relational DBMS 440.24 +20.85 +60.33
5 5. 5. MongoDB Document store 369.48 +6.30 +39.01
6. 6 6. IBM Db2 g2 Relational DBMS 179.87 +0.19 -14.19

p 4 7 9. Redis 2 Key-value store 144.17 -1.12 +22.99
8. 8. #10. Elasticsearch (2 Search engine 143.46 +1.13 +24.05
0. 9 ¥ 7. Microsoft Access Relational DBMS 138.44 +1.64 +5.12
10. a11. 411, SQLite E3 Relational DBMS 122.71 +5.96 +9.95
11. $10. 8. Cassandra 2 Wide column store 121.74 -1.64 -2.47

Source: https://db-engines.com/en/ranking , 11/2018
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Database engines ranking by "popularity”

DB-Engines Ranking - Oracle
- MySQL
2k Microsoft SQL Server
-+ PostgreSQL
1k - e -#- IBM Db2
Redis

- Elasticsearch
- Microsoft Access

400 e TrTr T et SQLite
. - kel -»- Cassandra
200 4 & in . -+~ Splunk
NS N, = Teradata
gor oS & 5 -G @ S RS FEEsERERS -+ MariaDB
100 = =% Hive

40 e
. v . Tor -

Score (logarithmic scale)

20
10
4
2
© November 2018, DB-Engines.com
1
2013 2014 2015 2016 2017 2018 1/12V

Source: https://db-engines.com/en/ranking trend , 11/2018



https://db-engines.com/en/ranking_trend

Highlighted Database Features

« Data model

— What data is being stored?

« CRUD interface
— API for Create, Read, Update, Delete

* 4 basic functions of persistent storage (insert, select, update, delete)

— Sometimes preceding S for Search

» [ransaction consistency guarantees

» Replication and sharding model

— What’s automated and what’s manual?
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True and False Conceptions

e True:

— SQL does not effectively handle common Web needs of massive
(datacenter) data

— SQL has guarantees that can sometimes be compromised for the sake of
scaling

— Joins are not for free, sometimes undoable

— NoSQL says NO to SQL
— Nowadays NoSQL is the only way to go
— Joins can always be avoided by structure redesign
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Strategy Canvas: Example Nintendo Wii (1/3)
Nintendo Wii Strategy Canvas

High
0]
>
o
-
o
£
3
@)

Low
Price Non—_gam_irjng Processing Desigr_1 Motion
functionalities power aesthetics
High resolution HDTV Online Available game Family friendly
graphics capabilities gaming titles games

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

SIDE TOPIC
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Strategy Canvas: Example Nintendo Wii (2/3)
Nintendo Wii Strategy Canvas

High
./\:deo Game Console Industry Nintendo Wi
(]
>
o
-
o
=
k2
o
Low O
Price Nonjgam_ir)g Processing Desigr_m Motion
functionalities power aesthetics
High resolution HDTV Online Available game Family friendly

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

graphics capabilities gaming titles games

SIDE TOPIC
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Strategy Canvas: Example Nintendo Wii (3/3)
Nintendo Wii Strategy Canvas

Eliminate Reduce Raise Create
High ™1 i | i
',./o e o o | o—+—0—0

. i i . .

: Video Game Console {ndustry i Nintendo Wi
| | | |
sl | | |
it 1 1 1 1
2 I i i )
= 1 1 1 1
o 1 1 1 1
& 1 I 1 1
@) 1 1 1 1
1 1 1
1 1 1
I 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
I i ) )
Low| ! ® : : :

. Non-gaming Processing Design .
Price functionalities power aesthetics Motion
High resolution HDTV Online Available game Family friendly
graphics capabilities gaming titles games

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

SIDE TOPIC
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Redefine the Market

SIDE TOPIC

30



Outline

* Introduction
* Transaction Consistency

* 4 main data models
Key-Value Stores (e.g., Redis)

Column-Family Stores (e.g., Cassandra)

Document Stores (e.g., MongoDB)

Graph Databases (e.g., Neo4j)
* Concluding Remarks



Transaction

« A sequence of operations (over data) viewed as a single higher-level
operation

— Transfer money from account 1 to account 2

« DBMSs execute transactions in parallel
— No problem applying two “disjoint” transactions
— But what if there are dependencies (conflicts)?

e Transactions can either commit (succeed) or abort (fail)

— Failure due to violation of program logic, network failures, credit-card
rejection, etc.

« DBMS should not expect transactions to succeed

32



Examples of Transactions

 Airline ticketing

— Verify that the seat is vacant, with the price quoted, then charge credit
card, then reserve

« Textbook example: bank money transfer
— Read from acct#1, verify funds, update acct#1, update acct#2
e Online purchasing
— Similar
e “Transactional file systems” (MS NTFS)
— Moving a file from one directory to another: verify file exists, copy, delete
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Transfer Example

Begin
Read (A,V)
v = v-100
Write(A,V)
Read (B, w)
w=w+100
Write(B,w)

Commit

txnq

Begin
Read (A, V)
v = v-100
Write(A,v)
Read (B, w)
w=w+100
Write(B,w)

Commit

txno

Begin
Read (A, x)
x = x-100
Write(A,Xx)
Read(C,vy)
y=y+100
Write(C,vy)

Commit

« Scheduling is the operation of interleaving transactions

- Why 1s 1t good?

« A serial schedule executes transactions one at a time, from

beginning to end

« A good (“serializable”) scheduling is one that behaves like

some serial scheduling (typically by locking protocols)
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txnq

Scheduling Example 1

txno

Begin
Read (A, V)
v = v-100
Write(A,V)
Read(B,w)
w=w+100
Write(B,w)

Commit

Read (A, V)
v = v-100
Write(A,V)

Read(B,w)

w=w+100

Write(B,w)

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)

y=y+100

Write(C,y)

Begin

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)

Commit
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txnq

Scheduling Example 2

txno

Begin
Read (A, V)
v = v-100
Write(A,V)
Read(B,w)
w=w+100
Write(B,w)

Commit

Read (A, V)
v = v-100

Write(A,V)

Read(B,w)

w=w+100

Write(B,w)

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)

y=y+100

Write(C,y)

Begin

Read (A, x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)

Commit
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ACID

e Atomicity
— Either all operations applied or none are (hence, we need not worry about the effect of
incomplete / failed transactions)
« Consistency
— Each transaction can start with a consistent database and is required to leave the
database consistent (bring the DB from one to another consistent state)
« Isolation
— The effect of a transaction should be as if it is the only transaction in execution (in
particular, changes made by other transactions are not visible until committed)
e Durability
— Once the system informs a transaction success, the effect should hold without regret,
even if the database crashes (before making all changes to disk)
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ACID May Be Overly Expensive

e In quite a few modern applications:
— ACID contrasts with key desiderata: high volume, high availability
— We can live with some errors, to some extent

— Or more accurately, we prefer to suffer errors than to be
significantly less functional

e Can this point be made more “formal”?
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Simple Model of a Distributed Service

Context: distributed service

- e.g., social network

o Clients make get / set requests
- e.g., setlLike(user,post), getlLikes(post)

— Each client can talk to any server

e Servers return responses

- e.g., ack, {user,....,user,}

o Failure: the network may occasionally disconnect due to failures (e.g., switch
down)

« Desiderata: Consistency, Availability, Partition tolerance
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CAP Service Properties

e Consistency:

— every read (to any node) gets a response that reflects the most recent
version of the data

* More accurately, a transaction should behave as if it changes the entire state
correctly in an instant, Idea similar to serializability

e Availability:

— every request (to a living node) gets an answer: set succeeds, get retunes a
value (if you can talk to a node in the cluster, it can read and write data)

e Partition tolerance:
— service continues to function on network failures (cluster can survive

* Aslong as clients can reach servers
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Simple lllustration

ok

<>

set(x,1)

-

set(x,1)

<€

>

o)
b

Q

(0]

(_'.

b
€«
=

Our Relational Database world so far ...

CA

Consistency, Availability

& o

Sjt(x’ 2 ),, S In a system that may suffer partitions, you
7 have to trade off consistency vs. availability

wait... 1

set(x,Z)I get(x)I CP Avaitakility
ﬂ & Consistency, Partition tolerance
i set(x,2)

ok I 1

set(x,2) get (x) AP Consisténcy

s

<o

Availability, Partition tolerance 41



The CAP Theorem

Eric Brewer’s CAP Theorem:

A distributed service
can support at most two

out of G, A and P
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Historical Note

« Brewer presented it as the in a 1999 article

— Then as an informal conjecture in his keynote at the PODC 2000 conference

e In 2002 a formal proof was given by Gilbert and Lynch, making CAP
a theorem

— [Seth Gilbert, Nancy A. Lynch: Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33(2): 51-59 (2002)]

— It is mainly about making the statement formal; the proof is
straightforward
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Visual Guide to NoSQL Systems

A Data Models

Availability:

Pick Two

C

Consistency:

Source: http://blog.nahurst.com/visual-guide-to-nosgl-systems , 2010



http://blog.nahurst.com/visual-guide-to-nosql-systems

CAP theorem

Source: http://quide.couchdb.org

Consensus protocols
for HA consistency

Availability

Enforced consistency

Partition
tolerence

Eventual consistency
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The BASE Model

Applies to distributed systems of type AP
Basic Availability

— Provide high availability through distribution: There will be a response to any request.
Response could be a ‘failure’ to obtain the requested data, or the data may be in an
inconsistent or changing state.

Soft state

— Inconsistency (stale answers) allowed: State of the system can change over time, so
even during times without input, changes can happen due to ‘eventual consistency’

Eventual consistency

— If updates stop, then after some time consistency will be achieved

* Achieved by protocols to propagate updates and verify correctness of propagation (gossip protocols)
Philosophy: best effort, optimistic, staleness and approximation allowed
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Key-Value Stores

ORACLE

BERKELEY DB

o Essentially, big distributed hash maps R
e Origin attributed to Dynamo — Amazon’s DB for world-scale

catalog/cart collections
— But Berkeley DB has been here for >20 years
 Store pairs (key, opaque-value)

— Opaque means that DB does not associate any structure/semantics with
the value; oblivious to values

— This may mean more work for the user: retrieving a large value and parsing
to extract an item of interest

via partitioning of the key space

— Hashing, gossip and remapping protocols for load balancing and fault

tolerance

amazon
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Hashing (Hash tables, dictionaries)

h:U—{01,..., m—1} hash table T [0...m-1]

U

(universe of keys)

K k'

(actual k,o—
keys)

n=|K| <<|U|.

key k “hashes” to slot T[h[K]]

0

h(k1)
h(k4)

h(kz)

h(ks)
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Hashing (Hash tables, dictionaries)

hash table T [0...m-1]

0
U
universe of keys
( ys) hik,)
h(k,)
K k7
(actual .= R hik
keyS) ( 2)
h(ks)
m—1
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Example Databases

« Amazon’s DynamoDB
— Originally designed for Amazon’s workload at peaks
— Offered as part of Amazon’s Web services

— Next slides and in our Jupyter notebooks
« Riak

— Focuses on high availability, BASE

— “As long as your Riak client can reach one Riak server, it should be able to write data.”
e FoundationDB

— Focus on transactions, ACID
« Berkeley DB (and Oracle NoSQL Database)

— First release 1994, by Berkeley, acquired by Oracle

— ACID, replication
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Redis & redis

« Basically a data structure for strings, numbers, hashes, lists, sets
« Simplistic “transaction” management

— Queuing of commands as blocks, really
— Among ACID, only Isolation guaranteed

* A block of commands that is executed sequentially; no transaction interleaving; no roll back on errors

e In-memory store

— Persistence by periodical saves to disk

e Comes with

— A command-line API

— Clients for different programming languages
 Perl, PHP, Rubi, Tcl, C, C++, CH#, Java, R, ...

52



Example of Redis Commands

key maps to:
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Example of Redis Commands

key maps to: key value
(simple value) set x 10 X 10
(hash table) hset h v 5 h y=25
hset hl name two name—>two
hset hl value 2 hl value—>2
hmset p:22 name Alice age 25| p:22 name—>Alice
age—2>25
(set) sadd s 20
sadd s Alice
sadd s Alice S {20,Alice}
(list) rpush 1 a
rpush | b
lpush 1 c 1 (c,a,b)
get = hget = v hkeys : 2~ smembers - scard -
>> 10 >> 5 >> name , age >> 20 , Alice >> 2
llen | lrange | 1 2 lindex | 2 lpop | rpop |
>> > a , b >> b >> >> b
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