
1

L19: NoSQL

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 11/15/2018 Several slides courtesy of Benny Kimelfeld

https://northeastern-datalab.github.io/cs3200/

2

Announcements!

3

Announcements!

• HW7: extra time and merged (Thanksgiving!)
• Today
- NoSQL (for 2-3 lectures): big pictures and hands-on example
- Poll in class: install systems, or with Jupyter interface

• Jupyter: easy to get started, same concepts, but no hands dirty
• Real deal: takes time to setup, but you get hands-on experience

- Monday: lessons learned from exam 2

4

5

• Introduction
• Transaction Consistency
• 4 main data models
� Key-Value Stores (e.g., Redis)
� Column-Family Stores (e.g., Cassandra)
� Document Stores (e.g., MongoDB)
� Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline

6

SQL Means More than SQL

• SQL stands for the query language
• But commonly refers to the traditional RDBMS:
- Relational storage of data
• Each tuple is stored consecutively (per row, row-wise)

- Joins as first-class citizens
• In fact, normal forms prefer joins to maintenance

- Strong guarantees on transaction management
• No consistency worries when many transactions operate simultaneously

(concurrently) on common data

• Focus on scaling up
- That is, make a single machine do more, faster

7

Vertical vs. Horizontal Scaling

"scaling up"

• Vertical scaling ("scale up"): you scale by
adding more power (CPU, RAM)

• Horizontal scaling ("scale out"): you
scale by adding more machines

"scaling out"

8

Trends Drive Common Requirements

Social media + mobile
computing

• Explosion in data, always
available, constantly read
and updated

• High load of simple requests
of a common nature

• Some consistency can be
compromised (e.g., !)

Cloud computing +
open source

• Affordable resources for
management / analysis of data

• People of various skills / budgets
need software solutions for
distributed analysis of massive data

Database solutions need to scale out
(utilize distribution, “scale horizontally”)

9

Compromises Required

What is needed for effective distributed, data-
and user-intensive applications?

1. Use data models and storage that allow to
avoid joins of big objects

2. Relax the guarantees on consistency

10

NoSQL

• Not Only SQL
- May still support SQL-type languages
- Term introduced by Carlo Strozzi in 1998 to describe an alternative

database model
- Became the name of a movement following Eric Evans’s reuse for a

distributed-database event
• Seminal papers:
- Google’s BigTable

• Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber: Bigtable: A Distributed Storage System for
Structured Data. OSDI 2006: 205-218

- Amazon’s DynamoDB
• DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, Vogels: Dynamo: amazon's highly

available key-value store. SOSP 2007: 205-220

11

“
• Next Generation Databases mostly addressing some of the points: being non-

relational, distributed, open-source and horizontally scalable.
• The original intention has been modern web-scale databases. The movement

began early 2009 and is growing rapidly. Often more characteristics apply
such as: schema-free, easy replication support, simple API, eventually
consistent / BASE (not ACID), a huge amount of data and more.

• So the misleading term “nosql” (the community now translates it mostly with
“not only sql”) should be seen as an alias to something like the definition
above.

”

NoSQL from nosql-database.org

12

What is NoSQL?

Source: Geek and Poke: http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

13

Common NoSQL Features

• Non-relational data models
• Flexible structure
- No need to fix a schema, attributes can be added and replaced on the fly

• Massive read/write performance; availability via horizontal scaling
- Replication and sharding (data partitioning, we'll discuss that next)
- Potentially thousands of machines worldwide

• Open source (very often)
• APIs to impose locality (opposite of joins)

14

When the database grows: Partitioning Tables

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

15

Vertical Partitioning

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

16

Horizontal Partitioning ("sharding")

Source: http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

http://cloudgirl.tech/data-partitioning-vertical-horizontal-hybrid-partitioning/

17

Vertical vs. Horizontal partitioning

Source: http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html, http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

http://www.piyushgupta.co.uk/2016/04/database-scaling-jargons.html
http://slideplayer.com/slide/12131436/70/images/17/SQL+Azure+Azure+Custom+Sharding.jpg

18

Cp. to concepts in Linear Algebra

Source: "An efficient scheme for probabilistic skyline queries over distributed uncertain data," Xiaoyong Li, Yijie Wang, Jie Yu, Telecommunication systems 2015.

19

Database Replication

• Data replication: storing the same data on several machines (“nodes”)

• Useful for:

- Availability (parallel requests are made against replicas)

- Reliability (data can survive hardware faults)

- Fault tolerance (system stays alive when nodes/network fail)

• Typical architecture: master-slave

Replication example in MySQL
(dev.mysql.com)

20

Open Source

• Free software, source provided
- Users have the right to use, modify and distribute the software
- But restrictions may still apply, e.g., adaptations need to be opensource

• Idea: community development
- Developers fix bugs, add features, ...

• How can that work?
- See [Bonaccorsi, Rossi, 2003. Why open source software can succeed. Research policy,

32(7), pp.1243-1258]

• A major driver of OpenSource is Apache

21

Apache Software Foundation

• Non-profit organization

• Hosts communities of developers

- Individuals and small/large companies

• Produces open-source software

• Funding from grants and contributions

• Hosts very significant projects

- Apache Web Server, Hadoop, Zookeeper, Cassandra, Lucene, OpenOffice,

Struts, Tomcat, Subversion, Tcl, UIMA, ...

22

We Will Look at 4 Data Models

Column-Family Store
(e.g. Cassandra)

Key/Value Store
(e.g. REDIS)

Document Store
(e.g. MongoDB)

Graph Databases
(e.g. Neo4J

Source: Benny Kimelfeld

23

Database engines ranking by "popularity"

Source: https://db-engines.com/en/ranking , 11/2018

https://db-engines.com/en/ranking

24

Database engines ranking by "popularity"

Source: https://db-engines.com/en/ranking_trend , 11/2018

https://db-engines.com/en/ranking_trend

25

Highlighted Database Features

• Data model

- What data is being stored?

• CRUD interface

- API for Create, Read, Update, Delete
• 4 basic functions of persistent storage (insert, select, update, delete)

- Sometimes preceding S for Search

• Transaction consistency guarantees

• Replication and sharding model
- What’s automated and what’s manual?

26

True and False Conceptions

• True:
- SQL does not effectively handle common Web needs of massive

(datacenter) data
- SQL has guarantees that can sometimes be compromised for the sake of

scaling
- Joins are not for free, sometimes undoable

• False:
- NoSQL says NO to SQL
- Nowadays NoSQL is the only way to go
- Joins can always be avoided by structure redesign

27

Strategy Canvas: Example Nintendo Wii (1/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

SIDE TOPIC

28

Strategy Canvas: Example Nintendo Wii (2/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Video Game Console Industry

SIDE TOPIC

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

29

Strategy Canvas: Example Nintendo Wii (3/3)

¤ INSEAD Blue Ocean Strategy Institute 2013

Nintendo Wii

Create

Nintendo Wii Strategy Canvas

Price

High resolution
graphics

Non-gaming
functionalities

HDTV
capabilities

Processing
power

Online
gaming

Design
aesthetics

Available game
titles

Motion

Family friendly
games

High

Low

O
ff

er
in

g
 L

ev
el

Video Game Console Industry

Eliminate Reduce Raise

SIDE TOPIC

Source: INSEAD, Blue Ocean Strategy Institute, 2013.

30

Redefine the Market SIDE TOPIC

31

• Introduction
• Transaction Consistency
• 4 main data models
� Key-Value Stores (e.g., Redis)
� Column-Family Stores (e.g., Cassandra)
� Document Stores (e.g., MongoDB)
� Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline

32

Transaction

• A sequence of operations (over data) viewed as a single higher-level
operation
- Transfer money from account 1 to account 2

• DBMSs execute transactions in parallel
- No problem applying two “disjoint” transactions
- But what if there are dependencies (conflicts)?

• Transactions can either commit (succeed) or abort (fail)
- Failure due to violation of program logic, network failures, credit-card

rejection, etc.
• DBMS should not expect transactions to succeed

33

Examples of Transactions

• Airline ticketing
- Verify that the seat is vacant, with the price quoted, then charge credit

card, then reserve
• Textbook example: bank money transfer
- Read from acct#1, verify funds, update acct#1, update acct#2

• Online purchasing
- Similar

• “Transactional file systems” (MS NTFS)
- Moving a file from one directory to another: verify file exists, copy, delete

34

Transfer Example

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Begin
Read(A,x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)
Commit

txn1 txn2

• Scheduling is the operation of interleaving transactions
• Why is it good?

• A serial schedule executes transactions one at a time, from
beginning to end

• A good (“serializable”) scheduling is one that behaves like
some serial scheduling (typically by locking protocols)

35

Scheduling Example 1

Begin
Read(A,x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)
Commit

txn1 txn2

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Read(A,v)
v = v-100
Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)
x = x-100
Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

36

Scheduling Example 2

Begin
Read(A,x)
x = x-100
Write(A,x)
Read(C,y)
y=y+100
Write(C,y)
Commit

txn1 txn2

Begin
Read(A,v)
v = v-100
Write(A,v)
Read(B,w)
w=w+100
Write(B,w)
Commit

Read(A,v)
v = v-100

Write(A,v)

Read(B,w)

w=w+100

Write(B,w)

Read(A,x)
x = x-100
Write(A,x)

Read(C,y)

y=y+100

Write(C,y)

37

ACID

• Atomicity
- Either all operations applied or none are (hence, we need not worry about the effect of

incomplete / failed transactions)
• Consistency
- Each transaction can start with a consistent database and is required to leave the

database consistent (bring the DB from one to another consistent state)
• Isolation
- The effect of a transaction should be as if it is the only transaction in execution (in

particular, changes made by other transactions are not visible until committed)
• Durability
- Once the system informs a transaction success, the effect should hold without regret,

even if the database crashes (before making all changes to disk)

38

ACID May Be Overly Expensive

• In quite a few modern applications:
- ACID contrasts with key desiderata: high volume, high availability
- We can live with some errors, to some extent
- Or more accurately, we prefer to suffer errors than to be

significantly less functional
• Can this point be made more “formal”?

39

Simple Model of a Distributed Service

• Context: distributed service
- e.g., social network

• Clients make get / set requests
- e.g., setLike(user,post), getLikes(post)

- Each client can talk to any server

• Servers return responses
- e.g., ack, {user1,....,userk}

• Failure: the network may occasionally disconnect due to failures (e.g., switch
down)

• Desiderata: Consistency, Availability, Partition tolerance

40

CAP Service Properties

• Consistency:
- every read (to any node) gets a response that reflects the most recent

version of the data
• More accurately, a transaction should behave as if it changes the entire state

correctly in an instant, Idea similar to serializability

• Availability:
- every request (to a living node) gets an answer: set succeeds, get retunes a

value (if you can talk to a node in the cluster, it can read and write data)
• Partition tolerance:
- service continues to function on network failures (cluster can survive
• As long as clients can reach servers

41

Simple Illustration

set(x,1)

set(x,1)

ok

ok

get(x)

1

CA
Consistency, Availability

set(x,2)

set(x,2)

wait...

get(x) CP
Consistency, Partition tolerance

set(x,2)

set(x,2)

ok

get(x) AP
Availability, Partition tolerance

1

1

Availability

Consistency

Our Relational Database world so far …

In a system that may suffer partitions, you
have to trade off consistency vs. availability

42

The CAP Theorem

Eric Brewer’s CAP Theorem:

A distributed service
can support at most two

out of C, A and P

43

Historical Note

• Brewer presented it as the CAP principle in a 1999 article

- Then as an informal conjecture in his keynote at the PODC 2000 conference

• In 2002 a formal proof was given by Gilbert and Lynch, making CAP
a theorem
- [Seth Gilbert, Nancy A. Lynch: Brewer's conjecture and the feasibility of consistent, available, partition-

tolerant web services. SIGACT News 33(2): 51-59 (2002)]

- It is mainly about making the statement formal; the proof is
straightforward

44Source: http://blog.nahurst.com/visual-guide-to-nosql-systems , 2010

http://blog.nahurst.com/visual-guide-to-nosql-systems

45

CAP theorem

Source: http://guide.couchdb.org

http://guide.couchdb.org/

46

The BASE Model

• Applies to distributed systems of type AP

• Basic Availability
- Provide high availability through distribution: There will be a response to any request.

Response could be a ‘failure’ to obtain the requested data, or the data may be in an
inconsistent or changing state.

• Soft state
- Inconsistency (stale answers) allowed: State of the system can change over time, so

even during times without input, changes can happen due to ‘eventual consistency’

• Eventual consistency
- If updates stop, then after some time consistency will be achieved

• Achieved by protocols to propagate updates and verify correctness of propagation (gossip protocols)

• Philosophy: best effort, optimistic, staleness and approximation allowed

47

• Introduction
• Transaction Consistency
• 4 main data models
� Key-Value Stores (e.g., Redis)
� Column-Family Stores (e.g., Cassandra)
� Document Stores (e.g., MongoDB)
� Graph Databases (e.g., Neo4j)

• Concluding Remarks

Outline

48

Key-Value Stores

• Essentially, big distributed hash maps
• Origin attributed to Dynamo – Amazon’s DB for world-scale

catalog/cart collections
- But Berkeley DB has been here for >20 years

• Store pairs ⟨key, opaque-value⟩
- Opaque means that DB does not associate any structure/semantics with

the value; oblivious to values
- This may mean more work for the user: retrieving a large value and parsing

to extract an item of interest
• Sharding via partitioning of the key space
- Hashing, gossip and remapping protocols for load balancing and fault

tolerance

49

Hashing (Hash tables, dictionaries)

0

m–1

h(k1)

h(k4)

h(k2)

h(k3)

U
(universe of keys)

K
(actual
keys)

k1

k2

k3

k5

k4

h(k2)

n = |K| << |U|.

key k “hashes” to slot T[h[k]]

hash table T [0…m–1]h : U ® {0,1,…, m–1}

50

Hashing (Hash tables, dictionaries)

h(k1)

h(k4)

h(k2)

h(k3)

k1

k2

k3

k5

k4

collision
h(k2)=h(k5)

0

m–1

U
(universe of keys)

K
(actual
keys)

hash table T [0…m–1]

51

Example Databases

• Amazon’s DynamoDB
- Originally designed for Amazon’s workload at peaks
- Offered as part of Amazon’s Web services

• Redis
- Next slides and in our Jupyter notebooks

• Riak
- Focuses on high availability, BASE
- “As long as your Riak client can reach one Riak server, it should be able to write data.”

• FoundationDB
- Focus on transactions, ACID

• Berkeley DB (and Oracle NoSQL Database)
- First release 1994, by Berkeley, acquired by Oracle
- ACID, replication

52

Redis

• Basically a data structure for strings, numbers, hashes, lists, sets
• Simplistic “transaction” management
- Queuing of commands as blocks, really
- Among ACID, only Isolation guaranteed

• A block of commands that is executed sequentially; no transaction interleaving; no roll back on errors

• In-memory store
- Persistence by periodical saves to disk

• Comes with
- A command-line API
- Clients for different programming languages
• Perl, PHP, Rubi, Tcl, C, C++, C#, Java, R, …

53

key value

set x 10 x 10
hset h y 5 h yà5

hset h1 name two
hset h1 value 2_ h1

nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice s {20,Alice}

rpush l a
rpush l b
lpush l c l (c,a,b)

(simple value)

(hash table)

(set)

(list)

key maps to:

Example of Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

54

key value

set x 10 x 10
hset h y 5 h yà5

hset h1 name two
hset h1 value 2_ h1

nameàtwo
valueà2

hmset p:22 name Alice age 25 p:22 nameàAlice
ageà25

sadd s 20___
sadd s Alice
sadd s Alice s {20,Alice}

rpush l a
rpush l b
lpush l c l (c,a,b)

(simple value)

(set)

(list)

key maps to:

Example of Redis Commands

get x
>> 10

hget h y
>> 5

hkeys p:22
>> name , age

smembers s
>> 20 , Alice

scard s
>> 2

llen l
>> 3

lrange l 1 2
>> a , b

lindex l 2
>> b

lpop l
>> c

rpop l
>> b

(hash table)

