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Announcements!

• Exam2: Non-SQL part will be graded on Gradescope; feedback from you 
comparing exam1 vs exam2 setup welcome (after we have posted the results)

• Monday is Veteran's day (no class)
• Today
- Transactions, some repetition (based on OH feedback) & practice, locking

• Next week
- Lessons-learned from exam 2
- NoSQL
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Transactions
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Turing Awards to Database Researchers

• Charles Bachman 1973 for CODASYL (network data model)

• Edgar Codd 1981 for relational databases

• Jim Gray 1998 for transactions
- (describing the requirements for reliable transaction processing, 

memorably called the ACID test)

• Michael Stonebraker 2014 for various contributions (e.g. INGRES)
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History of data models
• What Goes Around Comes Around" by Stonebraker, Hellerstein, ~2005 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.5640

• "This paper provides a summary of 35 years of data model proposals, grouped into 9 

different eras. We discuss the proposals of each era, and show that there are only a few 

basic data modeling ideas, and most have been around a long time. Later proposals 
inevitably bear a strong resemblance to certain earlier proposals. Hence, it is a worthwhile 

exercise to study previous proposals. In addition, we present the lessons learned from the 

exploration of the proposals in each era. Most current researchers were not around for 

many of the previous eras, and have limited (if any) understanding of what was previously 

learned. There is an old adage that he who does not understand history is condemned to 
repeat it. By presenting “ancient history”, we hope to allow future researchers to avoid 

replaying history."

• (cp. to recent references to Plato's republic in a May 2016 NewYork Magazin article by 

Andrew Sullivan titled "Democracies end when they are too democratic") 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.5640
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Transactions

• User programs may do many things on the data retrieved.
- E.g., operations on Bob's bank account.
- E.g. transfer of money from account A to account B.
- E.g., search for a ticket, think about it…, and buy it.

• But the DBMS is only concerned about what data is read 
from/written to the database.

• A transaction is DBMS's abstract view of a user program, simply,  a 
sequence of reads and writes.
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Transaction Properties: ACID

• Atomic
- either all actions of a txn are carried out, or none of them

• Consistent
- Txn moves from a state where integrity holds, to another where integrity holds

• Isolated
- Effect of txns is the same as txns running one after another (in some serial order)

• Durable
- Once a txn has committed, its effects remain in the database (persist)

ACID continues to be a source of great debate! 
BASE (Basic Availability, Soft-state, Eventual Consistency)

a-tomos: undividable
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The World Without Transactions

• Just write applications that talk to databases

• Rely on operating systems for scheduling, and for concurrency 
control

• What can go wrong ? 
- Several famous anomalies
- Other anomalies are possible (but not famous)
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The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, B, X, Y, …

• How can we prevent unwanted interference ?
• The SCHEDULER is responsible for that
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Scheduling: the concept of
Serializability
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Why Interleave transactions?

Why? To improve performance (execution time). 
• Individual TXNs might be slow; we don’t want to block other users during TXN (memory 

hierarchy: let some TXNs use CPU while others accessing HD) 
• By interleaving queries, users do not have to wait for other user’s transactions to 

complete fully before their own transaction begins. 
• E.g. without interleaving: user A begins a transaction that takes 10 sec to complete. User 

B begins a transaction, but has to wait an additional 10 seconds before the database 
would begin processing user B’s request.

But: Interleaving TXNs might lead to anomalies
• we want to avoid those; so we need to be smart about how to avoid "bad" things from 

happening (in a principled way)

How? TXNs must be as if executed serially! 
• That way isolation and consistency are maintained
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Schedules

• Schedule – A chronological sequence of actions from all transactions
• Serial Schedule – A schedule in which transactions are aligned such that 

one transaction is executed first before the next transaction is executed. 

!"
!#
• Interleaved Schedule – A schedule in which actions of different 

transactions are interleaved

!"
!#

R(A) W(A)
R(A) W(B)

R(A)

R(A) W(B)

W(A)
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Serializability

• A serializable schedule is a schedule that is equivalent to some 
serial execution of the transactions.

• The execution sequence within a transaction cannot be changed, 
but two transactions can have their instructions interleaved
- Notice: interleaving does no harm if two transactions are working on 

different segments of data
- If the two transactions are working on same data ("conflicts"), interleaving 

may or may not bring the database to an inconsistent state
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Conflict Types

Two actions conflict if they are part of different TXNs, involve the 
same data item, and at least one of them is a write

3 types of conflicts:
- Read-Write conflicts (RW)

- Write-Read conflicts (WR)

- Write-Write conflicts (WW) 

T1
T2

T1

T2

T1

T2

R(A)

R(B)

W(B)

W(A)

R(A)

R(B)W(A)

W(B)

R(B)

W(B)

W(B)

W(A)Interleaving anomalies occur with/because of these 
conflicts between TXNS BUT these conflicts can 
occur w/o causing anomalies – Conflict serializable

W(B) doesn’t 
conflict with W(A)
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How to resolve: Conflict Equivalence

• Two schedules having multiple transactions with conflicting 
operations are conflict equivalent if and only if:

- Both schedules contain the same set of transactions
- The order of conflicting pairs of operation is maintained in both the 

schedules
• Schedules which are conflict equivalent with another serial 

schedule are conflict serializable
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Practice
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Example transactions: Serializable or not?

R3(X); R2(X); W3(X); R1(X); W1(X);

T1 T2 T3

R(X)

R(X)

W(X)

R(X)

W(X)

T1 T2

T3

Serialization graph

No directed cycles: Serializable
Equivalent serial schedule: R2(X); R3(X); W3(X); R1(X); W1(X);
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Example transactions 2: Serializable or not?

• w1(Y), r2(X),r2(Y), w1(X), c1, r2(Z), w2(Y), w2(Z), c2

• [Draw on whiteboard]
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Example transactions 2: Serializable or not?

• w1(Y), r2(X),r2(Y), w1(X), c1, r2(Z), w2(Y), w2(Z), c2

• [Draw on whiteboard]

• No: because of X, T2 must precede T1, but because of Y the opposite is true
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Example

T1 T2
READ(A, t) READ(A,s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)
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A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

Serial schedule: (T1,T2)
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A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

125

125

Serial schedule: (T1,T2)
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A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

125

125

250

250

Serial schedule: (T1,T2)
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A Serial Schedule (version 2)

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

A B
25 25

50

50

150

150

Serial schedule: (T2,T1)
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Serializable Schedule

• A schedule is serializable if it is equivalent to a serial schedule

A schedule S is serializable, if there is a serial schedule S’, 
such that for every initial database state, the effects of S 
and S’ are the same
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A schedule that is not serial

Notice: 
But it is serializable

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

125

250

125

250
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A schedule that is not serial, and non-serializable

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

A B
25 25

125

250

50

150
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Transaction Semantics

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s+200
WRITE(A,s)
READ(B,s)
s := s+200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

A B
25 25

125

325

225

325

Is this serializable?
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Ignoring Details

• Serializability is undecidable!

• Scheduler should not look at transaction details

• Assume worst case updates
- Only care about reads r(A) and writes w(A)
- Not the actual values involved
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Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

actions

transaction

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

schedule
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Conflict Serializability

Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element:

wi(X); rj(X)
Read/write by Ti, Tj to same element:

ri(X); wj(X)
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Conflict Serializability

• Two schedules are conflict equivalent if:
- Involve the same actions of the same transactions.
- Every pair of conflicting actions is ordered the same way.

• Schedule S is conflict serializable if S is conflict equivalent to some 
serial schedule.

• Given a set of X's, conflict serializable schedules are a subset of  
serializable schedules.
- There are serializable schedules that can't be detected using conflict 

serializability. 
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Conflict Serializability

• A schedule is conflict serializable if it can be transformed into a serial schedule 
by a series of swappings of adjacent non-conflicting actions

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B)
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The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
• Build a graph of all transactions Ti

• Edge from Ti to Tj if Ti makes an action that conflicts with one of Tj
and comes first

• The test: if the graph has no cycles, then it is conflict serializable !
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Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB
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Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B
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Conflict Serializability

• A serializable schedule need not be conflict serializable

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Equivalent,  but can’t swap

Lost write
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Another look at "Good" vs "Bad"

T1 T2

R(A)

W(A)
R(A)
W(A)

R(B)

W(B)
R(C)

W(C)
T2

T1

T1 T2

R(A)

R(A)
W(A)

W(A)

R(B)

W(B)
R(C)

W(C)

T2

T1



150

Locking
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How to enforce (conflict) serializability?

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock before reading/writing 
that element

• If the lock is taken by another transaction, then wait

• The transaction must release the lock(s)

Some things still can go wrong. Let's "experience" some problems.
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Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A
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Example

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B); 

Scheduler has ensured a conflict-serializable schedule
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Example

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A); 
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B); 

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B); 

Locks did not enforce conflict serializability L !!
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Strict Two-Phase Locking ("2PL")

• Two-phase locking is a way to deal with concurrency, because it 
guarantees conflict serializability (if it completes…)

• Also (conceptually) straightforward to implement, and transparent 
to the user!
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Strict Two-Phase Locking (Strict 2PL) Protocol:

• TXNs obtain:

• An X (exclusive) lock on object before writing

- If a TXN holds, no other TXN can get a lock (S or X) on that object.

• An S (shared) lock on object before reading

- If a TXN holds, no other TXN can get an X lock on that object

• All locks held by a TXN are released when TXN completes. 

Note: Terminology 
here- “exclusive”, 
“shared”- meant to 
be intuitive- no tricks!
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Picture of 2-Phase Locking (2PL)

Time
Strict 2PL

0 locks

# Locks 
the TXN

has

Lock 
Acquisition

Lock Release
On TXN commit!



158

Strict 2PL

Therefore, Strict 2PL only allows conflict 
serializable ⇒ serializable schedules

Proof Intuition: In strict 2PL, if there is an edge Ti à Tj (i.e. Ti and Tj
conflict) then Tj needs to wait until Ti is finished – so cannot have an edge 
Tj à Ti

Theorem: Strict 2PL allows only schedules whose 
dependency graph is acyclic
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Strict 2PL

• If a schedule follows strict 2PL and locking, it is conflict serializable…
- …and thus serializable
- …and thus maintains isolation & consistency!

• Not all serializable schedules are allowed by strict 2PL. 

• So let’s use strict 2PL, what could go wrong?
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Deadlock Detection: Example

First, T1 requests a shared lock 
on A to read from it

T1

T2

S(A) R(A)

Waits-for graph:

T1 T2
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Deadlock Detection: Example

Next, T2 requests a shared lock 
on B to read from it

T1

T2 S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2
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Deadlock Detection: Example

T2 then requests an exclusive 
lock on A to write to it- now T2
is waiting on T1…

T1

T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)Waiting…



163

Deadlock Detection: Example

Finally, T1 requests an exclusive 
lock on B to write to it- now T1
is waiting on T2… DEADLOCK!

T1

T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)

W(B)

Cycle = 
DEADLOCK

Waiting…

Waiting…
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ERROR:  deadlock detected
DETAIL:  Process 321 waits for ExclusiveLock on tuple of relation 20 of database 
12002; blocked by process 4924.
Process 404 waits for ShareLock on transaction 689; blocked by process 552.
HINT:  See server log for query details.

The problem? Deadlock!??!

T1 T2
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Deadlock
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Deadlock

• Transaction T1 waits for a lock held by T2;
• But T2 waits for a lock held by T3;
• While T3 waits for . . . .
• . . .
• . . .and T73 waits for a lock held by T1  !!

• Could be avoided, by ordering all elements, or deadlock detection + 
rollback
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Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be released by 
each other.

• Two ways of dealing with deadlocks:

- Deadlock detection

- Deadlock prevention
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Deadlock Detection

• Create the waits-for graph:

- Nodes are transactions

- There is an edge from Ti à Tj if Ti is waiting for Tj to release a lock

• Periodically check for (and break) cycles in the waits-for graph
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Finding directed cycles in a graph in O(|V|+|E|)

Source: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm


170

Deadlock: example

T1 T2 T3 T4
L(A)
R(A)

L(B)
W(B)

L(B)
L(C)
R(C)

L(C)
L(B)

T1 T2

T3T4

Waits-for graph
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Deadlock: example

T1 T2 T3 T4
L(A)
R(A)

L(B)
W(B)

L(B)
L(C)
R(C)

L(C)
L(B)

T1 T2

T3T4

L(A)

Deadlock!

Waits-for graph

Most systems do deadlock detection
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Deadlock prevention

Ti requests a lock conflicting with Tj

• Wait-die:
- If Ti has higher priority, it waits; otherwise it is aborted

• Wound-wait:
- If Ti has higher priority, abort Tj; otherwise Ti waits

Conservative 2PL
• Acquire all locks at the beginning



173

Summary

• Concurrency achieved by interleaving TXNs such that isolation & 

consistency are maintained

- We formalized a notion of serializability that captured such a “good” 

interleaving schedule

• We defined conflict serializability, which implies serializability

• Careful Locking allows only conflict serializable schedules

- If the schedule completes… (it may deadlock!)


