
112

L17: Transactions & Concurrency Control

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 11/8/2018

https://northeastern-datalab.github.io/cs3200/

113

Announcements!

• Exam2: Non-SQL part will be graded on Gradescope; feedback from you
comparing exam1 vs exam2 setup welcome (after we have posted the results)

• Monday is Veteran's day (no class)
• Today
- Transactions, some repetition (based on OH feedback) & practice, locking

• Next week
- Lessons-learned from exam 2
- NoSQL

114

Transactions

115

Turing Awards to Database Researchers

• Charles Bachman 1973 for CODASYL (network data model)

• Edgar Codd 1981 for relational databases

• Jim Gray 1998 for transactions
- (describing the requirements for reliable transaction processing,

memorably called the ACID test)

• Michael Stonebraker 2014 for various contributions (e.g. INGRES)

116

History of data models
• What Goes Around Comes Around" by Stonebraker, Hellerstein, ~2005

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.5640

• "This paper provides a summary of 35 years of data model proposals, grouped into 9

different eras. We discuss the proposals of each era, and show that there are only a few

basic data modeling ideas, and most have been around a long time. Later proposals
inevitably bear a strong resemblance to certain earlier proposals. Hence, it is a worthwhile

exercise to study previous proposals. In addition, we present the lessons learned from the

exploration of the proposals in each era. Most current researchers were not around for

many of the previous eras, and have limited (if any) understanding of what was previously

learned. There is an old adage that he who does not understand history is condemned to
repeat it. By presenting “ancient history”, we hope to allow future researchers to avoid

replaying history."

• (cp. to recent references to Plato's republic in a May 2016 NewYork Magazin article by

Andrew Sullivan titled "Democracies end when they are too democratic")

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.113.5640

117

Transactions

• User programs may do many things on the data retrieved.
- E.g., operations on Bob's bank account.
- E.g. transfer of money from account A to account B.
- E.g., search for a ticket, think about it…, and buy it.

• But the DBMS is only concerned about what data is read
from/written to the database.

• A transaction is DBMS's abstract view of a user program, simply, a
sequence of reads and writes.

118

Transaction Properties: ACID

• Atomic
- either all actions of a txn are carried out, or none of them

• Consistent
- Txn moves from a state where integrity holds, to another where integrity holds

• Isolated
- Effect of txns is the same as txns running one after another (in some serial order)

• Durable
- Once a txn has committed, its effects remain in the database (persist)

ACID continues to be a source of great debate!
BASE (Basic Availability, Soft-state, Eventual Consistency)

a-tomos: undividable

119

The World Without Transactions

• Just write applications that talk to databases

• Rely on operating systems for scheduling, and for concurrency
control

• What can go wrong ?
- Several famous anomalies
- Other anomalies are possible (but not famous)

120

The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, B, X, Y, …

• How can we prevent unwanted interference ?
• The SCHEDULER is responsible for that

121

Scheduling: the concept of
Serializability

122

Why Interleave transactions?

Why? To improve performance (execution time).
• Individual TXNs might be slow; we don’t want to block other users during TXN (memory

hierarchy: let some TXNs use CPU while others accessing HD)
• By interleaving queries, users do not have to wait for other user’s transactions to

complete fully before their own transaction begins.
• E.g. without interleaving: user A begins a transaction that takes 10 sec to complete. User

B begins a transaction, but has to wait an additional 10 seconds before the database
would begin processing user B’s request.

But: Interleaving TXNs might lead to anomalies
• we want to avoid those; so we need to be smart about how to avoid "bad" things from

happening (in a principled way)

How? TXNs must be as if executed serially!
• That way isolation and consistency are maintained

123

Schedules

• Schedule – A chronological sequence of actions from all transactions
• Serial Schedule – A schedule in which transactions are aligned such that

one transaction is executed first before the next transaction is executed.

!"
!#
• Interleaved Schedule – A schedule in which actions of different

transactions are interleaved

!"
!#

R(A) W(A)
R(A) W(B)

R(A)

R(A) W(B)

W(A)

124

Serializability

• A serializable schedule is a schedule that is equivalent to some
serial execution of the transactions.

• The execution sequence within a transaction cannot be changed,
but two transactions can have their instructions interleaved
- Notice: interleaving does no harm if two transactions are working on

different segments of data
- If the two transactions are working on same data ("conflicts"), interleaving

may or may not bring the database to an inconsistent state

125

Conflict Types

Two actions conflict if they are part of different TXNs, involve the
same data item, and at least one of them is a write

3 types of conflicts:
- Read-Write conflicts (RW)

- Write-Read conflicts (WR)

- Write-Write conflicts (WW)

T1
T2

T1

T2

T1

T2

R(A)

R(B)

W(B)

W(A)

R(A)

R(B)W(A)

W(B)

R(B)

W(B)

W(B)

W(A)Interleaving anomalies occur with/because of these
conflicts between TXNS BUT these conflicts can
occur w/o causing anomalies – Conflict serializable

W(B) doesn’t
conflict with W(A)

126

How to resolve: Conflict Equivalence

• Two schedules having multiple transactions with conflicting
operations are conflict equivalent if and only if:

- Both schedules contain the same set of transactions
- The order of conflicting pairs of operation is maintained in both the

schedules
• Schedules which are conflict equivalent with another serial

schedule are conflict serializable

127

Practice

128

Example transactions: Serializable or not?

R3(X); R2(X); W3(X); R1(X); W1(X);

T1 T2 T3

R(X)

R(X)

W(X)

R(X)

W(X)

T1 T2

T3

Serialization graph

No directed cycles: Serializable
Equivalent serial schedule: R2(X); R3(X); W3(X); R1(X); W1(X);

129

Example transactions 2: Serializable or not?

• w1(Y), r2(X),r2(Y), w1(X), c1, r2(Z), w2(Y), w2(Z), c2

• [Draw on whiteboard]

130

Example transactions 2: Serializable or not?

• w1(Y), r2(X),r2(Y), w1(X), c1, r2(Z), w2(Y), w2(Z), c2

• [Draw on whiteboard]

• No: because of X, T2 must precede T1, but because of Y the opposite is true

131

Example

T1 T2
READ(A, t) READ(A,s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

132

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

Serial schedule: (T1,T2)

133

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

125

125

Serial schedule: (T1,T2)

134

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

125

125

250

250

Serial schedule: (T1,T2)

135

A Serial Schedule (version 2)

T1 T2
READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

A B
25 25

50

50

150

150

Serial schedule: (T2,T1)

136

Serializable Schedule

• A schedule is serializable if it is equivalent to a serial schedule

A schedule S is serializable, if there is a serial schedule S’,
such that for every initial database state, the effects of S
and S’ are the same

137

A schedule that is not serial

Notice:
But it is serializable

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

A B
25 25

125

250

125

250

138

A schedule that is not serial, and non-serializable

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

A B
25 25

125

250

50

150

139

Transaction Semantics

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s+200
WRITE(A,s)
READ(B,s)
s := s+200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

A B
25 25

125

325

225

325

Is this serializable?

140

Ignoring Details

• Serializability is undecidable!

• Scheduler should not look at transaction details

• Assume worst case updates
- Only care about reads r(A) and writes w(A)
- Not the actual values involved

141

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

actions

transaction

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

schedule

142

Conflict Serializability

Conflicts:

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element:

wi(X); rj(X)
Read/write by Ti, Tj to same element:

ri(X); wj(X)

143

Conflict Serializability

• Two schedules are conflict equivalent if:
- Involve the same actions of the same transactions.
- Every pair of conflicting actions is ordered the same way.

• Schedule S is conflict serializable if S is conflict equivalent to some
serial schedule.

• Given a set of X's, conflict serializable schedules are a subset of
serializable schedules.
- There are serializable schedules that can't be detected using conflict

serializability.

144

Conflict Serializability

• A schedule is conflict serializable if it can be transformed into a serial schedule
by a series of swappings of adjacent non-conflicting actions

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B)

145

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
• Build a graph of all transactions Ti

• Edge from Ti to Tj if Ti makes an action that conflicts with one of Tj
and comes first

• The test: if the graph has no cycles, then it is conflict serializable !

146

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

147

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B

148

Conflict Serializability

• A serializable schedule need not be conflict serializable

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Equivalent, but can’t swap

Lost write

149

Another look at "Good" vs "Bad"

T1 T2

R(A)

W(A)
R(A)
W(A)

R(B)

W(B)
R(C)

W(C)
T2

T1

T1 T2

R(A)

R(A)
W(A)

W(A)

R(B)

W(B)
R(C)

W(C)

T2

T1

150

Locking

151

How to enforce (conflict) serializability?

Simple idea:

• Each element has a unique lock

• Each transaction must first acquire the lock before reading/writing
that element

• If the lock is taken by another transaction, then wait

• The transaction must release the lock(s)

Some things still can go wrong. Let's "experience" some problems.

152

Notation

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

153

Example

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule

154

Example

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict serializability L !!

155

Strict Two-Phase Locking ("2PL")

• Two-phase locking is a way to deal with concurrency, because it
guarantees conflict serializability (if it completes…)

• Also (conceptually) straightforward to implement, and transparent
to the user!

156

Strict Two-Phase Locking (Strict 2PL) Protocol:

• TXNs obtain:

• An X (exclusive) lock on object before writing

- If a TXN holds, no other TXN can get a lock (S or X) on that object.

• An S (shared) lock on object before reading

- If a TXN holds, no other TXN can get an X lock on that object

• All locks held by a TXN are released when TXN completes.

Note: Terminology
here- “exclusive”,
“shared”- meant to
be intuitive- no tricks!

157

Picture of 2-Phase Locking (2PL)

Time
Strict 2PL

0 locks

Locks
the TXN

has

Lock
Acquisition

Lock Release
On TXN commit!

158

Strict 2PL

Therefore, Strict 2PL only allows conflict
serializable ⇒ serializable schedules

Proof Intuition: In strict 2PL, if there is an edge Ti à Tj (i.e. Ti and Tj
conflict) then Tj needs to wait until Ti is finished – so cannot have an edge
Tj à Ti

Theorem: Strict 2PL allows only schedules whose
dependency graph is acyclic

159

Strict 2PL

• If a schedule follows strict 2PL and locking, it is conflict serializable…
- …and thus serializable
- …and thus maintains isolation & consistency!

• Not all serializable schedules are allowed by strict 2PL.

• So let’s use strict 2PL, what could go wrong?

160

Deadlock Detection: Example

First, T1 requests a shared lock
on A to read from it

T1

T2

S(A) R(A)

Waits-for graph:

T1 T2

161

Deadlock Detection: Example

Next, T2 requests a shared lock
on B to read from it

T1

T2 S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

162

Deadlock Detection: Example

T2 then requests an exclusive
lock on A to write to it- now T2
is waiting on T1…

T1

T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)Waiting…

163

Deadlock Detection: Example

Finally, T1 requests an exclusive
lock on B to write to it- now T1
is waiting on T2… DEADLOCK!

T1

T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for graph:

T1 T2

W(A)

W(B)

Cycle =
DEADLOCK

Waiting…

Waiting…

164

ERROR: deadlock detected
DETAIL: Process 321 waits for ExclusiveLock on tuple of relation 20 of database
12002; blocked by process 4924.
Process 404 waits for ShareLock on transaction 689; blocked by process 552.
HINT: See server log for query details.

The problem? Deadlock!??!

T1 T2

165

Deadlock

166

Deadlock

• Transaction T1 waits for a lock held by T2;
• But T2 waits for a lock held by T3;
• While T3 waits for
• . . .
• . . .and T73 waits for a lock held by T1 !!

• Could be avoided, by ordering all elements, or deadlock detection +
rollback

167

Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be released by
each other.

• Two ways of dealing with deadlocks:

- Deadlock detection

- Deadlock prevention

168

Deadlock Detection

• Create the waits-for graph:

- Nodes are transactions

- There is an edge from Ti à Tj if Ti is waiting for Tj to release a lock

• Periodically check for (and break) cycles in the waits-for graph

169

Finding directed cycles in a graph in O(|V|+|E|)

Source: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

170

Deadlock: example

T1 T2 T3 T4
L(A)
R(A)

L(B)
W(B)

L(B)
L(C)
R(C)

L(C)
L(B)

T1 T2

T3T4

Waits-for graph

171

Deadlock: example

T1 T2 T3 T4
L(A)
R(A)

L(B)
W(B)

L(B)
L(C)
R(C)

L(C)
L(B)

T1 T2

T3T4

L(A)

Deadlock!

Waits-for graph

Most systems do deadlock detection

172

Deadlock prevention

Ti requests a lock conflicting with Tj

• Wait-die:
- If Ti has higher priority, it waits; otherwise it is aborted

• Wound-wait:
- If Ti has higher priority, abort Tj; otherwise Ti waits

Conservative 2PL
• Acquire all locks at the beginning

173

Summary

• Concurrency achieved by interleaving TXNs such that isolation &

consistency are maintained

- We formalized a notion of serializability that captured such a “good”

interleaving schedule

• We defined conflict serializability, which implies serializability

• Careful Locking allows only conflict serializable schedules

- If the schedule completes… (it may deadlock!)

