
40

L16: Transactions & Concurrency Control
Part 1: Transactions & Logging
Part 2: Concurrency Control

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 11/1/2018

https://northeastern-datalab.github.io/cs3200/

41

Announcements!

• Exam 2 is on Monday
- content is everything seen until today
- setup like for Exam1: laptop SQL + paper database design + paper transactions

• HW10 = Past semester's final exam (ignore section 4 on internals / sort)
• Notice our changed OHs this week (no THU, but TUE and FRI)
• Today
- Transactions

• CURN CCIS Undergraduate Research Night: Monday 6:30-8:30
• Jupyter exercises: let's try it once more together

42

CURN (CCIS Undergraduate Research Night): Mon, Nov 5

Link: https://www.ccis.northeastern.edu/event/undergraduate-research-night-2018/

https://www.ccis.northeastern.edu/event/undergraduate-research-night-2018/

43

ACID: Isolation

• A transaction executes concurrently with other transactions

• Isolation: the effect is as if each transaction executes in isolation of the
others.

- E.g. Should not be able to observe changes from other transactions during the run

44

Isolation failure

T1: A := A-1

T1: B := B+1

T2: B := B-2

T2: A := A+2

Write-Write Conflict

Crash / abort!

45

ACID: Durability

• The effect of a TXN must continue to exist (“persist”) after the TXN
- And after the whole program has terminated
- And even if there are power failures, crashes, etc.
- And etc…

• Means: Write data to disk

Change on the horizon?
Non-Volatile Ram (NVRam).
Byte addressable.

46

Challenges for ACID properties

• In spite of failures: Power failures, but not media failures

• Users may abort the program: need to “rollback the changes”
- Need to log what happened

• Many users executing concurrently
- Can be solved via locking

And all this with… Performance!!

47

A Note: ACID is contentious!

• Many debates over ACID, both
historically and currently

• Many newer “NoSQL” DBMSs relax
ACID

• In turn, now “NewSQL”
reintroduces ACID compliance to
NoSQL-style DBMSs…

ACID is an extremely important & successful
paradigm, but still debated!

48

Our first Goal: Ensuring Atomicity & Durability

• Atomicity:
- TXNs should either happen completely

or not at all
- If abort / crash during TXN, no effects

should be seen

• Durability:
- If DBMS stops running, changes due to

completed TXNs should all persist
- Just store on stable disk

ACID

TXN 1

TXN 2

No changes
persist

All changes
persist

We’ll focus on how to accomplish atomicity (via logging)

Crash / abort

49

The Log

• Is a list of modifications

• Log is duplexed and archived on stable storage.

• Can force write entries to disk
- A page goes to disk.

• All log activities handled transparently by the DBMS.
- ("transparently" = without the user being aware)

Assume we
don’t lose it!

50

Basic Idea: (Physical) Logging

• Record UNDO information for every update!
- Sequential writes to log
- Minimal info (diff) written to log

• The log consists of an ordered list of actions
- Log record contains:

• <XID, location, old data, new data>

This is sufficient to UNDO any transaction!

52

3. Atomicity & Durability via Logging

An animation of commit protocols

53

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogA=0

B=5

A=0

T

T: R(A), W(A)

54

A picture of logging

Data on Disk

Main Memory

Log on Disk

LogA=1

B=5

A=0

A: 0à1

Operation
recorded in log in

main memory!
T

T: R(A), W(A)

55

What is the correct way to write this all to disk?

• We’ll look at the Write-Ahead Logging (WAL) protocol

• We’ll see why it works by looking at other protocols which are incorrect!

Remember: Key idea is to ensure durability
while maintaining our ability to “undo”!

56

Write-Ahead Logging (WAL)
TXN Commit Protocol

57

Transaction Commit Process

• FORCE Write commit record to log

• All log records up to last update from this TX are FORCED

• Commit() returns

Transaction is committed once commit log
record is on stable storage

58

Incorrect Commit Protocol #1

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Let’s try committing
before we’ve written
either data or log to
disk…

OK, Commit!

59

Incorrect Commit Protocol #1

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Let’s try committing
before we’ve written
either data or log to
disk…

If we crash now, is T
durable?

OK, Commit!

Lost T’s update!

60

Incorrect Commit Protocol #2

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Let’s try committing
after we’ve written
data but before we’ve
written log to disk…

OK, Commit!

61

Incorrect Commit Protocol #2

Data on Disk

Main Memory

Log on Disk

LogT
B=5

T: R(A), W(A) A: 0à1

Let’s try committing
after we’ve written
data but before we’ve
written log to disk…

If we crash now, is T
durable? Yes! Except…

OK, Commit!

How do we know
whether T was
committed??

A=1

62

Improved Commit Protocol (WAL)

63

Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1
This time, let’s try
committing after we’ve
written log to disk but
before we’ve written
data to disk… this is WAL!

If we crash now, is T
durable?

OK, Commit!

64

Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

T

A=0

T: R(A), W(A)

A: 0à1

This time, let’s try

committing after we’ve

written log to disk but

before we’ve written

data to disk… this is WAL!

If we crash now, is T

durable?

OK, Commit!

USE THE LOG!
A=1

65

Write-Ahead Logging (WAL)

• DB uses Write-Ahead Logging (WAL) Protocol:

1. Must force log record for an update before the
corresponding data page goes to storage

2. Must write all log records for a TX before commit

Each update is
logged! Why not
reads?

à Atomicity

à Durability

66

Logging Summary

• If DB says TX commits, TX effect remains after database crash

• DB can undo actions and help us with atomicity

• This is only half the story…

67

Concurrency & Locking

1) Concurrency, scheduling & anomalies
2) Locking: 2PL, conflict serializability,

deadlock detection

68

1. Concurrency, Scheduling & Anomalies

69

What we will learn next

• Interleaving & scheduling

• Conflict & anomaly types

• ACTIVITY: TXN viewer

70

Concurrency: Isolation & Consistency

• The DBMS must handle concurrency s.t. …

- Isolation is maintained: Users must be able to
execute each TXN as if they were the only user
• DBMS handles the details of interleaving various TXNs

- Consistency is maintained: TXNs must leave the
DB in a consistent state
• DBMS handles the details of enforcing integrity

constraints

ACID

ACID

The hard part is the effect of
interleaving transactions and crashes.

71

Example- consider two TXNs:

T1: START TRANSACTION
UPDATE Accounts
SET Amt = Amt + 100
WHERE Name = ‘A’

UPDATE Accounts
SET Amt = Amt - 100
WHERE Name = ‘B’

COMMIT

T2: START TRANSACTION
UPDATE Accounts
SET Amt = Amt * 1.06

COMMIT

T1 transfers $100 from B’s account
to A’s account

T2 credits both accounts with a 6%
interest payment

72

Example- consider two TXNs:

T1 transfers $100 from B’s

account to A’s account

T2 credits both accounts with a

6% interest payment

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

We can look at the TXNs in a timeline view- serial execution:

73

Example- consider two TXNs:

T1 transfers $100 from B’s

account to A’s account

T2 credits both accounts with a

6% interest payment

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

The TXNs could occur in either order… DBMS allows!

74

Example- consider two TXNs:

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

The DBMS can also interleave the TXNs

T1 transfers $100 to A’s accout,
then T2 credits A’s account with
6% interest payment

T2 credits B’s account with a 6%
interest payment, then T1
transfers $100 from B’s
account…

75

Example- consider two TXNs:

What goes wrong here??

T1

T2

B -= 100

B *= 1.06

Time

The DBMS can also interleave the TXNs

A += 100

A *= 1.06

76

Recall: Three Types of Regions of Memory

1. Local: In our model each process in a DBMS has its
own local memory, where it stores values that only
it “sees”

2. Global: Each process can read from / write to
shared data in main memory

3. Disk: Global memory can read from / flush to disk

4. Log: Assume on stable disk storage- spans both
main memory and disk…

Local Global
Main

Memory
(RAM)

Disk

“Flushing to disk” =
writing to disk from
main memory

1 2

3

Log is a sequence from
main memory -> disk

4

77

Why Interleave TXNs?

• Interleaving TXNs might lead to anomalous outcomes… why do it?

• Several important reasons:
- Individual TXNs might be slow- don’t want to block other users during!

- Disk access may be slow- let some TXNs use CPUs while others accessing
disk!

All concern large differences in performance

78

Interleaving & Isolation

• The DBMS has freedom to interleave TXNs

• However, it must pick an interleaving or
schedule such that isolation and consistency
are maintained

- Must be as if the TXNs had executed serially!

DBMS must pick a schedule which maintains isolation
& consistency

“With great power
comes great
responsibility”

ACID

79

Scheduling examples

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

B *= 1.06

A B
$50 $200

A B
$159 $106

A B
$159 $106

Starting
Balance

Same
result!

Serial schedule T1,T2:

Interleaved schedule 1:

A *= 1.06

80

Scheduling examples

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

A B
$50 $200

A B
$159 $106

A B
$159 $112

Starting
Balance

Different
result than
serial T1,T2

Serial schedule T1,T2:

Interleaved schedule 2:

81

Scheduling examples

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

A B
$50 $200

A B
$153 $112

A B
$159 $112

Starting
Balance

Serial schedule T2,T1:

Interleaved schedule 2:
Different
result than
serial T2,T1
as well!

82

Scheduling examples

This schedule is different than any
serial order! We say that it is not

serializable

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Interleaved schedule 2:

83

Scheduling Definitions

• A serial schedule is one that does not interleave the actions of different
transactions

• Schedules X and Y are equivalent schedules if, for any database state, the
effect on DB of executing X is identical to the effect of executing Y

• A serializable schedule is a schedule that is equivalent to some serial
execution of the transactions.

The word “some” makes this
definition powerful & tricky!

84

Serializable?

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Same as a serial schedule
for all possible values of
A, B = serializable

Serial schedules:

A B
T1,T2 1.06*(A+100) 1.06*(B-100)
T2,T1 1.06*A + 100 1.06*B - 100

A B
1.06*(A+100) 1.06*(B-100)

85

Serializable?

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Not equivalent to any
serializable schedule =
not serializable

Serial schedules:

A B
T1,T2 1.06*(A+100) 1.06*(B-100)
T2,T1 1.06*A + 100 1.06*B - 100

A B
1.06*(A+100) 1.06*B - 100

86

What else can go wrong with interleaving?

• Various anomalies which break isolation / serializability
- Often referred to by name (recall last class: "lost updated", "unrepeateable reads", etc.)
- We see them again in a bit

• Occur because of / with certain “conflicts” between interleaved TXNs

87

The DBMS’s view of the schedule

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

R(A)

R(A)

W(A)

W(A) R(B) W(B)

R(B) W(B)

Each action in the TXNs
reads a value from global
memory and then writes
one back to it

Scheduling order matters!

88

Conflict Types

• Thus, there are three types of conflicts:
- Read-Write conflicts (RW)
- Write-Read conflicts (WR)
- Write-Write conflicts (WW)

Why no “RR Conflict”?

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

Interleaving anomalies occur with / because of these conflicts between
TXNs (but these conflicts can occur without causing anomalies!)

89

Classic Anomalies with Interleaved Execution

90
Occurring with / because of a RW conflict

T1

T2

R(A) R(A)

1. T1 reads some data from A

2. T2 writes to A

3. Then, T1 reads from A again
and now gets a different /
inconsistent value

R(A) W(A) C

Example:

“Unrepeatable read”

91
Occurring with / because of a WR conflict

T1

T2

W(A) A

1. T1 writes some data to A

2. T2 reads from A, then writes
back to A & commits

3. T1 then aborts- now T2’s
result is based on an
obsolete / inconsistent value

R(A) W(A) C

Example:

“Dirty read” (Reading uncommitted data)

92

T1

T2

W(A)

1. T1 writes some data to A

2. T2 reads from A and B, and
then writes some value
which depends on A & B

3. T1 then writes to B- now
T2’s result is based on an
incomplete commit

Example:

W(B) C

R(A) CR(B) W(C=A*B)

Again, occurring because of a WR conflict

“Inconsistent read” (Reading partial commits)

93

T1

T2

W(A)

1. T1 blind writes some data to A

2. T2 blind writes to A and B

3. T1 then blind writes to B; now
we have T2’s value for B and T1’s
value for A- not equivalent to
any serial schedule!

Example:

W(B) C

W(A) CW(B)

Occurring because of a WW conflict

Partially-lost update

94

Activity-31.ipynb

Lecture_1_1.ipynb

95

2. Conflict Serializability, Locking & Deadlock

96

What we will learn next

• RECAP: Concurrency

• Conflict Serializability

• DAGs & Topological Orderings

• Strict 2PL

• Deadlocks

97

Recall: Concurrency as Interleaving TXNs

We call the particular
order of interleaving a
schedule

T1

T2

R(A) R(B)W(A) W(B)

Serial Schedule:

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

Interleaved Schedule:

R(A) R(B)W(A) W(B)

• For our purposes, having
TXNs occur concurrently
means interleaving their
component actions (R/W)

98

Recall: “Good” vs. “bad” schedules

We want to develop ways of discerning “good” vs. “bad” schedules

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Why?

99

Ways of Defining “Good” vs. “Bad” Schedules

• Recall: we call a schedule serializable if it is equivalent to some
serial schedule
- We used this as a notion of a “good” interleaved schedule, since a

serializable schedule will maintain isolation & consistency

• Now, we’ll define a stricter, but very useful variant:
- Conflict serializability

We’ll need to define
conflicts first..

100

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)W-R Conflict

W-W Conflict

101

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All “conflicts”!

102

Conflict Serializability

• Two schedules are conflict equivalent if:

- They involve the same actions of the same TXNs

- Every pair of conflicting actions of two TXNs are ordered in the same way

• Schedule S is conflict serializable if S is conflict equivalent to some
serial schedule

Conflict serializable ⇒ serializable
So if we have conflict serializable, we have consistency & isolation!

103

Recall: “Good” vs. “bad” schedules

103

Conflict serializability also provides us with an operative
notion of “good” vs. “bad” schedules!

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Note that in the “bad” schedule, the
order of conflicting actions is different
than the above (or any) serial
schedule!

104

Note: Conflicts vs. Anomalies

• Conflicts are things we talk about to help us characterize different
schedules
- Present in both “good” and “bad” schedules

• Anomalies are instances where isolation and/or consistency is
broken because of a “bad” schedule
- We often characterize different anomaly types by what types of conflicts

predicated them

105

The Conflict Graph

• Let’s now consider looking at conflicts at the TXN level

• Consider a graph where the nodes are TXNs, and there is an edge
from Ti àTj if any actions in Ti precede and conflict with any actions
in Tj

T1 T2

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

106

What can we say about “good” vs. “bad” conflict graphs?

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

A bit complicated…

107

What can we say about “good” vs. “bad” conflict graphs?

Serial Schedule:

X

Interleaved Schedules:

T1 T2
T1 T2

T1 T2

Theorem: Schedule is conflict serializable if and
only if its conflict graph is acyclic

Simple!

108

DAGs & Topological Orderings

• A topological ordering of a directed graph is a linear ordering of its
vertices that respects all the directed edges

• A directed acyclic graph (DAG) always has one or more topological
orderings
- (And there exists a topological ordering if and only if there are no directed

cycles)

109

DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0

Ex: 0, 1, 2, 3 (or: 0, 1, 3, 2)

110

DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0

There is none!

111

Connection to conflict serializability

• In the conflict graph, a topological ordering of nodes corresponds to
a serial ordering of TXNs

• Thus an acyclic conflict graph à conflict serializable!

Theorem: Schedule is conflict serializable if and
only if its conflict graph is acyclic

