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Announcements!

• Exam 2 is on Monday
- content is everything seen until today
- setup like for Exam1: laptop SQL + paper database design + paper transactions

• HW10 = Past semester's final exam (ignore section 4 on internals / sort)
• Notice our changed OHs this week (no THU, but TUE and FRI)
• Today
- Transactions

• CURN CCIS Undergraduate Research Night: Monday 6:30-8:30
• Jupyter exercises: let's try it once more together
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CURN (CCIS Undergraduate Research Night): Mon, Nov 5

Link: https://www.ccis.northeastern.edu/event/undergraduate-research-night-2018/

https://www.ccis.northeastern.edu/event/undergraduate-research-night-2018/


43

ACID: Isolation

• A transaction executes concurrently with other transactions

• Isolation: the effect is as if each transaction executes in isolation of the 
others.

- E.g. Should not be able to observe changes from other transactions during the run
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Isolation failure

T1: A := A-1

T1: B := B+1

T2: B := B-2

T2: A := A+2

Write-Write Conflict

Crash / abort!
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ACID: Durability

• The effect of a TXN must continue to exist (“persist”) after the TXN
- And after the whole program has terminated
- And even if there are power failures, crashes, etc.
- And etc…

• Means: Write data to disk

Change on the horizon? 
Non-Volatile Ram (NVRam). 
Byte addressable.
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Challenges for ACID properties

• In spite of failures: Power failures, but not media failures

• Users may abort the program: need to “rollback the changes”
- Need to log what happened

• Many users executing concurrently
- Can be solved via locking

And all this with… Performance!!
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A Note: ACID is contentious!

• Many debates over ACID, both 
historically and currently

• Many newer “NoSQL” DBMSs relax 
ACID

• In turn, now “NewSQL” 
reintroduces ACID compliance to 
NoSQL-style DBMSs…

ACID is an extremely important & successful 
paradigm, but still debated!
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Our first Goal: Ensuring Atomicity & Durability

• Atomicity:
- TXNs should either happen completely 

or not at all
- If abort / crash during TXN, no effects 

should be seen

• Durability:
- If DBMS stops running, changes due to 

completed TXNs should all persist
- Just store on stable disk

ACID

TXN 1

TXN 2

No changes 
persist

All changes 
persist

We’ll focus on how to accomplish atomicity (via logging)

Crash / abort
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The Log

• Is a list of modifications

• Log is duplexed and archived on stable storage.

• Can force write entries to disk
- A page goes to disk.

• All log activities handled transparently by the DBMS.
- ("transparently" = without the user being aware)

Assume we 
don’t lose it!
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Basic Idea: (Physical) Logging

• Record UNDO information for every update!
- Sequential writes to log
- Minimal info (diff) written to log

• The log consists of an ordered list of actions
- Log record contains: 

• <XID, location, old data, new data> 

This is sufficient to UNDO any transaction!
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3. Atomicity & Durability via Logging

An animation of commit protocols
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A picture of logging

Data on Disk

Main Memory

Log on Disk

LogA=0

B=5

A=0

T 

T: R(A), W(A) 
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A picture of logging

Data on Disk

Main Memory

Log on Disk

LogA=1

B=5

A=0

A: 0à1

Operation 
recorded in log in 

main memory!
T 

T: R(A), W(A) 
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What is the correct way to write this all to disk?

• We’ll look at the Write-Ahead Logging (WAL) protocol

• We’ll see why it works by looking at other protocols which are incorrect!

Remember: Key idea is to ensure durability 
while maintaining our ability to “undo”!
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Write-Ahead Logging (WAL)
TXN Commit Protocol
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Transaction Commit Process

• FORCE Write commit record to log

• All log records up to last update from this TX are FORCED

• Commit() returns

Transaction is committed once commit log 
record is on stable storage
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Incorrect Commit Protocol #1

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Let’s try committing 
before we’ve written 
either data or log to 
disk…

OK, Commit!
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Incorrect Commit Protocol #1

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Let’s try committing 
before we’ve written 
either data or log to 
disk…

If we crash now, is T 
durable?

OK, Commit!

Lost T’s update!
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Incorrect Commit Protocol #2

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1

Let’s try committing 
after we’ve written 
data but before we’ve 
written log to disk…

OK, Commit!
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Incorrect Commit Protocol #2

Data on Disk

Main Memory

Log on Disk

LogT 
B=5

T: R(A), W(A) A: 0à1

Let’s try committing 
after we’ve written 
data but before we’ve 
written log to disk…

If we crash now, is T 
durable?  Yes!  Except…

OK, Commit!

How do we know 
whether T was 
committed??

A=1
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Improved Commit Protocol (WAL)
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Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

LogT A=1

B=5

A=0

T: R(A), W(A) A: 0à1
This time, let’s try 
committing after we’ve 
written log to disk but 
before we’ve written 
data to disk… this is WAL!

If we crash now, is T 
durable?

OK, Commit!
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Write-ahead Logging (WAL) Commit Protocol

Data on Disk

Main Memory

Log on Disk

T 

A=0

T: R(A), W(A) 

A: 0à1

This time, let’s try 

committing after we’ve 

written log to disk but 

before we’ve written 

data to disk… this is WAL!

If we crash now, is T 

durable?

OK, Commit!

USE THE LOG!
A=1
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Write-Ahead Logging (WAL)

• DB uses Write-Ahead Logging (WAL) Protocol:

1. Must force log record for an update before the 
corresponding data page goes to storage

2. Must write all log records for a TX before commit

Each update is 
logged! Why not 
reads?

à Atomicity

à Durability
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Logging Summary

• If DB says TX commits, TX effect remains after database crash

• DB can undo actions and help us with atomicity

• This is only half the story…



67

Concurrency & Locking

1) Concurrency, scheduling & anomalies
2) Locking: 2PL, conflict serializability, 

deadlock detection
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1. Concurrency, Scheduling & Anomalies
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What we will learn next

• Interleaving & scheduling

• Conflict & anomaly types

• ACTIVITY: TXN viewer
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Concurrency: Isolation & Consistency

• The DBMS must handle concurrency s.t. …

- Isolation is maintained: Users must be able to 
execute each TXN as if they were the only user
• DBMS handles the details of interleaving various TXNs

- Consistency is maintained: TXNs must leave the 
DB in a consistent state
• DBMS handles the details of enforcing integrity 

constraints

ACID

ACID

The hard part is the effect of 
interleaving transactions and crashes.
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Example- consider two TXNs:

T1: START TRANSACTION
UPDATE Accounts
SET Amt = Amt + 100
WHERE Name = ‘A’

UPDATE Accounts
SET Amt = Amt - 100
WHERE Name = ‘B’

COMMIT

T2: START TRANSACTION
UPDATE Accounts
SET Amt = Amt * 1.06

COMMIT

T1 transfers $100 from B’s account 
to A’s account

T2 credits both accounts with a 6% 
interest payment
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Example- consider two TXNs:

T1 transfers $100 from B’s 

account to A’s account

T2 credits both accounts with a 

6% interest payment

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

We can look at the TXNs in a timeline view- serial execution:
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Example- consider two TXNs:

T1 transfers $100 from B’s 

account to A’s account

T2 credits both accounts with a 

6% interest payment

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

The TXNs could occur in either order… DBMS allows!
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Example- consider two TXNs:

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Time

The DBMS can also interleave the TXNs

T1 transfers $100 to A’s accout, 
then T2 credits A’s account with 
6% interest payment

T2 credits B’s account with a 6% 
interest payment, then T1 
transfers $100 from B’s 
account…
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Example- consider two TXNs:

What goes wrong here??

T1

T2

B -= 100

B *= 1.06

Time

The DBMS can also interleave the TXNs

A += 100

A *= 1.06
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Recall: Three Types of Regions of Memory

1. Local:  In our model each process in a DBMS has its 
own local memory, where it stores values that only 
it “sees”

2. Global:  Each process can read from / write to 
shared data in main memory

3. Disk:  Global memory can read from / flush to disk

4. Log: Assume on stable disk storage- spans both 
main memory and disk…

Local Global
Main

Memory 
(RAM)

Disk

“Flushing to disk” = 
writing to disk from 
main memory

1 2

3

Log is a sequence from 
main memory -> disk

4
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Why Interleave TXNs?

• Interleaving TXNs might lead to anomalous outcomes… why do it?

• Several important reasons:
- Individual TXNs might be slow- don’t want to block other users during!

- Disk access may be slow- let some TXNs use CPUs while others accessing 
disk!

All concern large differences in performance
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Interleaving & Isolation

• The DBMS has freedom to interleave TXNs

• However, it must pick an interleaving or 
schedule such that isolation and consistency 
are maintained

- Must be as if the TXNs had executed serially!

DBMS must pick a schedule which maintains isolation 
& consistency

“With great power 
comes great 
responsibility”

ACID
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Scheduling examples

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

B *= 1.06

A B
$50 $200

A B
$159 $106

A B
$159 $106

Starting 
Balance

Same 
result!

Serial schedule T1,T2:

Interleaved schedule 1:

A *= 1.06
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Scheduling examples

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

A B
$50 $200

A B
$159 $106

A B
$159 $112

Starting 
Balance

Different 
result than 
serial T1,T2

Serial schedule T1,T2:

Interleaved schedule 2:
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Scheduling examples

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

A B
$50 $200

A B
$153 $112

A B
$159 $112

Starting 
Balance

Serial schedule T2,T1:

Interleaved schedule 2:
Different 
result than 
serial T2,T1
as well!
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Scheduling examples

This schedule is different than any 
serial order! We say that it is not 

serializable

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Interleaved schedule 2:
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Scheduling Definitions

• A serial schedule is one that does not interleave the actions of different 
transactions

• Schedules X and Y are equivalent schedules if, for any database state, the 
effect on DB of executing X is identical to the effect of executing Y

• A serializable schedule is a schedule that is equivalent to some serial 
execution of the transactions.

The word “some” makes this 
definition powerful & tricky!
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Serializable?

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Same as a serial schedule 
for all possible values of 
A, B = serializable

Serial schedules:

A B
T1,T2 1.06*(A+100) 1.06*(B-100)
T2,T1 1.06*A + 100 1.06*B - 100

A B
1.06*(A+100) 1.06*(B-100)
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Serializable?

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

Not equivalent to any 
serializable schedule = 
not serializable

Serial schedules:

A B
T1,T2 1.06*(A+100) 1.06*(B-100)
T2,T1 1.06*A + 100 1.06*B - 100

A B
1.06*(A+100) 1.06*B - 100
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What else can go wrong with interleaving?

• Various anomalies which break isolation / serializability
- Often referred to by name (recall last class: "lost updated", "unrepeateable reads", etc.)
- We see them again in a bit

• Occur because of / with certain “conflicts” between interleaved TXNs
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The DBMS’s view of the schedule

T1

T2

A += 100 B -= 100

A *= 1.06 B *= 1.06

T1

T2

R(A)

R(A)

W(A)

W(A) R(B) W(B)

R(B) W(B)

Each action in the TXNs 
reads a value from global 
memory and then writes 
one back to it

Scheduling order matters!
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Conflict Types

• Thus, there are three types of conflicts:
- Read-Write conflicts (RW)
- Write-Read conflicts (WR) 
- Write-Write conflicts (WW)

Why no “RR Conflict”?

Two actions conflict if they are part of different TXNs, involve the same 
variable, and at least one of them is a write

Interleaving anomalies occur with / because of these conflicts between 
TXNs (but these conflicts can occur without causing anomalies!)
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Classic Anomalies with Interleaved Execution
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Occurring with / because of a RW conflict

T1

T2

R(A) R(A)

1. T1 reads some data from A

2. T2 writes to A

3. Then, T1 reads from A again 
and now gets a different / 
inconsistent value

R(A) W(A) C

Example:

“Unrepeatable read”
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Occurring with / because of a WR conflict

T1

T2

W(A) A

1. T1 writes some data to A

2. T2 reads from A, then writes 
back to A & commits

3. T1 then aborts- now T2’s 
result is based on an 
obsolete / inconsistent value

R(A) W(A) C

Example:

“Dirty read” (Reading uncommitted data)
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T1

T2

W(A)

1. T1 writes some data to A

2. T2 reads from A and B, and 
then writes some value 
which depends on A & B

3. T1 then writes to B- now 
T2’s result is based on an 
incomplete commit

Example:

W(B) C

R(A) CR(B) W(C=A*B)

Again, occurring because of a WR conflict

“Inconsistent read” (Reading partial commits)
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T1

T2

W(A)

1. T1 blind writes some data to A

2. T2 blind writes to A and B

3. T1 then blind writes to B; now 
we have T2’s value for B and T1’s 
value for A- not equivalent to 
any serial schedule!

Example:

W(B) C

W(A) CW(B)

Occurring because of a WW conflict

Partially-lost update
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Activity-31.ipynb

Lecture_1_1.ipynb


95

2. Conflict Serializability, Locking & Deadlock
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What we will learn next

• RECAP: Concurrency

• Conflict Serializability

• DAGs & Topological Orderings

• Strict 2PL

• Deadlocks
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Recall: Concurrency as Interleaving TXNs

We call the particular 
order of interleaving a 
schedule

T1

T2

R(A) R(B)W(A) W(B)

Serial Schedule:

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

Interleaved Schedule:

R(A) R(B)W(A) W(B)

• For our purposes, having 
TXNs occur concurrently 
means interleaving their 
component actions (R/W)
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Recall: “Good” vs. “bad” schedules

We want to develop ways of discerning “good” vs. “bad” schedules

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Why?
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Ways of Defining “Good” vs. “Bad” Schedules

• Recall: we call a schedule serializable if it is equivalent to some 
serial schedule
- We used this as a notion of a “good” interleaved schedule, since a 

serializable schedule will maintain isolation & consistency

• Now, we’ll define a stricter, but very useful variant:
- Conflict serializability

We’ll need to define 
conflicts first..
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Conflicts

Two actions conflict if they are part of different TXNs, involve the same 
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)W-R Conflict

W-W Conflict
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Conflicts

Two actions conflict if they are part of different TXNs, involve the same 
variable, and at least one of them is a write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All “conflicts”!
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Conflict Serializability

• Two schedules are conflict equivalent if:

- They involve the same actions of the same TXNs

- Every pair of conflicting actions of two TXNs are ordered in the same way

• Schedule S is conflict serializable if S is conflict equivalent to some 
serial schedule

Conflict serializable ⇒ serializable
So if we have conflict serializable, we have consistency & isolation! 
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Recall: “Good” vs. “bad” schedules

103

Conflict serializability also provides us with an operative 
notion of “good” vs. “bad” schedules!

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

Note that in the “bad” schedule, the 
order of conflicting actions is different 
than the above (or any) serial 
schedule!
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Note: Conflicts vs. Anomalies

• Conflicts are things we talk about to help us characterize different 
schedules
- Present in both “good” and “bad” schedules

• Anomalies are instances where isolation and/or consistency is 
broken because of a “bad” schedule
- We often characterize different anomaly types by what types of conflicts 

predicated them
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The Conflict Graph

• Let’s now consider looking at conflicts at the TXN level

• Consider a graph where the nodes are TXNs, and there is an edge 
from Ti àTj if any actions in Ti precede and conflict with any actions 
in Tj

T1 T2

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)
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What can we say about “good” vs. “bad” conflict graphs?

Serial Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved Schedules:

A bit complicated…
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What can we say about “good” vs. “bad” conflict graphs?

Serial Schedule:

X

Interleaved Schedules:

T1 T2
T1 T2

T1 T2

Theorem: Schedule is conflict serializable if and 
only if its conflict graph is acyclic

Simple!
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DAGs & Topological Orderings

• A topological ordering of a directed graph is a linear ordering of its 
vertices that respects all the directed edges

• A directed acyclic graph (DAG) always has one or more topological 
orderings
- (And there exists a topological ordering if and only if there are no directed 

cycles)
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DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0

Ex: 0, 1, 2, 3  (or: 0, 1, 3, 2)
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DAGs & Topological Orderings

• Ex: What is one possible topological ordering here?

1

32

0

There is none!



111

Connection to conflict serializability

• In the conflict graph, a topological ordering of nodes corresponds to 
a serial ordering of TXNs

• Thus an acyclic conflict graph à conflict serializable!

Theorem: Schedule is conflict serializable if and 
only if its conflict graph is acyclic


