L15: Normalization 3

CS3200 Database design (fal8 s2)
https://northeastern-datalab.github.io/cs3200/

Version 10/29/2018

384

https://northeastern-datalab.github.io/cs3200/

Announcements!

Exam 2 in 1 week
Jupyter exercises: do they work now?
Stanford chapter on "Design theory" posted on BB

Come to OHs

— There will be changes this week (no THU, but TUE and FRI)
Today
— 3NF vs BCNF

— Transactions

385

Boyce-Codd Normal Form
(BCNF)

Quick recap FDs

» Functional Dependency (FD): The value of one set of attributes (the determinant) uniquely determines the
value of another set of attributes (the dependents)

o Asuperkey (SK)is as a set of attributes of a relation schema upon which all attributes of the schema are
functionally dependent.

e A (candidate) key (CK) is a non-redundant (minimal) SK (sometimes called just "a key")

« Prime attribute: belonging to some candidate key

« Partial FD: FD in which more non-prime attributes are functionally dependent on part (but not all) of any CK
« Transitive FD: An FD between two (or more) nonkey attributes (important for distinction 3NF vs BCNF!)

» 3NF: no partial nor transitive FD

Full Dependency
Transitive Dependencies l
Y ¢
Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address | Product_ID | Product_Description | Product_Finish | Unit_Price | Ordered_Quantity
1 1 t) 1 1 1
Partial Dependencies Partial Dependencies

387

Boyce-Codd Normal Form (BCNF)

— A relation is in BCNF, if and only if, every (non-trival) determinant is a
superkey (SK).

e The difference between 3NF and BCNF is that for a FD A—>B,

— 3NF allows this dependency in a relation if B is a primary-key attribute and
A is not a candidate key (CK),

— whereas BCNF insists that for this dependency to remain in a relation, A
must be a SK (contain a CK).

388

3NF to BCNF

STUDENT ADVISOR
SID Major Advisor MajGPA
123 Physics Hawking 4.0
123 Music Mabhler 3.3
456 Literature | Michener 3.2
789 Music Bach 3.7
678 Physics Hawking 3.5

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

389

3NF to BCNF

STUDENT ADVISOR
SID Major Advisor MajGPA
123 Physics Hawking 4.0
123 Music Mahler 3.3
456 Literature | Michener 3.2
789 Music Bach 3.7
678 Physics Hawking 3.5
[] v v
SID Major Advisor MajGPA

T

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

390

3NF to BCNF

STUDENT ADVISOR
SID Major Advisor MajGPA
123 Physics Hawking 4.0
123 Music Mabhler 3.3
456 Literature | Michener 3.2
789 Music Bach 3.7
678 Physics Hawking 3.5
li —I Y Y
SID Major Advisor MajGPA

T

\ 4

[]

l

l

SID

Advisor

Major

MajGPA

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

3NF to BCNF

STUDENT ADVISOR
SID Major Advisor MajGPA
123 Physics Hawking 4.0
123 Music Mabhler 3.3
456 Literature | Michener 3.2
789 Music Bach 3.7
678 Physics Hawking 3.5
[] v v
SID Major Advisor MajGPA

T

\ 4

[]

STUDENT ADVISOR
SID Advisor MajGPA Advisor Major
123 Hawking 4.0 Hawking Physics
123 Mabhler 3.3 Mahler Music
456 Michener 3.2 Michener Literature
789 Bach 3.7 Bach Music
678 Hawking 3.5
*

| Y v

SID Advisor MajGPA Advisor Major

SID

Advisor

Major

MajGPA

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

BCNF vs 3NF

. For every nontrival FD XY . For every nontrival FD XY
over relation R: over relation R, either:
— Xis asuperkey of R — Xis asuperkey of R
Recall: a FD X=>Y is Recall: no subset of

"trivial" iff YEX a CKisacCK

393

Back to Conceptual Design

« Now that we know how to find FDs, it’s a straight-forward process:

— Search for “bad” FDs
— If there are any, then keep decomposing the table into sub-tables until no more bad FDs

— When done, the database schema is normalized

Recall: there are several normal forms...

394

Boyce-Codd Normal Form (BCNF)

« Main idea is that we define “good” and “bad” FDs as follows:

— X2 Bisa“good FD” if X is a (super)key

* In other words, if B is the set of all attributes

— X > Bisa “bad FD” otherwise

« We will try to eliminate the “bad” FDs!

395

Boyce-Codd Normal Form (BCNF)

« Why does this definition of “good” and “bad” FDs make sense?

« If Xis not a (super)key, it functionally determines some of the attributes;

therefore, those other attributes can be duplicated

— Recall: this means there is redundancy
— And redundancy like this can lead to data anomalies!

EmpID | Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
El111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

396

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:

if {A,, ..., A} =2 Bis a non-trivial FD in R

then {A4, ..., A} is a superkey for R

Equivalently: V sets of attributes X, either (X* = X) or (X* = all attributes)

In other words: there are no “bad” FDs
397

Example

{SSN} > {Name,City}

Fred 123-45-6789 |206-555-1234 | Seattle

Fred 123-45-6789 |206-555-6543 | Seattle

Joe 087-65-4321 [908-555-2121 | Boston

Joe 087-65-4321 [908-555-1234 | Boston
— Not in BCNF

This FD is bad
because it is not a
superkey

What is the key?
{SSN, PhoneNumber}

398

Example

Fred |123-45-6789

Seattle

Joe 087-65-4321

Boston

123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Now in BCNF!

{SSN} > {Name,City}

This FD is now
good because it is
the key

Let’s check anomalies:
e Redundancy ?
e Update ?
e Delete ?

399

BCNF Decomposition Algorithm

BCNFDecomp(R):

400

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* # Find a set of attributes X
[all attributes] which has non-trivial

“bad” FDs, i.e. is not a
superkey, using closures

401

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: Xt # X and X* #

lall attributes] _
If no “bad” FDs found, in

|
if (not found) then Return R BCNF!

402

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: Xt # X and X* #
lall attributes]

if (not found) then Return R

letY =X*-X, Z=(X*C

Let Y be the attributes that
X functionally determines
(+ that are not in X)

And let Z be the

complement, the other
attributes that it doesn’t

403

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: Xt # X and X* #
lall attributes]

if (not found) then Return R

letY=X*-X, Z=(X*C
decompose R into R{(X U Y) and Ry(X U 2)

Split into one relation (table)
with X plus the attributes
that X determines (Y)...

404

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: Xt # X and X* #
lall attributes]

if (not found) then Return R

letY=X*-X, Z=(X*C
decompose R into R{(X U Y) and Ry(X U 2)

And one relation with X plus
the attributes it does not
determine (Z)

405

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: Xt # X and X* #
lall attributes]

if (not found) then Return R

letY =X*-X, Z=(X*"C
decompose R into R{(X U Y) and R,(X U Z)

Proceed recursively until no
more “bad” FDs!

Return BCNFDecomp(R;), BCNFDecomp(R,)

406

Example for BCNF

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X* #
lall attributes]

if (not found) then Return R

letY =X*t-X, Z=(X*)C
decompose R into R{(X U Y) and Ry(X U 2)

Return BCNFDecomp(R,), BCNFDecomp(R,)

R(A,B,C,D,E)

{A} > {B,C}
{C} > {D}

407

Example

R(A,B,C,D,E)
{A}*=1{A,B,C,D} # {A,B,C,D,E}

R,(A,B,C,D)
{C}*={C,D}#{A,B,C,D}

R.(A,B,C)

R(A,B,C,D,E)

{A} > {B,C}
{C} > {D}

408

Practice (at home)

e Activity-22.ipynb

409

Decompositions

Recap: Decompose to remove redundancies

« We saw that redundancies in the data (“bad FDs”) can lead to data anomalies

« We developed mechanisms to detect and remove redundancies by
decomposing tables into 3NF or BCNF

— BCNF decomposition is standard practice: very powerful & widely used!

« However, sometimes decompositions can lead to more subtle unwanted
effects...

When does this happen?

411

Decompositions in General

R(Ay+syAnyByyeensByyCiyunen,Cp)

PN

Ri(Ay«eyAnyByyena,By) | [Ra(Ar,vunyAyCoyennyCp)

R, =the projectionof Ron A, ..., A, By, ..., B,

R, =the projectionof Ron A;, ..., A, Cy, ..., C}

412

Lossless Decomposition

Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera
/ \
Gizmo 19.99 Gizmo Gadget
OneClick | 24.99 OneClick Camera
+Z1T0 99 Gizmo Camera

Sometimes a
decomposition is
“correct”

|.e. it is a Lossless
decomposition

413

Lossy Decomposition

However
sometimes it isn’t

Gizmo 19.99 Gadget
OneClick | 24.99 Camera What’s wrong

Gi1zmo 19.99 Camera here?

— N

Gizmo Gadget 19.99 Gadget
OneClick Camera 24.99 Camera

Gi1zmo Camera 19.99 Camera

414

Lossless Decompositions

R(Agy«esAyBiy e, ByyCoyenn,Cp)

PN

Ri(Ay«uyAnyByyena,By) | [Ra(Ar,vunyAyCoyennyCp)

A decomposition R to (R1, R2) is lossless if R = R1 <1 R2

415

Lossless Decompositions

R(Agy«esAyBiy e, ByyCoyenn,Cp)

PN

Ri(Ay«uyAnyByyena,By) | [Ra(Ar,vunyAyCoyennyCp)

If {A,, ..., A}=2>{B ..., B} Note: don’t need
Then the decomposition is lossless A, ..., A}=2>{C, ..., C,}

BCNF decomposition is always lossless. Why?
416

A familiar example

Item

PName Price Category Manufacturer | StockPrice Country

Gizmo $19.99 Gadgets GizmoWorks | 25 USA

Powergizmo | $29.99 Gadgets GizmoWorks | 25 USA

SingleTouch | $149.99 Photography | Canon 65 Japan

MultiTouch | $203.99 | Household Hitachi 15 Japan

Product Company

PName Price Category Manufacturer CName StockPrice | Country
Gizmo $19.99 Gadgets GizmoWorks GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets GizmoWorks Canon 65 Japan
SingleTouch | $149.99 Photography | Canon Hitachi 15 Japan
MultiTouch | $203.99 | Household Hitachi

417

A familiar example

Item

PName Price Category Manufacturer | StockPrice Country

Gizmo $19.99 Gadgets GizmoWorks | 25 USA

Powergizmo | $29.99 Gadgets GizmoWorks | 25 USA

SingleTouch | $149.99 Photography | Canon 65 Japan

MultiTouch | $203.99 | Household Hitachi 15 Japan

Product Company

PName Price Category Manufacturer CName StockPrice | Country
Gizmo $19.99 Gadgets GizmoWorks GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets GizmoWorks Canon 65 Japan
SingleTouch | $149.99 Photography | Canon Hitachi 15 Japan
MultiTouch | $203.99 | Household Hitachi

418

A problem with BCNF

Problem: To enforce a FD, must reconstruct
original relation—on each insert!

Note: This is historically
inaccurate, but it makes
it easier to explain

419

A problem with BCNF

Unit | Company

Product

/

N\

{Unit} > {Company}

{Company, Product} = {Unit}

Unit Company

Unit

Product

{Unit} > {Company}

We do a BCNF decomposition

on a “bad” FD:
{Unit}* = {Unit, Company}

We lose the FD {Company, Product} = {Unit}!

420

So Why is that a Problem?

{Unit} = {Company}
{Company,Product} = {Unit}

No problem so far.

Galaga99 |NEU Galaga99 Databases All local FD’s are
Bingo NEU Bingo Databases satisfied.
~
{Unit} > {Company} /
~
Let’s put all the
Galaga99 NEU Databases data back into a
Bingo NEU Databases single table again:

Violates the FD {Company, Product} = {Unit}!!

421

The Problem

« We started with a table R and FDs F

« We decomposed R into BCNF tables R1, R2, ...
with their own FDs F1, F2, ...

« We insert some tuples into each of the relations—which satisfy their local FDs
but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct
R—on each insert!

422

Possible Solutions

« Various ways to handle so that decompositions are all lossless / no FDs lost

— For example 3NF: stop short of full BCNF decompositions.

« Usually a tradeoff between redundancy / data anomalies and FD
preservation...

BCNF still most common- with additional steps to
keep track of lost FDs...

423

summary

« A decomposition of relation R into relation R1 and R2 is lossless if
- R1xR2=R

« A decomposition is dependency-preserving if

— all FDs (functional dependencies) from R are preserved in either R1 or R2 (or both or derivable from a
combination of the FDs in R1 and R2).

— a decomposition of relation R is dependency preserving if the Functional dependency of R can be
obtained by taking the union of the functional dependency of all the decomposed relation.

* The dependency preservation decomposition is another property of decomposed relational database schema D
in which each functional dependency X -> Y specified in F either appeared directly in one of the relation schemas
R;in the decomposed D or could be inferred from the dependencies that appear in some Ri.

« A decomposition of Relation R into R1 and R2 is lossless if and only if at least one of
following dependencies hold:
- 1.R1nR2->R1
- 2.R1NnR2->R2

424

4ANF and higher

3NF Motivation

A relation Ris in 3rd normal form if : h
Whenever there is a nontrivial dep. A, A,, ..., A, > B for R,
then {A;, A,, ..., A }is asuper-key for R,

or B is part of a key.
\ S P y

Tradeoffs:
BCNF: no anomalies, but may lose some FDs
3NF: keeps all FDs, but may have some anomalies

426

Motivation of 4NF and higher

Assume for each course, we can independently choose a
lecturer and a book. What is the problem?

Classes

Course Lecturer Book

csedds Alexandra | Complete book

csedds Wolfgang | Complete book

csed4q Alexandra | Cow book

csedds Wolfgang | Cow book

Multi-valued dependency (MVD) Course ——> Lecturer:
In every legal instance, each Course value is associated
with a set of Lecturer values and this set is independent of
the values in the other attributes (here Book).

427

