
384

L15: Normalization 3

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 10/29/2018

https://northeastern-datalab.github.io/cs3200/

385

Announcements!

• Exam 2 in 1 week
• Jupyter exercises: do they work now?
• Stanford chapter on "Design theory" posted on BB
• Come to OHs
- There will be changes this week (no THU, but TUE and FRI)

• Today
- 3NF vs BCNF
- Transactions

386

Boyce-Codd Normal Form
(BCNF)

387

Quick recap FDs
• Functional Dependency (FD): The value of one set of attributes (the determinant) uniquely determines the

value of another set of attributes (the dependents)
• A superkey (SK) is as a set of attributes of a relation schema upon which all attributes of the schema are

functionally dependent.
• A (candidate) key (CK) is a non-redundant (minimal) SK (sometimes called just "a key")
• Prime attribute: belonging to some candidate key
• Partial FD: FD in which more non-prime attributes are functionally dependent on part (but not all) of any CK
• Transitive FD: An FD between two (or more) nonkey attributes (important for distinction 3NF vs BCNF!)
• 3NF: no partial nor transitive FD

388

Boyce-Codd Normal Form (BCNF)

• Boyce-Codd normal form (BCNF)
- A relation is in BCNF, if and only if, every (non-trival) determinant is a

superkey (SK).

• The difference between 3NF and BCNF is that for a FD AàB,
- 3NF allows this dependency in a relation if B is a primary-key attribute and

A is not a candidate key (CK),
- whereas BCNF insists that for this dependency to remain in a relation, A

must be a SK (contain a CK).

389

3NF to BCNF

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

390

3NF to BCNF

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

391

3NF to BCNF

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

392

3NF to BCNF

Source: Hoffer, Ramesh, Topi, Modern database management, 10th ed, Appendix B, 2010.

393

BCNF vs 3NF

• BCNF: For every nontrival FD X→Y
over relation R:
- X is a superkey of R

• 3NF: For every nontrival FD X→Y
over relation R, either:
- X is a superkey of R
- or Y is prime (i.e. it is part of some CK)

Recall: a FD X→Y is
"trivial" iff Y⊆X

Recall: no subset of
a CK is a CK

394

Back to Conceptual Design

• Now that we know how to find FDs, it’s a straight-forward process:

- Search for “bad” FDs

- If there are any, then keep decomposing the table into sub-tables until no more bad FDs

- When done, the database schema is normalized

Recall: there are several normal forms…

395

Boyce-Codd Normal Form (BCNF)

• Main idea is that we define “good” and “bad” FDs as follows:

- X à B is a “good FD” if X is a (super)key
• In other words, if B is the set of all attributes

- X à B is a “bad FD” otherwise

• We will try to eliminate the “bad” FDs!

396

Boyce-Codd Normal Form (BCNF)

• Why does this definition of “good” and “bad” FDs make sense?

• If X is not a (super)key, it functionally determines some of the attributes;
therefore, those other attributes can be duplicated

- Recall: this means there is redundancy
- And redundancy like this can lead to data anomalies!

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

397

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

In other words: there are no “bad” FDs

A relation R is in BCNF if:

if {A1, ..., An} à B is a non-trivial FD in R

then {A1, ..., An} is a superkey for R

Equivalently: ∀ sets of attributes X, either (X+ = X) or (X+ = all attributes)

398

Example

What is the key?
{SSN, PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Boston
Joe 987-65-4321 908-555-1234 Boston

{SSN} à {Name,City}

⟹ Not in BCNF

This FD is bad
because it is not a
superkey

399

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Boston

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

{SSN} à {Name,City}

Now in BCNF!

This FD is now
good because it is
the key

400

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find X s.t.: X+ ≠ X and X+ ≠ [all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Ret
urn BCNFDecomp(R1), BCNFDecomp(R2)

401

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Find a set of attributes X
which has non-trivial
“bad” FDs, i.e. is not a
superkey, using closures

402

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

If no “bad” FDs found, in
BCNF!

403

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Let Y be the attributes that
X functionally determines
(+ that are not in X)

And let Z be the
complement, the other
attributes that it doesn’t

404

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

Split into one relation (table)
with X plus the attributes
that X determines (Y)…

405

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

X ZY

R1 R2

And one relation with X plus
the attributes it does not
determine (Z)

406

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

Proceed recursively until no
more “bad” FDs!

407

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Example for BCNF

BCNFDecomp(R):
Find a set of attributes X s.t.: X+ ≠ X and X+ ≠

[all attributes]

if (not found) then Return R

let Y = X+ - X, Z = (X+)C

decompose R into R1(X È Y) and R2(X È Z)

Return BCNFDecomp(R1), BCNFDecomp(R2)

408

Example

R(A,B,C,D,E)
{A}+ = {A,B,C,D} ≠ {A,B,C,D,E}

R1(A,B,C,D)
{C}+ = {C,D} ≠ {A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

409

Practice (at home)

• Activity-22.ipynb

410

Decompositions

411

Recap: Decompose to remove redundancies

• We saw that redundancies in the data (“bad FDs”) can lead to data anomalies

• We developed mechanisms to detect and remove redundancies by
decomposing tables into 3NF or BCNF
- BCNF decomposition is standard practice: very powerful & widely used!

• However, sometimes decompositions can lead to more subtle unwanted
effects…

When does this happen?

412

Decompositions in General

R1 = the projection of R on A1, ..., An, B1, ..., Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp

413

Lossless Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category

Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e. it is a Lossless
decomposition

Sometimes a
decomposition is
“correct”

414

Lossy Decomposition

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s wrong
here?

However
sometimes it isn’tName Price Category

Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

415

Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 ⋈ R2

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

416

Lossless Decompositions

BCNF decomposition is always lossless. Why?

Note: don’t need
{A1, ..., An} à {C1, ..., Cp}

If {A1, ..., An} à {B1, ..., Bm}
Then the decomposition is lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

417

A familiar example

PName Price Category Manufacturer StockPrice Country

Gizmo $19.99 Gadgets GizmoWorks 25 USA

Powergizmo $29.99 Gadgets GizmoWorks 25 USA

SingleTouch $149.99 Photography Canon 65 Japan

MultiTouch $203.99 Household Hitachi 15 Japan

Item

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

418

A familiar example

PName Price Category Manufacturer StockPrice Country

Gizmo $19.99 Gadgets GizmoWorks 25 USA

Powergizmo $29.99 Gadgets GizmoWorks 25 USA

SingleTouch $149.99 Photography Canon 65 Japan

MultiTouch $203.99 Household Hitachi 15 Japan

Item

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

419

A problem with BCNF

Note: This is historically
inaccurate, but it makes
it easier to explain

Problem: To enforce a FD, must reconstruct
original relation—on each insert!

420

A problem with BCNF
{Unit} à {Company}
{Company,Product} à {Unit}

We do a BCNF decomposition
on a “bad” FD:
{Unit}+ = {Unit, Company}

We lose the FD {Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product

… …

{Unit} à {Company}

421

So Why is that a Problem?

No problem so far.
All local FD’s are
satisfied.

Unit Company
Galaga99 NEU
Bingo NEU

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 NEU Databases
Bingo NEU Databases

Let’s put all the
data back into a
single table again:

{Unit} à {Company}

Violates the FD {Company,Product} à {Unit}!!

{Unit} à {Company}
{Company,Product} à {Unit}

422

The Problem

• We started with a table R and FDs F

• We decomposed R into BCNF tables R1, R2, …
with their own FDs F1, F2, …

• We insert some tuples into each of the relations—which satisfy their local FDs
but when reconstruct it violates some FD across tables!

Practical Problem: To enforce FD, must reconstruct
R—on each insert!

423

Possible Solutions

• Various ways to handle so that decompositions are all lossless / no FDs lost
- For example 3NF: stop short of full BCNF decompositions.

• Usually a tradeoff between redundancy / data anomalies and FD
preservation…

BCNF still most common- with additional steps to
keep track of lost FDs…

424

Summary
• A decomposition of relation R into relation R1 and R2 is lossless if

- R1 ⋈ R2 = R

• A decomposition is dependency-preserving if
- all FDs (functional dependencies) from R are preserved in either R1 or R2 (or both or derivable from a

combination of the FDs in R1 and R2).
- a decomposition of relation R is dependency preserving if the Functional dependency of R can be

obtained by taking the union of the functional dependency of all the decomposed relation.
• The dependency preservation decomposition is another property of decomposed relational database schema D

in which each functional dependency X -> Y specified in F either appeared directly in one of the relation schemas
Ri in the decomposed D or could be inferred from the dependencies that appear in some Ri.

• A decomposition of Relation R into R1 and R2 is lossless if and only if at least one of
following dependencies hold:
- 1. R1 ∩ R2 -> R1
- 2. R1 ∩ R2 -> R2

425

4NF and higher

426

3NF Motivation

A relation R is in 3rd normal form if :
Whenever there is a nontrivial dep. A1, A2, ..., An ® B for R,
then {A1, A2, ..., An } is a super-key for R,
or B is part of a key.

Tradeoffs:
BCNF: no anomalies, but may lose some FDs
3NF: keeps all FDs, but may have some anomalies

427

Motivation of 4NF and higher

Course Lecturer Book

cse444 Alexandra Complete book

cse444 Wolfgang Complete book

cse444 Alexandra Cow book

Assume for each course, we can independently choose a
lecturer and a book. What is the problem?

Multi-valued dependency (MVD) Course ®® Lecturer:
In every legal instance, each Course value is associated
with a set of Lecturer values and this set is independent of
the values in the other attributes (here Book).

Classes

cse444 Wolfgang Cow book

