L15: Normalization 3

CS3200 Database design (fa18 s2)

https://northeastern-datalab.github.io/cs3200/

Version 10/29/2018

Announcements!

- Exam 2 in 1 week
- Jupyter exercises: do they work now?
- Stanford chapter on "Design theory" posted on BB
- Come to OHs
 - There will be changes this week (no THU, but TUE and FRI)
- Today
 - 3NF vs BCNF
 - Transactions

Boyce-Codd Normal Form (BCNF)

Quick recap FDs

- Functional Dependency (FD): The value of one set of attributes (the determinant) uniquely determines the value of another set of attributes (the dependents)
- A superkey (SK) is as a set of attributes of a relation schema upon which all attributes of the schema are functionally dependent.
- A (candidate) key (CK) is a non-redundant (minimal) SK (sometimes called just "a key")
- Prime attribute: belonging to some candidate key
- Partial FD: FD in which more non-prime attributes are functionally dependent on part (but not all) of any CK
- **Transitive FD**: An FD between <u>two (or more) nonkey attributes</u> (important for distinction 3NF vs BCNF!)
- **3NF**: no partial nor transitive FD

Boyce-Codd Normal Form (BCNF)

- Boyce-Codd normal form (BCNF)
 - A relation is in BCNF, if and only if, every (non-trival) determinant is a <u>superkey (SK)</u>.
- The difference between 3NF and BCNF is that for a FD $A \rightarrow B$,
 - 3NF allows this dependency in a relation if <u>B is a primary-key attribute</u> and A is not a candidate key (CK),
 - whereas BCNF insists that for this dependency to remain in a relation, A must be a SK (contain a CK).

SID	Major	Advisor	MajGPA
123	Physics	Hawking	4.0
123	Music	Mahler	3.3
456	Literature	Michener	3.2
789	Music	Bach	3.7
678	Physics	Hawking	3.5

SID	Major	Advisor	MajGPA
123	Physics	Hawking	4.0
123	Music	Mahler	3.3
456	Literature	Michener	3.2
789	Music	Bach	3.7
678	Physics	Hawking	3.5

SID	Major	Advisor	MajGPA
123	Physics	Hawking	4.0
123	Music	Mahler	3.3
456	Literature	Michener	3.2
789	Music	Bach	3.7
678	Physics	Hawking	3.5

SID	Major	Advisor	MajGPA
123	Physics	Hawking	4.0
123	Music	Mahler	3.3
456	Literature	Michener	3.2
789	Music	Bach	3.7
678	Physics	Hawking	3.5

STUDEN	Т		ADVISOR	
SID	Advisor	MajGPA	Advisor	Major
123	Hawking	4.0	Hawking	Physics
123	Mahler	3.3	Mahler	Music
456	Michener	3.2	Michener	Literature
789	Bach	3.7	Bach	Music
678	Hawking	3.5		

-	•	•

BCNF vs 3NF

- **BCNF**: For every nontrival FD $X \rightarrow Y$ over relation *R*:
 - X is a superkey of R

- **3NF**: For every nontrival FD $X \rightarrow Y$ over relation *R*, either:
 - X is a superkey of R
 - or Y is prime (i.e. it is part of some CK)

Recall: a FD X→Y is "trivial" iff Y⊆X

Recall: no subset of a CK is a CK

Back to Conceptual Design

- Now that we know how to find FDs, it's a straight-forward process:
 - Search for "bad" FDs
 - If there are any, then keep decomposing the table into sub-tables until no more bad FDs
 - When done, the database schema is normalized

Recall: there are several normal forms...

Boyce-Codd Normal Form (BCNF)

- Main idea is that we define "good" and "bad" FDs as follows:
 - $X \rightarrow B$ is a "good FD" if X is a (super)key
 - In other words, if B is the set of all attributes
 - $X \rightarrow B$ is a "bad FD" otherwise
- We will try to eliminate the "bad" FDs!

Boyce-Codd Normal Form (BCNF)

- Why does this definition of "good" and "bad" FDs make sense?
- If X is not a (super)key, it functionally determines some of the attributes; therefore, those other attributes can be duplicated
 - Recall: this means there is redundancy
 - And redundancy like this can lead to data anomalies!

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is <u>in BCNF</u> if: if $\{A_1, ..., A_n\} \rightarrow B$ is a *non-trivial* FD in R then $\{A_1, ..., A_n\}$ is a superkey for R

Equivalently: \forall sets of attributes X, either (X⁺ = X) or (X⁺ = all attributes)

In other words: there are no "bad" FDs

Example

Name	<u>SSN</u>	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Boston
Joe	987-65-4321	908-555-1234	Boston

 $\{SSN\} \rightarrow \{Name, City\}$

This FD is *bad* because it is <u>not</u> a superkey

 \Rightarrow <u>Not</u> in BCNF

What is the key? {SSN, PhoneNumber}

Example

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Boston

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

{SSN} → {Name,City}

This FD is now good because it is the key

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

Now in BCNF!

BCNFDecomp(R):

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

```
<u>if</u> (not found) <u>then</u> Return R
```

If no "bad" FDs found, in BCNF!

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$

Let Y be the attributes that *X* functionally determines (+ that are not in X)

And let Z be the complement, the other attributes that it doesn't

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$ Split into one relation (table) with X plus the attributes that X determines (Y)...


```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$ And one relation with X plus the attributes it *does not* determine (Z)


```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Proceed recursively until no more "bad" FDs!


```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

<u>if</u> (not found) <u>then</u> Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Example

Practice (at home)

• Activity-22.ipynb

Decompositions

Recap: Decompose to remove redundancies

- We saw that redundancies in the data ("bad FDs") can lead to data anomalies
- We developed mechanisms to detect and remove redundancies by decomposing tables into 3NF or BCNF
 - BCNF decomposition is standard practice: very powerful & widely used!
- However, sometimes decompositions can lead to more subtle unwanted effects...

When does this happen?

Decompositions in General

 $R_1 = \text{the projection of R on } A_1, \dots, A_n, B_1, \dots, B_m$ $R_2 = \text{the projection of R on } A_1, \dots, A_n, C_1, \dots, C_p$

Lossless Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Sometimes a decomposition is "correct"

I.e. it is a <u>Lossless</u> <u>decomposition</u>

¥	
Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

-		
	Name	Category
	Gizmo	Gadget
	OneClick	Camera
	Gizmo	Camera

Lossy Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

However sometimes it isn't

What's wrong here?

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossless Decompositions

A decomposition R to (R1, R2) is <u>lossless</u> if $R = R1 \bowtie R2$

Lossless Decompositions

If $\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\}$ Then the decomposition is lossless Note: don't need $\{A_1, ..., A_n\} \rightarrow \{C_1, ..., C_p\}$

BCNF decomposition is always lossless. Why?

A familiar example

ltem

<u>PName</u>	Price	Category	Manufacturer	StockPrice	Country
Gizmo	\$19.99	Gadgets	GizmoWorks	25	USA
Powergizmo	\$29.99	Gadgets	GizmoWorks	25	USA
SingleTouch	\$149.99	Photography	Canon	65	Japan
MultiTouch	\$203.99	Household	Hitachi	15	Japan

Product

<u>PName</u>	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

Company

<u>CName</u>	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

A familiar example

ltem

<u>PName</u>	Price	Category	Manufacturer	StockPrice	Country
Gizmo	\$19.99	Gadgets	GizmoWorks	25	USA
Powergizmo	\$29.99	Gadgets	GizmoWorks	25	USA
SingleTouch	\$149.99	Photography	Canon	65	Japan
MultiTouch	\$203.99	Household	Hitachi	15	Japan

Product

<u>PName</u>	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

Company

<u>CName</u>	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

<u>Problem</u>: To enforce a FD, must reconstruct original relation—*on each insert!*

Note: This is historically inaccurate, but it makes it easier to explain

A problem with BCNF

{Unit} → {Company}
{Company,Product} → {Unit}

We do a BCNF decomposition
on a "bad" FD:
{Unit}+ = {Unit, Company}

{Unit} → {Company}

We lose the FD **{Company, Product}** → **{Unit}**!!

So Why is that a Problem?

{Unit} → {Company}
{Company,Product} → {Unit}

No problem so far. All *local* FD's are satisfied.

Let's put all the data back into a single table again:

Violates the FD {Company, Product} → {Unit}!!

The Problem

- We started with a table R and FDs F
- We decomposed R into BCNF tables R1, R2, ... with their own FDs F1, F2, ...
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD across tables!

<u>Practical Problem</u>: To enforce FD, must reconstruct R—on each insert!

Possible Solutions

- Various ways to handle so that decompositions are all lossless / no FDs lost
 - For example 3NF: stop short of full BCNF decompositions.
- Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF still most common- with additional steps to keep track of lost FDs...

Summary

- A decomposition of relation R into relation R1 and R2 is lossless if
 - R1 ⋈ R2 = R
- A decomposition is <u>dependency-preserving</u> if
 - all FDs (functional dependencies) from R are preserved in either R1 or R2 (or both or derivable from a combination of the FDs in R1 and R2).
 - a decomposition of relation R is dependency preserving if the Functional dependency of R can be obtained by taking the union of the functional dependency of all the decomposed relation.
 - The dependency preservation decomposition is another property of decomposed relational database schema D in which each functional dependency X -> Y specified in F either appeared directly in one of the relation schemas R_i in the decomposed D or could be inferred from the dependencies that appear in some Ri.
- A decomposition of Relation R into R1 and R2 is lossless if and only if at least one of following dependencies hold:
 - 1. R1 ∩ R2 -> R1
 - 2. R1 ∩ R2 -> R2

4NF and higher

3NF Motivation

A relation R is in 3rd normal form if : Whenever there is a nontrivial dep. $A_1, A_2, ..., A_n \rightarrow B$ for R, then $\{A_1, A_2, ..., A_n\}$ is a super-key for R, or B is part of a key.

Tradeoffs:

BCNF: no anomalies, but may lose some FDs 3NF: keeps all FDs, but may have some anomalies

Motivation of 4NF and higher

Assume for each course, we can independently choose a lecturer and a book. What is the problem?

Classes

Course	Lecturer	Book
cse444	Alexandra	Complete book
cse444	Wolfgang	Complete book
cse444	Alexandra	Cow book

000

Multi-valued dependency (MVD) Course $\rightarrow \rightarrow$ Lecturer: In every legal instance, each Course value is associated with a set of Lecturer values and this set is independent of the values in the other attributes (here Book).