
319

L14: Normalization 2

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 10/25/2018

https://northeastern-datalab.github.io/cs3200/

320

Announcements!

• Class contributions:
- Great by some! Thanks! Everyone: Please keep bringing your name plates
- Recall that I ask people in class rows if nobody answers

• Changed Gradiance policies (feedback that you spend too much time)
- you can work together on Gradiance
- bumped Gradiance scores

• HW6 will be posted today
• Jupyter exercises

321

Quick recap FDs
• Functional Dependency (FD): The value of one set of attributes (the determinant) uniquely determines the

value of another set of attributes (the dependents)
• A superkey (SK) is as a set of attributes of a relation schema upon which all attributes of the schema are

functionally dependent.
• A (candidate) key (CK) is a non-redundant (minimal) SK (sometimes called just "a key")
• Prime attribute: belonging to some candidate key
• Partial FD: FD in which more non-prime attributes are functionally dependent on part (but not all) of any CK
• Transitive FD: An FD between two (or more) nonkey attributes (important for distinction 3NF vs BCNF!)
• 3NF: no partial nor transitive FD

322

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,
Position is “good FD”
• Minimal redundancy,

less possibility of
anomalies

323

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,
Position is “good FD”

But Position -> Phone is a
“bad FD”
• Redundancy!

Possibility of data
anomalies

324

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".

Returning to our original example…
can you see how the “bad FD”
{Course} -> {Room} could lead to an:
• Update Anomaly
• Insert Anomaly
• Delete Anomaly
• …

“Good” vs. “Bad” FDs

325

FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
• One which minimizes possibility of anomalies

This part can be tricky!

326

Finding Functional Dependencies

• There can be a very large number of FDs…
- How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all instances…
- How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?

327

Finding Functional Dependencies

• Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an FD g hold?
- Inference problem: How do we decide?

1. {Name} à {Color}
2. {Category} à {Department}
3. {Color, Category} à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which / how many other FDs do?!?

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category} à
{Price} must also hold on any instance…

Example:

328

Finding Functional Dependencies

• Equivalent to asking: Given a set of FDs, F = {f1,…fn}, does an FD g hold?
- Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s Rules.
1. Split/Combine,
2. Reduction (Trivial), and
3. Transitivity… ideas by picture

329

1. Split/Combine

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn

330

1. Split/Combine

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn

… is equivalent to the following n FDs…

A1,…,Am à Bi for i=1,…,n

331

1. Split/Combine

A1 … Am B1 … Bn

A1, …, Am à B1,…,Bn

… is equivalent to …

And vice-versa, A1,…,Am à Bi for i=1,…,n

332

2. Reduction (Trivial)

A1 … Am

A1,…,Am à Aj for any j=1,…,m

333

3. Transitive Closure

A1 … Am B1 … Bn C1 … Ck

A1, …, Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

334

3. Transitive Closure

A1 … Am B1 … Bn C1 … Ck

A1, …, Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

implies
A1,…,Am à C1,…,Ck

335

Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Department}
3. {Color, Category} à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Provided FDs:Products

Example:

Which / how many other FDs hold?

336

Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à
{Price}

Which / how many other FDs hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} ?
5. {Name, Category} -> {Color} ?
6. {Name, Category} -> {Category} ?
7. {Name, Category -> {Color, Category} ?
8. {Name, Category} -> {Price} ?

Armstrong’s Rules:
1. Split/Combine,
2. Reduction (Trivial)
3. Transitivity

337

Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à
{Price}

Which / how many other FDs hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} ?
6. {Name, Category} -> {Category} ?
7. {Name, Category -> {Color, Category} ?
8. {Name, Category} -> {Price} ?

Armstrong’s Rules:
1. Split/Combine,
2. Reduction (Trivial)
3. Transitivity

338

Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à
{Price}

Which / how many other FDs hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} Transitive (4 -> 1)
6. {Name, Category} -> {Category} ?
7. {Name, Category -> {Color, Category} ?
8. {Name, Category} -> {Price} ?

Armstrong’s Rules:
1. Split/Combine,
2. Reduction (Trivial)
3. Transitivity

339

Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à
{Price}

Which / how many other FDs hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} Transitive (4 -> 1)
6. {Name, Category} -> {Category} Trivial
7. {Name, Category -> {Color, Category} ?
8. {Name, Category} -> {Price} ?

Armstrong’s Rules:
1. Split/Combine,
2. Reduction (Trivial)
3. Transitivity

340

Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à
{Price}

Which / how many other FDs hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} Transitive (4 -> 1)
6. {Name, Category} -> {Category} Trivial
7. {Name, Category -> {Color, Category} Split/combine (5 + 6)
8. {Name, Category} -> {Price} ?

Armstrong’s Rules:
1. Split/Combine,
2. Reduction (Trivial)
3. Transitivity

341

Finding Functional Dependencies

1. {Name} à {Color}
2. {Category} à {Dept.}
3. {Color, Category} à
{Price}

Which / how many other FDs hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} Transitive (4 -> 1)
6. {Name, Category} -> {Category} Trivial
7. {Name, Category -> {Color, Category} Split/combine (5 + 6)
8. {Name, Category} -> {Price} Transitive (7 -> 3)

Can we find an algorithmic way to do this?

Armstrong’s Rules:
1. Split/Combine,
2. Reduction (Trivial)
3. Transitivity

342

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à B

{name} à {color}
{category} à {dept}
{color, category} à {price}

Example: F =

343

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à B

{name} à {color}
{category} à {dept}
{color, category} à {price}

Example: F =

Example
Closures:

{name}+ = ?
{name, category}+ = ?

{color}+ = ?

344

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à B

{name} à {color}
{category} à {dept}
{color, category} à {price}

Example: F =

Example
Closures:

{name}+ = {name, color}
{name, category}+ = ?

{color}+ = ?

345

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à B

{name} à {color}
{category} à {dept}
{color, category} à {price}

Example: F =

Example
Closures:

{name}+ = {name, color}
{name, category}+ =

{name, category, color, ...}
{color}+ = ?

346

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à B

{name} à {color}
{category} à {dept}
{color, category} à {price}

Example: F =

Example
Closures:

{name}+ = {name, color}
{name, category}+ =

{name, category, color, dept, price}
{color}+ = ?

347

Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An} à B

{name} à {color}
{category} à {dept}
{color, category} à {price}

Example: F =

Example
Closures:

{name}+ = {name, color}
{name, category}+ =

{name, category, color, dept, price}
{color}+ = {color}

348

Closure Algorithm

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change; do:

if {B1, …, Bm} à C is entailed by F

and {B1, …, Bm} ⊆ X

then add C to X.

Return X as X+

349

Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bm} à C is in F and {B1,
…, Bm} ⊆ X:

then add C to X.
Return X as X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}

350

Closure Algorithm

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ ={name, category}+ =
{name, category, color}

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bm} à C is in F and {B1,
…, Bm} ⊆ X:

then add C to X.
Return X as X+

351

Closure Algorithm

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ ={name, category}+ =
{name, category, color, dept}

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bm} à C is in F and {B1,
…, Bm} ⊆ X:

then add C to X.
Return X as X+

352

Closure Algorithm

F =

{name, category}+ =
{name, category}

{name, category}+ =

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}{name} à {color}

{category} à {dept}

{color, category} à
{price}

{name, category}+ =
{name, category, color, dept,
price}

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change; do:

if {B1, …, Bm} à C is in F and {B1,
…, Bm} ⊆ X:

then add C to X.
Return X as X+

353

Example

Compute {A,B}+ = {A, B, }

Compute {A, F}+ = {A, F, }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

354

Example

Compute {A,B}+ = {A, B, C, D }

Compute {A, F}+ = {A, F, }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

355

Example

Compute {A,B}+ = {A, B, C, D, E }

Compute {A, F}+ = {A, F, }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

356

Example

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, F, }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

357

Example

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, F, }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

358

Example

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, D, E, F}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

359

Closures, Superkeys,
and (Candidate) Keys

360

What we will see next

• Closures Part 2

• Superkeys & Keys

• Practice: The key or a key?

361

Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if X ® A

- Compute X+

- Check if A Î X+

Note here that X is a set of
attributes, but A is a single
attribute. Why does considering
FDs of this form suffice?

Recall the Split/combine rule:
X à A1, …, X à An
implies
X à {A1, …, An}

362

Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B} à D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

No need to
compute all of
these- why?

363

Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B} à D

Example:
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

364

Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B} à D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

“Y is in the
closure of X”

Step 1: Compute X+, for every set of attributes X:

365

Using Closure to Infer ALL FDs

{A,B} à C
{A,D} à B
{B} à D

Example:
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X à Y, s.t. Y Í X+ and X Ç Y = Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

The FD X à Y
is non-trivial

Step 1: Compute X+, for every set of attributes X:

366

Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.
for any other attribute B in R,
we have {A1, …, An} à B

A key is a minimal superkey
(also called "candidate key")

I.e. all attributes are
functionally determined
by a superkey

This means that no subset of a key
is also a superkey (i.e., dropping
any attribute from the key makes
it no longer a superkey)

367

Finding Keys and Superkeys

• For each set of attributes X

- Compute X+

- If X+ = set of all attributes then X is a superkey

- If X is minimal, then it is a key

368

Example of Finding Keys

Product(name, price, category, color)

{name, category} à price
{category} à color

What is a key?

369

Example of Finding Keys

Product(name, price, category, color)

{name, category} à price
{category} à color

{name, category}+ = {name, price, category, color}
= the set of all attributes
⟹ this is a superkey
⟹ this is a key, since neither name nor category
alone is a superkey

370

Practice

• Activity-21.ipynb

371

Complete
Normalization Practice!

372

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection
propertyNo pAddress iDate iTime comments staffNo sName carReg

PG4 6 Lawrence St,
Glasgow

18-Oct-03 10:00 need to replace
crockery

SG37 Ann Beech M231 JGR

22-Apr-04 09:00 in good order SG14 David Ford M533 HDR

1-Oct-04 12:00 damp rot in
bathroom

SG14 David Ford N721 HFR

PG16 5 Novar Dr,
Glasgow

22-Apr-04 13:00 replace living room
carpet

SG14 David Ford M533 HDR

24-Oct-04 14:00 good condition SG37 Ann Beech N721 HFR

Can a database store this information?
Is it in 1NF?

373

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection
propertyNo iDate iTime pAddress comments staffNo sName carReg

PG4 18-Oct-03 10:00 6 Lawrence St,
Glasgow

need to replace
crockery

SG37 Ann Beech M231 JGR

PG4 22-Apr-04 09:00 6 Lawrence St,
Glasgow

in good order SG14 David Ford M533 HDR

PG4 1-Oct-04 12:00 6 Lawrence St,
Glasgow

damp rot in
bathroom

SG14 David Ford N721 HFR

PG16 22-Apr-04 13:00 5 Novar Dr, Glasgow replace living room
carpet

SG14 David Ford M533 HDR

PG16 24-Oct-04 14:00 5 Novar Dr, Glasgow good condition SG37 Ann Beech N721 HFR

No! Only now a database can store the information: 1NF
But we still need a primary key

374

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection
propertyNo iDate iTime pAddress comments staffNo sName carReg

PG4 18-Oct-03 10:00 6 Lawrence St,
Glasgow

need to replace
crockery

SG37 Ann Beech M231 JGR

PG4 22-Apr-04 09:00 6 Lawrence St,
Glasgow

in good order SG14 David Ford M533 HDR

PG4 1-Oct-04 12:00 6 Lawrence St,
Glasgow

damp rot in
bathroom

SG14 David Ford N721 HFR

PG16 22-Apr-04 13:00 5 Novar Dr, Glasgow replace living room
carpet

SG14 David Ford M533 HDR

PG16 24-Oct-04 14:00 5 Novar Dr, Glasgow good condition SG37 Ann Beech N721 HFR

Now 1NF + PK

375

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo iDate iTime pAddress comments staffNo sName carReg

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection

Draw all FDs

376

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo iDate iTime pAddress comments staffNo sName carReg

(full, PK)

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection

377

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo iDate iTime pAddress comments staffNo sName carReg

(partial)

(full, PK)

(transitive)

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection

378

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo iDate iTime pAddress comments staffNo sName carReg

(partial)

(full, PK)

(transitive)

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection

379

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo iDate iTime pAddress comments staffNo sName carReg

(partial)

(full, PK)

(transitive)

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection

(other)

380

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo iDate iTime pAddress comments staffNo sName carReg

(partial)

(full, PK)

(transitive)

(Candidate K)

(Candidate K)

Members of DreamHome inspect properties
• When staff are required to undertake these inspections, they are allocated a

company car for use on the day of the inspections. (One car per person & day)
• However, a car may be allocated to several members of staff as required

throughout the working day.
• A member of staff may inspect several properties on a given date, but a

property is only inspected once on a given date.

StaffPropertyInspection

(other)

381

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo pAddress

(PK, now full, former partial)

staffNo sName

propertyNo
@

iDate iTime comments staffNo@ carReg

(PK, now full, former transitive)

Property

Staff

Inspection

(other)

(PK)

382

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo pAddress
Property

propertyNo
@

iDate@ iTime comments staffNo@
Inspection

iDate staffNo@ carReg
StaffCar

staffNo sName
Staff

(PK)

We also need to keep track
of the fact that "staffno@"
was already a foreign key
before we put it into
another table

Extra question: We now have a composite FK (idate, staffno) from INSPECTION
to STAFFCAR. Thus (idate, staffno) is a composite PK in STAFFCAR.
Assume we like to replace it with a surrogate key. How would the resulting
completely normalized tables look like?

383

scid iDate staffNo@ carReg

Example: DreamHome Rental

Source: Connolly, Begg: Database systems, 4th ed, p. 423, 2005.

propertyNo pAddress
Property

propertyNo
@

scid@ iTime comments
Inspection

StaffCar

staffNo sName
Staff

(PK)

This is now fully normalized.
Downside: we need to join INSPECTION with STAFFCAR every time we like to
find out about when a property (by "properyNo") was last inspected

