
230

L13: Relational modeling 3

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 10/22/2018

https://northeastern-datalab.github.io/cs3200/

231

Announcements!

• Various textbook excerpts
- Enhanced ER are not part of this class (ch 3 in Hoffer, Ramesh, Topi)

• Slides we discuss, and others we don't: those provide detailed instructions for
which we develop the intuition in class

• Outline
- We continue with Relational Data modeling
- Then start with normalization (there is an intuitive and a formal part)

• We will use Jupyter exercises for the more formal part

232

Resources

233

Updated Schedule

234

Relational Modeling:
Unary Relationships

235

Mapping Unary Relationships

• 1) One-to-Many
- Create a recursive foreign key in the same relation

• 2) Many-to-Many – Create two relations:
- One for the entity type
- One for an associative relation in which the primary key has two attributes,

both taken from the primary key of the entity

236

EMPLOYEE
entity with
Manages
relationship

1) Mapping a Unary 1:N Relationship

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

237

EMPLOYEE
entity with
Manages
relationship

EMPLOYEE
relation with
recursive
foreign key

Create a recursive
foreign key in the
same relation

1) Mapping a Unary 1:N Relationship

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

238

2) Mapping a Unary M:N Relationship
Bill-of-materials relationships (M:N)

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

239

2) Mapping a Unary M:N Relationship

ITEM and COMPONENT relations

Bill-of-materials relationships (M:N)

Create Two relations:
• One for the entity type
• One for an associative

relation in which the
primary key has two
attributes, both taken
from the primary key
of the entity

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

240

Relational Modeling:
Associative Entities

241

Mapping Associative Entities

• Rules for two scenarios:

• A) Identifier Not Assigned
- Default primary key for the association relation is composed of the primary

keys of the two entities (as in M:N relationship)

• B) Identifier Assigned
- It is natural and familiar to end-users
- Default identifier may not be unique

242

A) Associative Entity Relations (No Identifier)

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

243

A) Associative Entity Relations (No Identifier)

Default primary key for the

association relation is

composed of the primary

keys of the two entities (as

in M:N relationship)

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

244

B) Associative Entity Relations (With Identifier)

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

245

B) Associative Entity Relations (With Identifier)

• Identifier attribute becomes
new primary key in relation

• Foreign keys reference all
related entities

Do we need the key?

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

246

Mapping ternary relationship w/ associative entity

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

247

Mapping ternary relationship w/ associative entity

• One relation for each entity
and one for the associative
entity

• Associative entity has
foreign keys to each entity
in the relationship

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

248

Relational Modeling:
Weak entities

249

Mapping Weak Entities

• Weak Entities become separate relations with a foreign key taken
from the superior entity

• Primary key composed of:
- Partial identifier of weak entity
- Primary key of identifying relation (strong entity)

250

Example: Mapping A Weak Entity (Relations)

Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

251Source: Hoffer, Ramesh, Topi, "Modern database management," 10th ed, 2010.

NOTE: the domain constraint for the
foreign key should NOT allow null value
if DEPENDENT is a weak entity

Foreign key

Composite primary key

Example: Mapping A Weak Entity (Relations)

or "Surrogate primary key"
(George Foreman ...)

252

Practice

253

Exercise 1

• Create a relational schema to represent the following E-R Diagram:

Product
Product_ID
Product_Name
{Price History

(Effective_Date,
Price) }

254

Exercise 1

• Create a relational schema to represent the following E-R Diagram:

Product
Product_ID
Product_Name
{Price History

(Effective_Date,
Price) }

Product_ID Product_Name
Product

Product_ID Effective_Date Price
Price_History

255

Exercise 2

• Create a relational schema to represent the following E-R Diagram:

Product
Product_ID
Product_Name
StandardPrice
{(customer,

Price)}

Product_ID Product_Name
Product

256

Exercise 2

• Create a relational schema to represent the following E-R Diagram:

Product

Product_ID

Product_Name

StandardPrice

{(customer,

Price)}

Product_ID Product_Name Standard_Price

Product

Product_ID customer Price

SpecialPrice

CustomerName ...

Customer

257

Exercise 3

Course
Course_ID
Semester_Taught
Title

Instructor
Instructor_Name
Location

Registers
For

Student
Student_ID
Name
Campus_Address
Major

Grade

Teaches

• Create a relational schema
to represent this E-R Diagram:

258

Exercise 3

Course
Course_ID
Semester_Taught
Title

Instructor
Instructor_Name
Location

Registers
For

Student
Student_ID
Name
Campus_Address
Major

Grade

Teaches

259

Exercise 3: Solution

Student_ID Name Campus_Address Major

Student

Course_Registration

Course
Course_ID Semester_Taught Title @Instructor_Name

Instructor
Instructor_Name Location

@Student_ID @Course_ID @Semester_Taught Grade

Course
Course_ID
Semester_Taught
Title

Instructor
Instructor_Name
Location

Registers
For

Student
Student_ID
Name
Campus_Address
Major

Grade

Teaches

don't forget:
"not null" constraint

260

Example: Pine Valley Furniture Company

Customer
Customer_ID
Customer_Name
Address
City
State
Zip

Order
Order_ID
Order_Date

Product
Product_ID
Product_Description
Product_Finish
Standard_Price
On_Hand

Order_Line
Quantity

Submits

261

Referential integrity

constraints are drawn via

arrows from dependent

(FK) to parent table (PK)

Example: Pine Valley Furniture Company

Source: Compare with Fig 4-30: Hoffer, Ramesh, Topi, "Modern database management," 10

th

ed, 2010.

PKs

FKs

(implements 1:N relationship

between customer and order)

Combined, these are

a composite primary
key (uniquely

identifies the order

line)…individually

they are foreign keys
(together implement

M:N relationship

between order and

product)

262

Overview
Database normalization

& Design Theory

263

Normalization

• Understand the normalization process and why a normalized data
model is desirable (no redundancy)

• Be able to explain normal forms and identify when a relational
model is in any of them

• Be able to explain anomalies and how to avoid them
- Insertion, deletion, and modification

• Actually apply normalization J

264

Normalization

• Organizing data to minimize redundancy (repeated data)

• This is good for two reasons
- The database takes up less space
- You have a lower chance of inconsistencies in your data

• If you want to make a change to a record, you only have to make it
in one place
- The relationships take care of the rest

• But you will usually need to link the separate tables together in
order to retrieve information

265

First Normal Form (1NF)

• A database schema is in First Normal Form if all
tables are flat (no "nested relations")

Name GPA Course

Alice 3.8

Bob 3.7

Carol 3.9

Math

DB

OS

DB

OS

Math

OS

Student

?

266

First Normal Form (1NF)

• A database schema is in First Normal Form if all
tables are flat (no "nested relations")

Name GPA Course

Alice 3.8

Bob 3.7

Carol 3.9

Math

DB

OS

DB

OS

Math

OS

Student
Name GPA Course

Alice 3.8 Math

Alice 3.8 DB

Alice 3.8 OS

Bob 3.7 DB

Bob 3.7 OS

Carol 3.9 Math

Carol 3.9 OS

Student

267

First Normal Form (1NF)

• A database schema is in First Normal Form if all
tables are flat (no "nested relations")

Name GPA Course

Alice 3.8

Bob 3.7

Carol 3.9

Math

DB

OS

DB

OS

Math

OS

Name GPA

Alice 3.8

Bob 3.7

Carol 3.9

Student

Course

Math

DB

OS

Student Course

Alice Math

Carol Math

Alice DB

Bob DB

Alice OS

Carol OS

Takes Course

May need to
add keys

Student

268

Data Anomalies

• When a database is poorly designed we get anomalies (those are
bad) resulting from redundancies:
- Update anomalies: need to change in several places
- Insert anomalies: need to repeat data for new inserts
- Deletion anomalies: may lose data when we don't want

269

Relational Schema Design

Do you see any anomalies?

Recall multivalued (set) attributes (persons with several phones):

• One person may have multiple phones, but lives in only one city

• Primary key is thus (SSN, PhoneNumber)

Name SSN PhoneNumber City

Fred 123-45-6789 412-555-1234 Boston

Fred 123-45-6789 412-555-6543 Boston

Joe 987-65-4321 908-555-2121 Cambridge

Employee

270

Relational Schema Design

Do you see any anomalies?

Recall multivalued (set) attributes (persons with several phones):

What do we do????

• One person may have multiple phones, but lives in only one city
• Primary key is thus (SSN, PhoneNumber)

Name SSN PhoneNumber City

Fred 123-45-6789 412-555-1234 Boston

Fred 123-45-6789 412-555-6543 Boston

Joe 987-65-4321 908-555-2121 Cambridge

Employee

• Deletion anomalies: what if Joe deletes his phone number?
(what if Joe had no phone #)

• Insert anomalies: what if Joe gets a second phone number
• Update anomalies: what if Fred moves to "New York"?

271

Relation Decomposition
Break the relation into two:

Name SSN City

Fred 123-45-6789 Boston

Joe 987-65-4321 Cambridge

SSN PhoneNumber

123-45-6789 412-555-1234

123-45-6789 412-555-6543

987-65-4321 908-555-2121
Anomalies have gone:
• No more repeated data
• Easy to move Fred to "New York" (how ?)
• Easy to delete all Joe's phone numbers (how ?)

Name SSN PhoneNumber City

Fred 123-45-6789 412-555-1234 Boston

Fred 123-45-6789 412-555-6543 Boston

Joe 987-65-4321 908-555-2121 Cambridge

Employee

Employee Phone

272

Good News / Bad News

• The good news: when you start with solid ER modeling and follow
the steps described to create relations then your relations will
usually be pretty well normalized

• The bad news: you often don't have the benefit of starting from a
good ER model.

• The good news (part 2): the steps we will cover in class will help you
convert poorly normalized tables into highly normalized tables

273

1. Normal forms
and

Functional Dependencies

274

Design Theory

• Design theory is about how to represent your data to avoid anomalies.

• It is a mostly mechanical process
- Tools can carry out routine portions

• We have a notebook implementing all algorithms!
• We’ll play with it in the activities!

275

Data Normalization

• Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

• Goals of normalization include:
- Minimize data redundancy
- Simplifying the enforcement of referential integrity constraints
- Simplify data maintenance (inserts, updates, deletes)
- Improve representation model to match "the real world"

276

Well-Structured Relations
• A well-structured relation contains minimal data redundancy and allows users

to insert, delete, and update rows without causing data inconsistencies

• Anomalies are errors or inconsistencies that may result when a user attempts
to update a table that contains redundant data.

• Three types of anomalies:
- Insertion Anomaly – adding new rows forces user to create duplicate data
- Deletion Anomaly – deleting rows may cause a loss of data that would be needed for

other future rows
- Modification Anomaly – changing data in a row forces changes to other rows because of

duplication

• General rule of thumb: a table should not pertain to more than one entity
type

277

DB designs based on
FDs (functional
dependencies),
intended to prevent
data anomalies

Normal Forms

• 1st Normal Form (1NF) = All tables are flat

• 2nd Normal Form = not used anymore
- no more "partial FDs" (those are part of the "bad" FDs)

• 3rd Normal Form (3NF)
- no more transitive FDs (also "bad")

• Boyce-Codd Normal Form (BCNF)
- every determinant is a candidate key

• 4th: any multivalued dependencies have been removed (we will give intuition)
• 5th: any remaining anomalies have been removed (not covered)

Our focus
next

Normal Form: a state of a relation
that results from applying simple
rules regarding FDs to that relation

278

1st Normal Form (1NF)

Violates 1NF.

Student Courses
Mary {CS3200, CS4240}
Joe {CS3200, CS4240}
… …

279

1st Normal Form (1NF)

Student Courses
Mary {CS3200, CS4240}
Joe {CS3200, CS4240}
… …

Violates 1NF.

1NF Constraint: Types must be atomic!

Student Courses
Mary CS3200
Mary CS4240
Joe CS3200
Joe CS4240

In 1st NF

280

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Constraints Prevent (some) Anomalies in the Data

If every course is in
only one room,
contains redundant
information!

A poorly designed database causes anomalies:

281

Student Course Room
Mary CS3200 WVF20
Joe CS3200 B12
Sam CS3200 WVF20
..

Constraints Prevent (some) Anomalies in the Data

If we update the
room number for
one tuple, we get
inconsistent data =
an update anomaly

A poorly designed database causes anomalies:

282

Student Course Room
...

Constraints Prevent (some) Anomalies in the Data

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

A poorly designed database causes anomalies:

283

Constraints Prevent (some) Anomalies in the Data

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Similarly, we can’t
reserve a room
without students
= an insert
anomaly

A poorly designed database causes anomalies:

… CS4240 B12

284

Constraints Prevent (some) Anomalies in the Data

Student Course
Mary CS3200
Joe CS3200
Sam CS3200
.. ..

Course Room
CS3200 WVF20
CS4240 B12

Next: develop theory to understand why this design may
be better and how to find this decomposition…

Is this form better?

• Redundancy?
• Update anomaly?
• Delete anomaly?
• Insert anomaly?

285

286

287

Is This Table Well Structured?

• Does it contain anomalies?

288

Is This Table Well Structured?

• Does it contain anomalies?
- Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
- Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class
- Modification: Giving a salary increase to employee 100 forces us to update multiple records

• Why do these anomalies exist?

289

Is This Table Well Structured?

• Does it contain anomalies?
- Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)

- Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class

- Modification: Giving a salary increase to employee 100 forces us to update multiple records

• Why do these anomalies exist?
- Because there are two themes (entity types) in one relation. This results in duplication, and an

unnecessary dependency between the entities

290

Normalizing Previous Employee/Class Table

Course_Completion

Emp_ID Course_ID Date_Completed

100 1 6/19/2005

100 2 10/7/2004

140 3 12/8/2004

110 1 1/12/2004

110 4 4/22/2003

150 1 6/19/2005

150 5 8/12/2002

Employee

Emp_ID Name Dept_Name Salary

100 Margaret Simpson Marketing 48000

140 Alan Beeton Accounting 52000

110 Chris Lucero Info Sys 43000

190 Lorenzo Davis Finance 55000

150 Susan Martin Marketing 42000

Course

Course_ID Course_Title

1 SPSS

2 Surveys

3 Tax Acc

4 C++

5 Java

This seems more complicated

Why might this approach be
superior to the previous one?

291

Functional Dependencies ("FDs")

Definition:

If two tuples agree on the attributes

then they must also agree on the attributes

Formally:

A1, A2, …, An à B1, B2, …, Bm

A1, A2, …, An

B1, B2, …, Bm

292

Functional Dependencies ("FDs")

A à B means that
“whenever two tuples agree on A then they agree on B.”

Def: Let A,B be sets of attributes
We write A à B or say A functionally determines
B if, for any tuples t1 and t2:

t1[A] = t2[A] implies t1[B] = t2[B]

and we call A à B a functional dependency

A (determinant) à B (dependent)

293

A Picture Of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

294

A1 … Am B1 … Bn

A Picture Of FDs

ti

tj

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency Aà B on
R holds if for any ti,tj in R:

295

A Picture Of FDs

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency Aà B on
R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND
… AND ti[Am] = tj[Am]

A1 … Am B1 … Bn

ti

tj

If ti,tj agree here..

296

A Picture Of FDs

Defn (again):
Given attribute sets A={A1,…,Am} and
B = {B1,…Bn} in R,

The functional dependency Aà B on
R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND
… AND ti[Am] = tj[Am]

then ti[B1] = tj[B1] AND ti[B2]=tj[B2]
AND … AND ti[Bn] = tj[Bn]

A1 … Am B1 … Bn

ti

tj

If ti,tj agree here.. …they also agree here!

297

FDs for Relational Schema Design

• High-level idea: why do we care about FDs?

- Start with some relational schema

- Find out its functional dependencies (FDs)

- Use these to design a better schema
• One which minimizes the possibility of anomalies

298

Functional Dependencies as Constraints

Student Course Room
Mary CS3200 WVF20

Joe CS3200 WVF20

Sam CS3200 WVF20

..

Note: The FD {Course}
à {Room} holds on
this instance

A functional dependency is a form
of constraint

• Holds on some instances (but not
others) – can check whether there
are violations

• Part of the schema, helps define a
valid instance

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

299

Functional Dependencies as Constraints

Student Course Room
Mary CS3200 WVF20

Joe CS3200 WVF20

Sam CS3200 WVF20

..

However, cannot prove
that the FD {Course} à
{Room} is part of the
schema

Note that:
• You can check if an FD is

violated by examining a single
instance;

• However, you cannot prove
that an FD is part of the
schema by examining a single
instance.
• This would require checking

every valid instance

300

More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

301

More Examples

{Position} à {Phone}

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ¬ Salesrep
E1111 Smith 9876 ¬ Salesrep
E9999 Mary 1234 Lawyer

302

More Examples

EmpID Name Phone Position
E0045 Smith 1234 ® Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 ® Lawyer

but not {Phone} à {Position}

303

Practice

A B C D E

1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

Find at least three FDs which
are violated on this instance:

{ } à { }
{ } à { }
{ } à { }

304

2. Finding FDs

305

What we will learn about next

• “Good” vs. “Bad” FDs: Intuition

• Finding FDs

• Closures

• PRACTICE: Compute the closures

306

1NF

• First normal form: A relation that has a primary key and in which
there are no repeating groups
- No multivalued attributes
- Every attribute value is atomic (single fact in each table cell)

• All relations are in 1NF

• Normalization steps (from tabular view of data):
- Goal: create a relation from the tabular view
- Action: remove repeating groups
- Action: select the primary key

307

Example: Convert To 1NF

• Normalization steps (from tabular view of data):
- Goal: create a relation from the tabular view
- Action: remove repeating groups
- Action: select the primary key

308

Action: Remove Repeating Groups

• Is the data view a relation now?
- Answer: yes

• Is it well-structured?
- Answer: no

309

What are the anomalies in this table?

• Insertion: If new product is ordered for order 1007 of existing customer, customer data
must be re-entered, causing duplication

• Deletion: If we delete the Dining Table from Order 1006, we lose information concerning
this item's finish and price

• Update: Changing the price of product ID 4 requires update in several records

• Why do these anomalies exist? Because there are multiple themes (entity types) in one
relation. -> duplication, and unnecessary dependency between entities

310

Action: Select A Primary Key

• Identify FDs and CKs (candidate keys = minimal superkeys)
• Four determinants and functional dependencies

- Order_ID → Order_Date, Customer_ID, Customer_Name, Customer_Address
- Customer_ID → Customer_Name, Customer_Address
- Product_ID → Product_Description, Product_Finish, Unit_Price
- Order_ID, Product_ID → Ordered_Quantity

• Select a PK from CKs
- (Order_ID, Product_ID)

311

Next Step: Convert To 2NF

• 2NF: A relation in 2NF in which every non-key attribute is fully
functionally dependent on the primary key

• Partial FD: A FD in which one or more nonkey attributes are
functionally dependent on part (but not all) of the PK

312

Getting A Relation To 2NF

• Create a new relation for each primary key attribute that is a
determinant in a partial dependency
- That attribute is the primary key in the new relation

• Move the nonkey attributes that are dependent on this primary key
attribute(s) from the old relation to the new relation

• Exercise: Convert 1NF relation to 2NF

313

A 1NF Relation Is In 2NF if

• The PK consists of only one attribute. There cannot be a partial dependency in
such a relation

• (or) no nonkey attributes exist in the relation (thus all attributes in the
relation are components of the PK). There are no FDs in such a relation

• (or) every nonkey attribute is functionally dependent on the full set of PK
attributes.

314

3NF

• 3NF: A relation that is in 2NF and has no transitive dependencies present
• Transitive dependency: An FD between two (or more) nonkey attributes
- FD between the PK and one or more nonkey attributes that are dependent on the PK via

another nonkey attribute
• Transitive dependency example: Transitivity:

a<b & b<c ⇒ a<c

315

Removing Transitive Dependencies

• For each nonkey attribute(s) that is a determinant in a relation, create a new
relation.
- That attribute becomes the PK of the new relation

• Move all of the attributes that are functionally dependent on the attribute
from the old to the new relation

• Leave the attribute (which serves as a PK in the new relation in the old
relation to serve as a FK that allows us to associate the two relations

• Exercise: Convert relation below to 3NF

316

• Original example in 2NF:

• Example converted to 3NF:

Third Normal Form

317

Full Example: From 1NF to 3NF
Before (3NF):

After (3NF):

318

Normalization Summary

• Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

• Goals of normalization include:
- Minimize data redundancy
- Simplifying the enforcement of referential integrity constraints
- Simplify data maintenance (inserts, updates, deletes)
- Improve representation model to match "the real world"

