L13: Relational modeling 3

CS3200 Database design (fal8 s2)
https://northeastern-datalab.github.io/cs3200/

Version 10/22/2018

230

https://northeastern-datalab.github.io/cs3200/

Announcements!

« Various textbook excerpts

— Enhanced ER are not part of this class (ch 3 in Hoffer, Ramesh, Topi)

« Slides we discuss, and others we don't: those provide detailed instructions for
which we develop the intuition in class

e Qutline

— We continue with Relational Data modeling

— Then start with normalization (there is an intuitive and a formal part)

 We will use Jupyter exercises for the more formal part

231

Resources

RESOURCES

» Blackboard: only used for grades, HW, Project and exam submissions
» Piazza: access code posted on Blackboard
e Gradiance: the class token is posted on Blackboard. Some help: Setup Gradiance, A tour of Gradiance
» Lucidcharts: handy for drawing ER diagrams (Class template)
« Jupyter Activities: link to our Jupyter install instructions and Jupyter activities. Additional slides: Setup Jupyter (slides)
* We will use chapters from various textbooks. All textbook material will be available digitally, some of which on Blackboard:
o 1,8QL
= SAMS: Forta. SAMS Teach yourself SQL in 10min. 4th ed. [Safari books eBook (NEU free online access)], [EBSCOhost eBook (NEU free online
access)], [EBSCOhost eBook (NEU free online access, but old edition)], [Amazon (30$)]
o 2. Database design
» Watt: Adrienne Watt, Database design. Online textbook. 2nd ed: Easy quick read with short descriptions of key concepts. However (!) this book
contains a few inconsistencies or even mistakes. Thus, this is an optional read. Here is a list of problems: 1) ERDs do not contain FKs (FKs are a
concept reserved for the relationsl model); 2) The concepts of cardinaltiy, connectivity, participation are all mixed up and different from most
textbooks, including our slides.
= Hoffer, Ramesh, Topi: Sect 2. Data modeling (ERDs)
» Gillenson: Ch 7: Logical database design
= Powell: Sect 4. Normalization
o 3. Transactions
= Elsmari: Ch 21: Transactions
= Silberschatz: Ch 15 Ch16: Concurrency and Recovery

232

Updated Schedule

Database Design and Normal Forms
8 M Oct 1 Database Design: ER Diagrams HW3

9 R Oct 4 Exam 1 Q5 (Oct 18)
Database Design: ER Diagrams

M QOct 8 No class: Columbus Day
10 ROct 11 Database Design: ER Diagrams Hoffer: Sect 2 Q6 (Oct 18)
11 MOct 156 Database Design: Relations Watt: Ch 7-10
12 ROct 18 Database Design: Relations Gillenson: Ch 7 Q7 (Oct 25), HW4
13 MOct22 Database Design: Normalization and Decompositions Watt: Ch 11-12
14 R Oct 25 Database Design: Normalization and Decompositions = Powell: Sect 4 Q8 (Nov 1), HWS

Transaction Processing

15 MOct29 lransactions Elmasri: Ch 21
16 R Nov1 Concurrency Q9, HW6
17 MNov5 Exam 2
Concurrency
18 R Nov8 Recovery Silberschatz: Ch 15, 16 Q10
M Nov 12 No class: Veteran's Day HW7 (due 11/13)

NoSQL

19 R Nov 15 NoSQL Q11 233

Relational Modeling:
Unary Relationships

Mapping Unary Relationships

e 1) One-to-Many

— Create a recursive foreign key in the same relation

e 2) Many-to-Many — Create two relations:
— One for the entity type

— One for an associative relation in which the primary key has two attributes,
both taken from the primary key of the entity

235

1) Mapping a Unary 1:N Relationship

EMPLOYEE
EMPLOYEE entity with

Manages
Eﬂglt);::_&gme > ©— relationship

Employee_Date_of_Birth

|s_managed_by

O

Manages

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 236

1) Mapping a Unary 1:N Relationship

Employee_Date_of_Birth

EMPLOYEE

EMPLOYEE entity with

Employee_ID . Manages
Employee_Name —>-O— relationship

|s_managed_by

Create a recursive
foreign key in the

same relation

Employee_Date_of_Birth | Manager_ID

O
Manages
EMPLOYEE EMPLOYEE
relation with Employee_ID | Epplgyep. are
recursive T

foreign key

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010.

237

2) Mapping a Unary M:N Relationship

Bill-of-materials relationships (M:N)

4y
/\ Contains

ITEM
ltem_No
Description
Unit_Cost

%

@

____________ Quantity

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 238

2) Mapping a Unary M:N Relationship

Bill-of-materials relationships (M:N)

4
/\ Contains

ITEM
ltem_No
Description
Unit_Cost

%

)

———————————— Quantity

Create Two relations:

* One for the entity type

_ « One for an associative

ITEM and COMPONENT relations relation in which the
ITEM primary key has two

attributes, both taken

from the primary key

\ of the entity
COMPONENT

ltem_No | Component_No | Quantity

ltem_No | Description | Unit_Cost

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 239

Relational Modeling:
Associative Entities

Mapping Associative Entities

e Rules for two scenarios:

« A)ldentifier Not Assigned

— Default primary key for the association relation is composed of the primary
keys of the two entities (as in M:N relationship)

« B) Identifier Assigned

— It is natural and familiar to end-users
— Default identifier may not be unique

241

A) Associative Entity Relations (No Identifier)

ORDER i ORDER LINE i PRODUCT
Order_ID Product ID
Order_Date L] | - Ordered_Quantity ~_ || | Product_Description

i L s '""| Product_Finish
Standard_Price
Product_Line_ID
L J

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 242

A) Associative Entity Relations (No Identifier)

ORDER i ORDER LINE i PRODUCT
Order_ID Product_ID
Order_Date L] | - Ordered_Quantity [|| | Product_Description

i L s '""| Product_Finish

Standard_Price
Product_Line_ID

SRbER Default primary key for the
oriee 10 | Oier Disia association relation is
composed of the primary
keys of the two entities (as
in M:N relationship)

ORDER LINE

Order_ID | Product_ID | Ordered_Quantity

PRODUCT/

Product_ID | Product_Description | Product_Finish | Standard_Price | Product_Line_ID

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010.

243

B) Associative Entity Relations (With Identifier)

X
CUSTOMER i SHIPMENT VENDOR
Customer_ID H O< Shipment_ID ~_ . (| | Vendor_ID
Customer_Name Shipment_Date |~ — '' | Vendor_Address
2 Shipment_Amount 2

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 244

B) Associative Entity Relations (With Identifier)

X
CUSTOMER i SHIPMENT VENDOR
Customer_ID H O< Shipment_ID ~_ . (| | Vendor_ID
Customer_Name Shipment_Date |~ — '' | Vendor_Address
2 Shipment_Amount 2

« |dentifier attribute becomes
new primary key in relation

e Foreign keys reference all
related entities

SHIPMENT A
Shipment_ID | Customer_ID | Vendor_ID | Shipment_Date Shiw

7
VENDOR/

Do we need the key?
Vendor_ID | Vendor_Address

CUSTOMER

Customer_ID | Customer_Name

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 245

Mapping ternary relationship w/ associative entity

PHYSICIAN
Physician ID
Physician_Name

|
I

/C&

PATIENT (PATIENT TREATMENT i TREATMENT
Patient_ID Treatment Code
Patient_Name = &< Treatment_Date -0 H- Description

Treatment_Time
Results
L .

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 246

Mapping ternary relationship w/ associative entity

PHYSICIAN . .
Physician ID * One relation for each entity
Physician_Name and one for the associative
entity
=5 Associative entity has
foreign keys to each entity
in the relationship
@
- A\ -
PATIENT PATIENT TREATMENT TREATMENT
Patient_ID Treatment_Code
Patient_Name = &< Treatment_Date -0 H- Description
Treatment_Time
Results
. J
PATIENT PHYSICIAN TREATMENT
Patient_ID | Patient_Name Physician_ID | Physician_Name Treatment_Code | Description

PATIENT TREATMENT / /

Patient_ID | Physician_ID | Treatment_Code | Treatment_Date | Treatment _Time | Results

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 247

Relational Modeling:
Weak entities

Mapping Weak Entities

« Weak Entities become separate relations with a foreign key taken
from the superior entity

e Primary key composed of:

— Partial identifier of weak entity
— Primary key of identifying relation (strong entity)

249

Example: Mapping A Weak Entity (Relations)

EMPLOYEE
Employee_ID
Employee_Name

Claims

DEPENDENT
Dependent_Name

Source: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010.

(First_Name,

Middle_lnitial,

Last_Name)
Date_of_Birth
Gender

250

Example: Mapping A Weak Entity (Relations)

EMPLOYEE DEPENDENT
Employee_ID Dependent_Name
Employee_Name Claiing (First_Name,

=| Middle_lnitial,
Last_Name)
Date_of_Birth
Gender
EMPLOYEE NOTE: the domain constraint for the

foreign key should NOT allow null value

STpioyos L [Sowioyee |heme if DEPENDENT is a weak entity

"

DEPENDENT

Forgign key

First_Name | Middle_lInitial | Last_Name |Employee_ID | Date_of_Birth | Gender

N— 7
—~—
Composite primary key

1" H 1
or "Surrogate primary key DEPENDENT(Dependent#, EmployeelD, FirstName, Middlelnitial,

(George Foreman...) LastName, DateOfBirth, Gender)

Source: Hoffer, Ramesh, Topi, "Modern database rganagement "10t ed, 2010/

251

Practice

Exercise 1

e Create a relational schema to represent the following E-R Diagram:

Product
Product ID
Product_Name
{Price History

(Effective_Date,
Price) }

253

Exercise 1

e Create a relational schema to represent the following E-R Diagram:

Product
Product ID
Product_Name
{Price History

(Effective_Date,
Price) }

Product

Product ID |[Product_Name

Price_History
Product ID |Effective Date | Price

254

Exercise 2

e Create a relational schema to represent the following E-R Diagram:

Product
Product ID
Product_Name
StandardPrice
{(customer,

Price)}

Product

Product ID |Product_Name

255

Exercise 2

e Create a relational schema to represent the following E-R Diagram:

Product

Product ID
Product_Name
StandardPrice

{(customer,
Price)}
Product
Product ID |Product_Name [Standard_Price Customer
CustomerName

SpecialPrice 7

—_—
Product ID |customer Price

256

Exercise 3

Student
Student ID)
Name e Create a relational schema
Campus_Address to represent this E-R Diagram:
Major

Grade

Course
Course TV Instructor
Semester Taught Instructor Name
Title Location

257

Exercise 3

Student

Student ID
Name
Campus_Address
Major

Instructor

)]
Registers frerseseses Grade
For [0)
Course
Course ID
Semester Taught =& I
Title Teaches

Instructor Name

Location

258

Exercise 3: Solution et

Name
Campus_Address
Major

Grade

Course

Course ID Instructor
Semester Taught Instructor Name

StUd e nt Title Location

Student_ID | Name | Campus_Address | Major

Course_Registration I

@Student ID | @Course ID| @Semester Taught | Grade

Course / /

Course ID |Semester Taught |Title | @Instructor Name

Instructor
Instructor Name | Location

don't forget:
"not null" constraint

259

Example: Pine Valley Furniture Company

Product Customer
Product ID Customer ID
Product_Description Customer_Name
Product_Finish Address
Standard_Price City
On_Hand State

Zip
Submits
<)) D
Order Line \ Order
] - Ja) L]
Quantity = | Order ID
) Order_Date

260

Example: Pine Valley Furniture Company

CUSTOMER

Customer_ID Customer_Name Address | City State Zip

PKs
ORDERR FKs

(implements 1:N relationship
Order_ID | Order_Date | Customer_ID between customer and order)

Combined, these are
a composite primary
key (uniquely
identifies the order

Referential integrity
constraints are drawn via
line)...individually
. arrows from dependent
they are foreign keys

(together implement/r——/ (FK) to parent table (PK)
PRODUCT

M:N relationship

bet\(/jveer)\ order and Product ID | Product_Description | Product_Finish | Standard_Price| On_Hand
proauct

Source: Compare with Fig 4-30: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010. 261

Overview

Database normalization
& Design Theory

Normalization

« Understand the normalization process and why a normalized data
model is desirable (no redundancy)

e Be able to explain normal forms and identify when a relational
model is in any of them

« Be able to explain anomalies and how to avoid them
— Insertion, deletion, and modification

 Actually apply normalization ©

263

Normalization

e Organizing data to minimize redundancy (repeated data)

e This is good for two reasons

— The database takes up less space
— You have a lower chance of inconsistencies in your data

« If you want to make a change to a record, you only have to make it
in one place — _—

— The relationships take care of the rest

« But you will usually need to link the separate tables together in

order to retrieve information
264

First Normal Form (1NF)

e A database schema isin First Normal Form if all
tables are flat (no "nested relations")

Student
Name GPA Course
Math ?
Alice 3.8 DB
[|
oS
DB
Bob 3.7
oS
Math
Carol 3.9
oS

265

First Normal Form (1NF)

e A database schema isin First Normal Form if all
tables are flat (no "nested relations")

Student Student
Name GPA Course
Name GPA Course
Alice 3.8 Math
Math Alice [3.8 DB
Alice 3.8 DB
oS Alice 3.8 OS
- . o Bob 3.7 DB
O ' 0S Bob 3.7 OS
Math Carol 3.9 Math
Carol 3.9
OS Carol 3.9 0OS

266

First Normal Form (1NF)

e A database schema isin First Normal Form if all
tables are flat (no "nested relations")

Student
Name GPA
Student Alice 3.8
Bob 3.7
Name GPA Course Carol 3.9
— Takes Course
Alice 3.8 DB Student | Course Course
0S Alice Math Math
— May need to Carol Math DB
Bob 3.7 s add keys Alice DB 0S
Bob DB
Math
Carol 3.9 Alice oS
oS
Carol oS

267

Data Anomalies

« When a database is poorly designed we get anomalies (those are
bad) resulting from redundancies:

— Update anomalies: need to change in several places

— Insert anomalies: need to repeat data for new inserts

— Deletion anomalies: may lose data when we don't want

268

Relational Schema Design

Recall multivalued (set) attributes (persons with several phones):

Employee
Name SSN PhoneNumber | City
Fred 123-45-6789 412-555-1234 Boston
Fred 123-45-6789 412-555-6543 Boston
Joe 987-65-4321 908-555-2121 Cambridge

* One person may have multiple phones, but lives in only one city
* Primary key is thus (SSN, PhoneNumber)

Do you see any anomalies?

269

Relational Schema Design

Recall multivalued (set) attributes (persons with several phones):

Employee
Name SSN PhoneNumber | City
Fred 123-45-6789 412-555-1234 Boston
Fred 123-45-6789 412-555-6543 Boston
Joe 987-65-4321 908-555-2121 Cambridge

* One person may have multiple phones, but lives in only one city
* Primary key is thus (SSN, PhoneNumber)

Do you see any anomalies?

e Update anomalies: what if Fred moves to "New York"?

e Insert anomalies: what if Joe gets a second phone number
e Deletion anomalies: what if Joe deletes his phone number?

(what if Joe had no phone #)
What do we do??7??

270

Relation Decomposition

Break the relation into two:

Employee
Name SSN PhoneNumber | City
Fred 123-45-6789 412-555-1234 Boston
Fred 123-45-6789 412-555-6543 Boston
/ Joe 987-65-4321 908-555-2121 Cambridge
Employee Phone \
Name SSN City SSN PhoneNumber
Fred 123-45-6789 | Boston 123-45-6789 412-555-1234
Joe 987-65-4321 | Cambridge 123-45-6789 412-555-6543
987-65-4321 908-555-2121

Anomalies have gone:

e No more repeated data
e Easy to move Fred to "New York" (how ?)
e Easy to delete all Joe's phone numbers (how ?)

271

Good News / Bad News

The good news: when you start with solid ER modeling and follow
the steps described to create relations then your relations will
usually be pretty well normalized

The bad news: you often don't have the benefit of starting from a
good ER model.

The good news (part 2): the steps we will cover in class will help you
convert poorly normalized tables into highly normalized tables

272

. Normal forms
QNo
Functional Dependencies

Design Theory

e Design theory is about how to represent your data to avoid anomalies.

« Itis a mostly mechanical process

— Tools can carry out routine portions

« We have a notebook implementing all algorithms!
 WeEe'll play with it in the activities!

274

Data Normalization

« Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

e Goals of normalization include:
— Minimize data redundancy
— Simplifying the enforcement of referential integrity constraints
— Simplify data maintenance (inserts, updates, deletes)
— Improve representation model to match "the real world"

275

Well-Structured Relations

« A well-structured relation contains minimal data redundancy and allows users
to insert, delete, and update rows without causing data inconsistencies

« Anomalies are errors or inconsistencies that may result when a user attempts
to update a table that contains redundant data.

e Three types of anomalies:
— Insertion Anomaly — adding new rows forces user to create duplicate data

— Deletion Anomaly — deleting rows may cause a loss of data that would be needed for
other future rows

— Modification Anomaly — changing data in a row forces changes to other rows because of
duplication

e General rule of thumb: a table should not pertain to more than one entity
type

276

Normal Forms

Normal Form: a state of a relation
that results from applying simple

o 1st Normal Form (1NF) = All tables are flat rules regarding FDs to that relation
partial
- 3rd Normal Form (3NF) DB designs based on
- no more transitive FDs (also "bad") ARk (functlc?nal Our focus
dependencies), next
 Boyce-Codd Normal Form (BCNF) IEmeled o prevet

: : : data anomalies
- every determinant is a candidate key

« 4th: any multivalued dependencies have been removed (we will give intuition)
« 5t any remaining anomalies have been removed (not covered)

277

1st Normal Form (1NF)

Student Courses
Mary {CS3200, CS4240}
Joe {CS3200, CS4240}

Violates 1NF.

278

1st Normal Form (1NF)

Student

Courses

Mary

{CS3200, CS4240}

Joe

{CS3200, CS4240}

Violates 1NF.

Student Courses
Mary CS3200
Mary CS4240
Joe CS3200
Joe CS4240

In 15t NF

INF Constraint: Types must be atomic!

279

Student | Course | Room 1
Mary CS3200 |WVF20
Joe CS3200 |WVF20
Sam CS3200 |WVF20

=

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

If every course is in
only one room,
contains redundant
information!

280

A poorly designed database causes anomalies:

Student | Course | Room
Mary CS3200 |WVF20
Joe CS3200 B12

Sam CS3200 |WVEF20

Constraints Prevent (some) Anomalies in the Data

If we update the
room number for
one tuple, we get
inconsistent data =
an update anomaly

281

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student

Course

Room

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

282

€54240

B12

Student | Course | Room
Mary CS3200 |WVF20
Joe CS3200 [WVF20
Sam CS3200 |WVF20

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Similarly, we can’t
reserve a room
without students
= an insert
anomaly

283

Constraints Prevent (some) Anomalies in the Data

Course

Room

CS3200

WVF20

Student | Course
Mary CS3200
Joe CS3200
Sam CS3200

CS4240

B12

Is this form better?

e Redundancy?

* Update anomaly?
* Delete anomaly?
* [nsert anomaly?

Next: develop theory to understand why this design may
be better and how to find this decomposition...

284

StaffBranch

staffNo sName position |salary | branchNo | bAddress

SL21 John White | Manager 30000 | BOO5 22 Deer Rd, London
SG37 Ann Beech | Assistant | 12000 | B003 163 Main St, Glasgow
SG14 David Ford | Supervisor | 18000 | B003 163 Main St, Glasgow
SA9 Mary Howe | Assistant 9000 | BOO7 16 Argyll St, Aberdeen
SG5 Susan Brand | Manager | 24000 | B003 163 Main St, Glasgow
SL41 Julie Lee Assistant 9000 | BO0O5 22 Deer Rd, London

285

StaffBranch

s/ta’ff‘N}, sName position | salary | branchNo \bAddress

SL21 John White | Manager 300000 | BOO5 2 Deer Rd, London

SG37 Ann Beech | Assistant | 1200(] | BOO3 163 Main oW

SG14 David Ford | Supervisor | 18004 B003 3 Main St, Glasgow

SA9 Mary Howe | Assistant 9000y [BOU7 Argyll St, Aberdeen

SG5 Susan Brand | Manager | 24000f{ B003 ain St, Glas

SL41 Julie Lee Assistant 9000 5]2 : n

\

S o sName position |salary | branchNo
SL21 John White | Manager | 30000 | B005
SG37 Ann Beech | Assistant | 12000 | B003
SG14 David Ford | Supervisor | 18000 | B0O03
SA9 Mary Howe | Assistant 9000 | BOO7
SG5 Susan Brand | Manager | 24000 | B0O3
SL41 Julie Lee Assistant 9000 | B0O5
Branch
branchNo | bAddress
B005 22 Deer Rd, London
B007 16 Argyll St, Aberdeen
B003 163 Main St, Glasgow

286

Is This Table Well Structured?

EMPLOYEE2

Emp_ID Name Dept_Name Salary Course_Title Date_Completed
100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X

100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X

140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X

110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X

110 Chris Lucero Info Systems 43,000 Er 4/22/200X

180 Loranzo Daws Finance 66,000

160 Susan Martin Marketing 42,000 SPSS 8/19/200X

150 Susan Martin Marketing 42,000 Java 8/12/200X

e Does it contain anomalies?

287

Is This Table Well Structured?

EMPLOYEE2

Emp_ID Name Dept_Name Salary Course_Title Date_Completed
100 Margaret Simpson Marketing 48,000 SPSS 6/19/200X

100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X

140 Alan Beaton Accounting 52,000 Tax Acc 12/8/200X

110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X

110 Chris Lucero Info Systems 43,000 C++ 4/22/200X

180 Loranzo Davis Finance 66,000

160 Susan Martin Marketing 42,000 SPSS 8/18/200X

150 Susan Martin Marketing 42,000 Java 8/12/200X

e Does it contain anomalies?

— Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
— Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class

— Modification: Giving a salary increase to employee 100 forces us to update multiple records

« Why do these anomalies exist?

288

Is This Table Well Structured?

EMPLOYEE2

7‘ \L \
Emp_ID Name Dept_Name Salary [| Course_Title Dnte_Completed
100 Margaret Simpson Marketing 48, SPSS 6/19/200X
100 Margaret Simpson Marketing 48,000 Surveys 10/7/200X
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X
110 Chris Lucero Info Systams 43,000 SPSS 1/12/200X
110 Chris Lucero Info Systems 43,000 C++ 4/22/200X
180 Loranzo Davis Finance 66,000
160 Susan Martin Marketing 42,000 SPSS 8/19/200X

Q/Summ. Marketing 42,000 Java 8/12/200X
__J

e Does it contain anomalies?

— Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
— Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class

— Modification: Giving a salary increase to employee 100 forces us to update multiple records

« Why do these anomalies exist?

— Because there are two themes (entity types) in one relation. This results in duplication, and an
unnecessary dependency between the entities

289

Normalizing Previous Employee/Class Table

Employee This seems more complicated
E:;_’IE/ Name Dept_Name Salary
('S Margaret Simpson Marketing 48000 . .
Why might this approach be
140~. Alan Beeton Accounting 52000 y . & PP .
T superior to the previous one?
110 %% Chris Lucero Info Sys 43000
| Y
190%, 3 “lorenzo Davis Finance 55000
150 %, 8ysan Martin Marketing 42000

3
e
‘e
" OO
s v .
%
.
. .

Cbur.s e_Completion
RO CM Date_Completed Course

e QN2 W Course_Title
2 et O e Ll SPSS
g SYBTTEAE L g

110 4 aeeee® 11212004+ e >3 Tax Acc

‘110 4 ...‘.‘.‘.‘.‘.‘.‘._._,...z;].zg;.zoo@ > 4 C++

%0 1 BA9005 e e

150 5 8/12/2002

290

Functional Dependencies ("FDs")

Definition:
If two tuples agree on the attributes

A, A, ..., A
then they must also agree on the attributes

B, B,, ..., B,

Formally:

A, A, ..,A >B,B,..,B,_

291

Functional Dependencies ("FDs")

Def: Let A,B be sets of attributes
We write A = B or say A functionally determines
B if, for any tuples t; and t,:

t,[A] = t,[A] implies t,[B] = t,[B]

and we call A 2 B a functional dependency

A (determinant) =2 B (dependent)

A = B means that
“Whenever two tuples agree on A then they agree on B.”

292

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A} and
B=1{B,,..B,}inR,

293

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A} and
B=1{B,,..B,}inR,

The functional dependency A—> B on
R holds if for any t,t; in R:

294

A Picture Of FDs

Defn (again):

If t,t; agree here..

Given attribute sets A={A,,...,A} and
B=1{B,,..B,}inR,

The functional dependency A—> B on
R holds if for any t,t; in R:

if t;[A;] = t;[A;] AND t;[A,]=t;[A,] AND
. AND t[A,.] = t[A,]

295

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A} and
B=1{B,,..B,}inR,

A A, B, B,
The functional dependency A—> B on
t‘ R holds if for any tt; in R:
“‘ | if £[A,] = t[A,] AND t[A,]=t[A,] AND
If t;,t; agree here.. ...they also agree herel! then tl[Bl] = tJ[Bl] AND ti[BZ]ztj[BZ]

AND ... AND t[B,] = t[B,]

296

FDs for Relational Schema Design

e High-level idea: why do we care about FDs?
— Start with some relational schema
— Find out its functional dependencies (FDs)

— Use these to design a better schema
* One which minimizes the possibility of anomalies

297

Functional Dependencies as Constraints

A functional dependency is a form
of constraint

e Holds on some instances (but not
others) — can check whether there
are violations

* Part of the schema, helps define a
valid instance

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

Student | Course | Room

Mary CS3200 | WVF20

Joe

CS3200 | WVF20

Sam

CS3200 | WVF20

Note: The FD {Course}
- {Room} holds on
this instance

298

Functional Dependencies as Constraints

Note that:

You can check if an FD is
violated by examining a single
instance;

However, you cannot prove
that an FD is part of the
schema by examining a single
Instance.

* This would require checking
every valid instance

Student | Course | Room
Mary CS3200 | WVF20
Joe CS3200 | WVF20
Sam CS3200 | WVF20

However, cannot prove
that the FD {Course} =
{Room} is part of the

schema

299

More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID |Name Phone Position

E0045 Smith / £§4/__ﬂeﬂe
E3542 Mike

9876 Salesrep
EI111 |Smith /9876 Salesrep_| |

E9999 Mary 1234 Lawyer

—_—

300

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 <« |Salesrep
E1111 Smith 9876 <« |Salesrep
E9999 Mary 1234 Lawyer

{Position} - {Phone}

301

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 — |Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 — |Lawyer

but not {Phone} - {Position}

302

Practice

Find at least three FDs which

A B C D E are violated on this instance:
1 2 4 3 6
{ P> I3
3 2 5 1 8
{ P> I3
1 4 4 5 7 { F > A I3
—11 2 4) 6 }
13 2 1 8 —

303

2. Finding FDs

What we will learn about next

e “Good” vs. “Bad” FDs: Intuition
e Finding FDs
e Closures

« PRACTICE: Compute the closures

305

INF

e First normal form: A relation that has a primary key and in which
there are no repeating groups

— No multivalued attributes

— Every attribute value is atomic (single fact in each table cell)

e All relations are in 1INF

« Normalization steps (from tabular view of data):
— Goal: create a relation from the tabular view
— Action: remove repeating groups

— Action: select the primary key 306

Example: Convert To 1NF

géoduct ID

Order ID Order_ Customer_ Customer_ Customer_ Product_ Product_ Unit_ Ordered
Date ID Name Address Description Finish Price Quantity
1006 10/24/2004 2 Value Plano, TX 7 Dining Natural 800.00 2
Furniture Table Ash
5 Writer's Cherry 325.00 2
Desk
4 Entertainment Natural 650.00 1
Center Maple
1007 10/25/2004 6 Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery cO Dresser
4 Entertainment Natural 650.00 3
Center Maple

« Normalization steps (from tabular view of data):

— Goal: create a relation from the tabular view

— Action: remove repeating groups

— Action: select the primary key

307

Action: Remove Repeating Groups

Order ID Order_ Customer_ Customer_ Customer_ Product ID Product_ Product_ Unit_. Ordered_
Date ID Name Address Description Finish Price Quantity

1006 10/24/2004 2 Value Plano, TX 7 Dining Natural 800.00 2
Furniture Table Ash

1006 10/24/2004 2 Value Plano, TX 5 Writer's Cherry 325.00 2
Fumiture Desk

1006 10/24/2004 2 Value Plano, TX 4 Entertainment Natural 650.00 1
Furniture Center Maple

1007 10/25/2004 6 Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery cO Dresser

1007 10/25/2004 6 Fumniture Boulder, 4 Entertainment Natural 650.00 3
Gallery CO Center Maple

e |s the data view a relation now?
— Answer: yes

e |s it well-structured?
— Answer: no

308

What are the anomalies in this table? 3

Ord}r ID Ordg;; Custc*(er CuJamer &m«_ Prochi ID Product_ Prol'uct_ &k Ordered_

Date Name Address Description Finish Price Quantity

1006 10/24/2004 2 Value Plano, TX 7 Dining Natural 800.00 2
Fumiture Table Ash

1006 10/24/2004 2 Value Plano, TX 5 Writer's Cherry 325.00 2
Furniture Desk

1006 10/24/2004 2 Value Plano, TX 4 Entertainment Natural 650.00 1
Furniture Center Maple

1007 10/25/2004 6 Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery CO Dresser

1007 10/25/2004 6 Furniture Boulder, 4 Entertainment Natural 650.00 3

L Gallery CcO y Center Maple j\

—

e Insertion: If new product IZ orderﬁ for Tder 1007 of existing customer, customer data
must be re-entered, causi i

« Deletion: If we delete the Dining Table from Order 1006, we lose information concerning
this item'’s finish and price

« Update: Changing the price of product ID 4 requires update in several records

« Why do these anomalies exist? Because there are multiple themes (entity types) in one
relation. -> duplication, and unnecessary dependency between entities

309

Action: Select A Primary Key

« |dentify FDs and CKs (candidate keys = minimal superkeys)

o Four determinants and functional dependencies

Order_ID - Order_Date, Customer_ID, Customer_Name, Customer_Address

Customer_ID - Customer_Name, Customer_Address
Product_ID - Product_Description, Product_Finish, Unit_Price
Order_ID, Product_ID - Ordered_Quantity

e Select a PK from CKs
(Order_ID, Product_ID)

Full Dependency

Transitive Dependencies

Y

Order_Date | Customer_ID | Customer_Name

Product_ID

Product_Description

Product_Finish

Unit_Price

Ordered_Quantity

A

3

Partial Dependencies

Partial Dependencies

310

Next Step: Convert To 2NF

e 2NF: A relation in 2NF in which every non-key attribute is fully
functionally dependent on the primary key

e Partial FD: A FD in which one or more nonkey attributes are
functionally dependent on part (but not all) of the PK

Full Dependency

Transitive Dependencies l

Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address | Product_ID | Product_Description | Product_Finish | Unit_Price | Ordered_Quantity

T [T A 3

Partial Dependencies Partial Dependencies

311

Getting A Relation To 2NF

« Create a new relation for each primary key attribute that is a
determinant in a partial dependency

— That attribute is the primary key in the new relation

« Move the nonkey attributes that are dependent on this primary key
attribute(s) from the old relation to the new relation

e Exercise: Convert 1NF relation to 2NF

Full Dependency
Transitive Dependencies
mp—
Y \ 4
Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address &odud_lD Product_Description | Product_Finish LIn‘rt_Pric# Ordered_Quantity
T J T ‘ A f \
~Partia-DepenoantEs - Partial Dependencies

312

A INF Relation Is In 2NF if

« The PK consists of only one attribute. There cannot be a partial dependency in
such a relation

« (or) no nonkey attributes exist in the relation (thus all attributes in the
relation are components of the PK). There are no FDs in such a relation

« (or) every nonkey attribute is functionally dependent on the full set of PK
attributes.

N

Order_ID | Product ID O%ed_ﬂua& ORDER_LINE (3NF)

Product_ID | Product_Description | Product_Finish | Unit_Price PRODUCT (3NF)

Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address | CUSTOMER_ORDER (2NF)

T 4

Transitive Dependencies

313

3NF

« 3NF: A relation that is in 2NF and has no transitive dependencies present

« Transitive dependency: An FD between two (or more) nonkey attributes

— FD between the PK and one or more nonkey attributes that are dependent on the PK via

another nonkey attribute

« Transitive dependency example:

Order_ID

Product_ID

Ordered_Quantity

Transitivity:
a<b & b<c = a<c

ORDER_LINE (3NF)

Product_ID

Product_Description

Product_Finish | Unit_Price PRODUCT (3NF)

Order_ID

Order_Date

Customer_ID | Customer_Name | Customer_Address | CUSTOMER_ORDER (2NF)

T /

Transitive Dependencies

314

Removing Transitive Dependencies

For each nonkey attribute(s) that is a determinant in a relation, create a new
relation.

— That attribute becomes the PK of the new relation

« Move all of the attributes that are functionally dependent on the attribute
from the old to the new relation

o Leave the attribute (which serves as a PK in the new relation in the old
relation to serve as a FK that allows us to associate the two relations

e Exercise: C ' \ ow to 3NF \

Order_ID | Order_Date kCustomer_D Customer_Name Customer_Address\l CUSTOMER_ORDER (2NF)
- \/':\— f o)

Transitive Dependencies

315

Third Normal Form

« Example converted to 3NF:

Order_ID | Order_Date

Customer_ID ORDER (3NF)

Customer_ID

Customer_Name

Customer_Address

e Original example in 2NF:

/r

CUSTOMER (3NF)

Order_ID | Order_Date

Customer_ Customer_Name

Customer_Add re}s

A

& Transitive Dependencies J

CUSTOMER_ORDER (2NF)

316

Full Example: From 1INF to 3NF

Before (3NF):

Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address | Product_ID | Product_Description | Product_Finish | Unit_Price | Ordered_Quantity

After (3NF):

Order_ID | Product_ID | Ordered_Quantity | ORDER_LINE (3NF)

Product_ID | Product_Description | Product_Finish | Unit_Price PRODUCT (3NF)

Order_ID | Order_Date | Customer_ID ORDER (3NF)

Customer_ID | Customer_Name | Customer_Address CUSTOMER (3NF)

317

Normalization Summary

« Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

e Goals of normalization include:
— Minimize data redundancy
— Simplifying the enforcement of referential integrity constraints
— Simplify data maintenance (inserts, updates, deletes)
— Improve representation model to match "the real world"

318

