
233

L06: SQL: Advanced

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 9/24/2018

https://northeastern-datalab.github.io/cs3200/

234

Announcements!

• Recall Exam 1 on THU Oct 4
- Topic: SQL on your own computer and PostgreSQL instance
- look at HW10 on BB before
- 0 point practice exam on MON 1 (just practicing test modalities)

• HW3: you will have to draw your own schema
• Student feedback: "too much handholding"
• Ask questions in class if you can't follow

• Student poll: 2nd half of next class: SQL practice or database design?

235

SELECT cname
FROM Product P, Company
WHERE country = 'USA'
AND P.category = 'Gadgets'
AND P.manufacturer = cname

A word on capitalization 302

Product (pname, price, category, manufacturer)
Company (cname, stockprice, country)

Q: Find all US companies that manufacture
products in the 'Gadgets' category!

My recommendation for capitalization

1. SQL keywords in ALL CAPS,
2. Table names and aliases with Initial
Caps
3. Column names all in lowercase.

More information: http://blog.lerner.co.il/quoting-postgresql/ , https://stackoverflow.com/questions/6331504/omitting-the-double-quote-to-do-query-on-postgresql

PostgreSQL treats all in lowercase.
Except if you write:
create table "Product" (…)
This will preserve capitalization of table name
But … you need to always use quotations

http://blog.lerner.co.il/quoting-postgresql/
https://stackoverflow.com/questions/6331504/omitting-the-double-quote-to-do-query-on-postgresql

236

Let's practice

SELECT <select_list>
FROM A
LEFT JOIN B
ON A.key = B.key
WHERE B.key IS NULL

fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French
361

SELECT *
FROM English
WHERE eid NOT IN

(SELECT fid
FROM French)

SELECT eText, eid
FROM English
LEFT JOIN French
ON eid = fid
WHERE fid IS NULL

Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

237

Missing sales

SELECT Item.name, Purchase.store
FROM Item JOIN Purchase ON

Item.name = Purchase.iName

SELECT Item.name, Purchase.store
FROM Item, Purchase
WHERE Item.name = Purchase.iName

Same as:

An "inner join":

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

Item(name, category)
Purchase(iName, store, month)

334

238

SELECT Item.name, Purchase.store
FROM Item JOIN Purchase ON

Item.name = Purchase.iName

Missing sales

SELECT Item.name, Purchase.store
FROM Item, Purchase
WHERE Item.name = Purchase.iName

Same as:

Products that never sold will be lost L

An "inner join":

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

Item(name, category)
Purchase(iName, store, month)

334

239

Missing sales

SELECT Item.name, Purchase.store
FROM Item INNER JOIN Purchase ON

Item.name = Purchase.iName

SELECT Item.name, Purchase.store
FROM Item, Purchase
WHERE Item.name = Purchase.iName

Same as:

Products that never sold will be lost L

An "inner join":

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

Item(name, category)
Purchase(iName, store, month)

"INNER JOIN"
same as
"JOIN"

334

What if you want to include
never-sold products?

240

Outer Joins

If we want to include the never-sold products,
then we need an "outer join":

Name Category

Gizmo Gadget

Camera Photo

OneClick Photo

Item
Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Result

Now we include those products J

Item(name, category)
Purchase(iName, store, month)

iName Store Month

Gizmo Wiz 8

Camera Ritz 8

Camera Wiz 9

Purchase

SELECT Item.name, Purchase.store
FROM Item LEFT OUTER JOIN Purchase ON

Item.name = Purchase.iName

"LEFT OUTER JOIN"
same as

"LEFT JOIN"

334

241

Outer Joins w/ selection

SELECT Item.name, Purchase.store
FROM Item LEFT OUTER JOIN Purchase ON

Item.name = Purchase.iName
WHERE month = 9

Same question, but now only for those sold in month = 9:

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera Wiz

Result

The products disappeared *despite* outer join L

Item(name, category)
Purchase(iName, store, month)

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

Explanation: the filter ("month = 9") applies to the
result of the outer join. Any tuple that has NULL as
month, does not pass the filter

334

242

SELECT Item.name, Purchase.store
FROM Item LEFT OUTER JOIN Purchase ON

Item.name = Purchase.iName
WHERE month = 9

Outer Joins w/ selection

SELECT Item.name, Purchase.store
FROM Item LEFT OUTER JOIN Purchase ON

(Item.name = Purchase.iName
AND month = 9)

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera Wiz
Gizmo NULL
OneClick NULL

Result

Now they are back again J

Item(name, category)
Purchase(iName, store, month)

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

parenthesis
not required,
and just for
illustration

Same question, but now only for those sold in month = 9:

Explanation: now the filter ("month = 9") applies to the
right side of the left join *before* joining. NULLs are
appended only after filter, during join

334

243

SELECT Item.name, Purchase.store
FROM Item LEFT OUTER JOIN Purchase ON

Item.name = Purchase.iName
WHERE month = 9

Outer Joins w/ selection

SELECT Item.name, P.store
FROM Item LEFT OUTER JOIN

(SELECT iName, store FROM Purchase WHERE month = 9) P
on Item.name = P.iName

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Camera Wiz
Gizmo NULL
OneClick NULL

Result

Now they are back again J

Item(name, category)
Purchase(iName, store, month)

iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase

Same question, but now only for those sold in month = 9:

Explanation: now the filter ("month = 9") applies to the
right side of the left join *before* joining. NULLs are
appended only after filter, during join

334

244

Empty Group Problem

What’s wrong?

SELECT name, count(*)
FROM Item, Purchase
WHERE name = iName

and month = 9
GROUP BY name

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number
of sales in Sept (= month 9)

334

245

SELECT name, count(store)
FROM Item LEFT JOIN Purchase ON

name = iName
and month = 9

GROUP BY name

Empty Group Problem

Now we also get the products with 0 sales

We need to use an attribute from
"Purchase" to get the correct 0
count. Try "name" from "Item".

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number
of sales in Sept (= month 9)

334

What happens if you
add "sum(month)" to
the SELECT clause?

246

SELECT x.name, count(y.store)
FROM Item x LEFT OUTER JOIN Purchase y ON

x.name = y.iName
and y.month = 9

GROUP BY x.name

Empty Group Problem

Now we also get the products with 0 sales

We need to use an attribute from
"Purchase" to get the correct 0
count. Try "name" from "Item".

Item(name, category)
Purchase(iName, store, month)

Compute, for each product, the total number
of sales in Sept (= month 9)

334

247

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a,
COUNT(N.a) ct,
SUM(N.a) su

FROM M
Left JOIN N ON M.a = N.a
GROUP BY M.a

a
1
2

Result
ct
0
1

su
NULL
2

248

SELECT M.a,
COUNT(N.a) ct,
SUM(N.a) su

FROM M
Left JOIN N ON M.a = N.a
GROUP BY M.a

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a,
COUNT(N.a) ct,
SUM(N.a) su,
SUM(COALESCE(N.a, 0)) cosu

FROM M
Left JOIN N ON M.a = N.a
GROUP BY M.a

a
1
2

Result
ct
0
1

su
NULL
2

cosu
0
2

SELECT COALESCE(1, NULL)

SELECT COALESCE(NULL, 3)

SELECT COALESCE(1, 2)

COALESCE: takes first non-NULL value

249

Coalesce function 333

a
1
2

M
a
2
3

N SELECT M.a, N.a, COALESCE(M.a, N.a) as b
FROM M
FULL JOIN N
ON M.a = N.a

M.a N.a
1 NULL
2 2
NULL 3

Result
b
1
2
3

COALESCE: takes first non-NULL value

250

Natural Outer Join 333

a
1
2

M
a
2
3

N SELECT a
FROM M
NATURAL FULL JOIN N

Result
a
1
2
3

NATURAL FULL JOIN
models "coalesce"

251

Commutativity & Associativity

1 2
3 4

Multiplication Matrix multiplication

2 3
3
1 49

• • =

11 16

1 2
3 42 3

3
1 49• • =

5
13

1 2
3 4

3
1 •

#col ≠ #row

Matrix multipl.
is associative J

... but *not*
commutative L

3 2 4 24

• • =3 2 4 24

•4 2

• •

Multiplication is
associative J

and commutative J

=

252

Commutativity & Associativity
Outer joins

A B
1 2

R

SELECT A, B, C
FROM (R
NATURAL FULL JOIN S)
NATURAL FULL JOIN T

B C
2 3

S
A C
4 5

T

SELECT A, B, C
FROM R
NATURAL FULL JOIN (S
NATURAL FULL JOIN T)

A B C
5 NULL 4
1 2 3

Result
A B C
5 NULL 4
NULL 2 3
1 2 NULL

Result

333

253

Outer Joins: summary

• Left (outer) join:
- Include the left tuple even if there’s no match

• Right (outer) join:
- Include the right tuple even if there’s no match

• Full (outer) join:
- Include both left and right tuples even if there’s no match

• (inner) join:
- Include only the matches

254

Theta joins

255

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a ?
SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a ?

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

305R
a
1
2

U
a
2
3
4

256

Theta joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R
a
1
2

U
a
2
3
4

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A Theta-join allows for arbitrary comparison relationships (such as ≥).
An equijoin is a theta join using the equality operator.

a b
1 2
1 3
1 4
2 3
2 4

a b
2 2

257

Processing Multiple Tables–Joins

• Join: a relational operation that causes two or more tables with a
common domain to be combined into a single table or view

• Equi-join: a join in which the joining condition is based on equality
between values in the common columns; common columns appear
redundantly in the result table

• A Theta-join allows for arbitrary comparison relationships (e.g., ≥).
An equijoin is a theta join using the equality operator.

• Natural join: an equi-join in which one of the duplicate columns is
eliminated in the result table

The common columns in joined tables are usually the primary key
of the dominant table and the foreign key of the dependent table
in 1:M relationships

258

Processing Multiple Tables–Joins

• Left Outer join: a join in which rows from the left table that do not
have matching values in common columns are nonetheless included
in the result table (as opposed to inner join, in which rows must
have matching values in order to appear in the result table)

• Union join ("Full outer join"): includes all columns from each table
in the join, and an instance for each row of each table

259

WITH clause

260

WITH clause: temporary relations
SELECT pname, price
FROM Product
WHERE price =

(SELECT max(price)
FROM Product)

WITH Max_price(value) as
(SELECT max(price)
FROM Product)

SELECT pname, price
FROM Product, Max_price
WHERE price = value

Product (pname, price, cid)

The WITH clause defines a temporary
relation that is available only to the query
in which it occurs. Sometimes easier to
read. Very useful for queries that need to
access the same intermediate result
multiple times

315

261

WITH clause: temporary relations
SELECT pname, price
FROM Product
WHERE price =

(SELECT max(price)
FROM Product)

WITH Max_price as
(SELECT max(price) as value
FROM Product)

SELECT pname, price
FROM Product, Max_price
WHERE price = value

Product (pname, price, cid)

The WITH clause defines a temporary
relation that is available only to the query
in which it occurs. Sometimes easier to
read. Very useful for queries that need to
access the same intermediate result
multiple times

315

262

WITH Keyword
If you need to use a query and want it to run only once, the WITH keyword lets you
define one without it running multiple times (which may happen with a subquery).

WITH {subqueryName} AS {subquery}
SELECT …
FROM … subqueryName
WHERE …

263

Witnesses

264

Motivation: What are these queries supposed to return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company

Find for each company id, the maximum
price amongst its products ?

265

Motivation: What are these queries supposed to return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company

cid mp
1 20
2 300

Find for each company id, the maximum
price amongst its products

Find for each company id, the product
with maximum price amongst its products ?

266

Motivation: What are these queries supposed to return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company

cid mp pname
1 20 SuperGizmo
2 300 iTouch1
2 300 iTouch2

cid mp
1 20
2 300

Find for each company id, the maximum
price amongst its products

Find for each company id, the product
with maximum price amongst its products
(Recall that "group by cid" can just give us
one single tuple per cid)

267

Witnesses: simple (1/4)

Q: Find the most expensive product + its price

315Product (pname, price, cid)

(Finding the maximum price alone would be easy)

268

Witnesses: simple (2/4)

SELECT max(P1.price)
FROM Product P1

But we want the "witnesses," i.e. the product(s) with
the max price. How do we do that?

Our Plan:
• 1. Compute max price in a subquery

Q: Find the most expensive product + its price

Product (pname, price, cid)

1.

(Finding the maximum price alone would be easy)

315

269

Witnesses: simple (3/4)

SELECT P2.pname, P2.price
FROM Product P2

Our Plan:
• 1. Compute max price in a subquery
• 2. Compute each product and its price...

Q: Find the most expensive product + its price

Product (pname, price, cid)

SELECT max(P1.price)
FROM Product P1

But we want the "witnesses," i.e. the product(s) with
the max price. How do we do that?

1.

2.

(Finding the maximum price alone would be easy)

315

270

Witnesses: simple (4/4)

SELECT P2.pname, P2.price
FROM Product P2
WHERE P2.price =

(SELECT max(P1.price)
FROM Product P1)

Our Plan:
• 1. Compute max price in a subquery
• 2. Compute each product and its price...

and compare the price with the max price

(Finding the maximum price alone would be easy)

Product (pname, price, cid)

Q: Find the most expensive product + its price

315

271

Witnesses: with joins (1/6)

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

315

272

Witnesses: with joins (2/6)

Our Plan:
• 1. Compute max price in a subquery for a given company

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

315

273

Witnesses: with joins (2/6)

Our Plan:
• 1. Compute max price in a subquery for a given company

Q: For each company, find the most expensive product + its price

SELECT max(P1.price)
FROM Product P1
WHERE P1.cid = 1

Product (pname, price, cid)
Company (cid, cname, city)

1.

315

274

Witnesses: with joins (3/6)

Our Plan:
• 1. Compute max price in a subquery for a given company
• 2. Compute each product and its price, per company

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

SELECT max(P1.price)
FROM Product P1
WHERE P1.cid = 1

1.

315

275

Witnesses: with joins (3/6)

SELECT C2.cname, P2.pname, P2.price
FROM Company C2, Product P2
WHERE C2.cid = P2.cid

Our Plan:
• 1. Compute max price in a subquery for a given company
• 2. Compute each product and its price, per company

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

SELECT max(P1.price)
FROM Product P1
WHERE P1.cid = 1

1.

2.

315

276

Witnesses: with joins (3/6)

SELECT C2.cname, P2.pname, P2.price
FROM Company C2, Product P2
WHERE C2.cid = P2.cid

Our Plan:
• 1. Compute max price in a subquery for a given company
• 2. Compute each product and its price, per company
• 3. Compare the price with the max price

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

SELECT max(P1.price)
FROM Product P1
WHERE P1.cid = 1

1.

2.

315

277

Witnesses: with joins (4/6)

SELECT C2.cname, P2.pname, P2.price
FROM Company C2, Product P2
WHERE C2.cid = P2.cid

and P2.price =
(SELECT max(P1.price)
FROM Product P1
WHERE P1.cid = C2.cid)

Our Plan:
• 1. Compute max price in a subquery for a given company
• 2. Compute each product and its price, per company
• 3. Compare the price with the max price

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

How many aliases do
we actually need?

315

278

Witnesses: with joins (5/6)

SELECT cname, pname, price
FROM Company, Product
WHERE Company.cid = Product.cid

and price =
(SELECT max(price)
FROM Product
WHERE cid = Company.cid)

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

Our Plan:
• 1. Compute max price in a subquery for a given company
• 2. Compute each product and its price, per company

and compare the price with the max price

We need no single
alias here.

Next: can we
eliminate the max
operator in the
inner query?

315

279

Witnesses: with joins (6/6)

SELECT cname, pname, price
FROM Company, Product
WHERE Company.cid = Product.cid

and price >= ALL
(SELECT price
FROM Product
WHERE cid = Company.cid)

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

Our Plan:
• 1. Compute all prices in a subquery, for a given company
• 2. Compute each product and its price, per company

and compare the price with the all prices

But: "ALL" does
not work in SQLite
L

315

280

Witnesses: with FROM (1/3)

Another Plan:
• 1. Create a table that lists the max price for each company id
• 2. Join this table with the remaining tables

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

SELECT cid, max(price) as MP
FROM Product
GROUP BY cid

1.

Finding the maximum price for each company was easy.
But we want the “witnesses”, i.e. the products with max price.

315

281

SELECT C2.cname, P2.pname, X.MP
FROM Company C2, Product P2,

(SELECT cid, max(price) as MP
FROM Product
GROUP BY cid) as X

WHERE C2.cid = P2.cid
and C2.cid = X.cid
and P2.price = X.MP

Witnesses: with FROM (2/3)

Another Plan:
• 1. Create a table that lists the max price for each company id
• 2. Join this table with the remaining tables

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

2.

Let's write the
same query with
a "WITH" clause

315

282

WITH X(cid, MP) as
(SELECT cid, max(price)
FROM Product
GROUP BY cid)

SELECT C2.cname, P2.pname, X.MP
FROM Company C2, Product P2, X
WHERE C2.cid = P2.cid

and C2.cid = X.cid
and P2.price = X.MP

Witnesses: with FROM (3/3)

Another Plan with WITH:
• 1. Create a table that lists the max price for each company id
• 2. Join this table with the remaining tables

Q: For each company, find the most expensive product + its price

Product (pname, price, cid)
Company (cid, cname, city)

315

283

Witnesses: with aggregates per group (1/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, max(price) as mp
FROM
WHERE
GROUP BY
HAVING

First: How to get the product that is sold with maximum price?

Product mp
Banana 4

???

308
Purchase

284

Witnesses: with aggregates per group (2/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1) Find the maximum price

(no name)
4

SELECT max(price)
FROM Purchase

Purchase
First: How to get the product that is sold with maximum price?

308

285

Witnesses: with aggregates per group (3/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

2) Now you need to find product with price = maximum price

SELECT P2.product, P2.price as mp
FROM Purchase P2
WHERE P2.price = (

)

SELECT max(price)
FROM Purchase

Product mp
Banana 4

Purchase
First: How to get the product that is sold with maximum price?

308

286

Witnesses: with aggregates per group (4/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Another way to formulate this query

SELECT P2.product, P2.price as mp
FROM Purchase P2
WHERE P2.price >= ALL (

SELECT price
FROM Purchase

)

Product mp
Banana 4

SELECT price
FROM Purchase

Purchase
First: How to get the product that is sold with maximum price?

308

287

Witnesses: with aggregates per group (5/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT
FROM
WHERE
GROUP BY
HAVING

Second: How to get the product that is sold with max sales (=quanities sold)?

Product sales
Banana 70

???

Purchase
308

288

Witnesses: with aggregates per group (6/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1: find the total sales (sum of quantity) for each product

Product sales
Bagel 40
Banana 70

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product

Purchase
Second: How to get the product that is sold with max sales (=quanities sold)?

308

289

Witnesses: with aggregates per group (7/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

2: we can use the same query as nested query

(no name)
40
70

SELECT sum(quantity)
FROM Purchase
GROUP BY product

Purchase
Second: How to get the product that is sold with max sales?

308

290

Witnesses: with aggregates per group (8/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3: putting things together

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) >= ALL (

SELECT sum(quantity)
FROM Purchase
GROUP BY product)

Product sales
Banana 70

SELECT sum(quantity)
FROM Purchase
GROUP BY product

Purchase
Second: How to get the product that is sold with max sales?

Next: Can you write
the query without
the "ALL" quanitfier?

308

291

Witnesses: with aggregates per group (8/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Another way to formulate this query without "ALL"

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) =

(SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

Product sales
Banana 70

(SELECT sum(quantity) Q
FROM Purchase
GROUP BY product) X

Purchase
Second: How to get the product that is sold with max sales?

308

292

Witnesses: with aggregates per group (8/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Another way to formulate this query without "ALL"

WITH X as
(SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product)

SELECT product, sales
FROM X
WHERE sales =

(SELECT max (sales)
FROM X)

Product sales
Banana 70

Purchase
Second: How to get the product that is sold with max sales?

308

293

Understanding
nested queries

294

More SQL Queries

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

295

More nested Queries 1

Q: Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

296

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

More nested Queries 2

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

They must have reser-
ved at least one boat
in another color

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

297

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

More nested Queries 3

Q: Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

They can have reser-
ved 0 or more boats in
another color, but
must not have
reserved any red boat

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

298

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

More nested Queries 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

299

More nested Queries 5

SELECT S.sname
FROM Sailors S
WHERE not exists

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by him.

To understand semantics of
nested queries, think of a
nested loops evaluation: For
each Sailors tuple, check the
qualification by computing the
subquery

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

300

Once more: 1

Q: Find the names of sailors who have reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

301

Once more: 2

Q: Find the names of sailors who have reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

302

Once more: 3

Q: Find the names of sailors who have not reserved a red boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

303

Once more: 4

= Find the names of sailors who have reserved only red boats
Q: Find the names of sailors who have not reserved a boat that is not red.

SELECT S.sname
FROM Sailors S
WHERE S.sid not IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid not IN

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'))

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

304

SELECT S.sname
FROM Sailors S
WHERE not exists

(SELECT B.bid
FROM Boats B
WHERE B.color = 'red'
AND not exists

(SELECT R.bid
FROM Reserves R
WHERE R.bid = B.bid
AND R.sid = S.sid))

Once more: 5

= Find the names of sailors who have reserved all red boats
Q: Find the names of sailors so there is no red boat that is not reserved by him.

Sailors (sid, sname, rating, age)
Reserves (sid, bid, day)
Boats (bid, bname, color) 340

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

305

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input: Schema

Output: Visualization

Input Query

http://queryviz.com

http://queryviz.com/online

http://www.youtube.com/watch?v=kVFnQRGAQls

http://queryviz.com/online
http://www.youtube.com/watch?v=kVFnQRGAQls

