
185

L05: SQL: Advanced

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 9/20/2018

https://northeastern-datalab.github.io/cs3200/

186

Announcements!

• HWs in this class are here for you to learn. Not for me to test you. Thus you
may see topics for for which you have to read the textbook on your own.
- Think about the rock-hammer-nail example from lecture 1

• Feel free to start working on your last HW (= exam 3 from last year)

• HW1 feedback: query execution took too long: next HWs smaller instances

• HW2 groups are assigned

• Student feedback: Speed: too fast?

• Class participation points for tips on increasing class participation (Surfer ...)

• Class participation: random calls

187

The "Surfer Analogy" for time management

Source: http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg

http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg

188

Multitasking

“multitasking adversely affects how you learn. Even if you learn while multitasking, that
learning is less flexible and more specialized, so you cannot retrieve the information as easily.”
--Russell Poldrack, UCLA Psychology Professor

“Our research offers neurological evidence that the brain cannot effectively do two things at
once.” -- Rene Marois, Dept. of Psychology, Vanderbilt

“The brain is a lot like a computer. You may have several screens open on your desktop, but
you’re able to think about only one at a time.” -- William Stixrud, Neuropsychologist

Source: Courtesy of Mike Smith

“Myth #3: Multitasking when it comes to paying attention, is a
myth… studies show that a person who is interrupted takes
50% longer to accomplish a task. Not only that, he or she
makes up to 50% more errors” -- John Medina (Brain rules)

“…multitasking is a lie. You’re asking me to switch attention,
and that makes me less productive.” -- Dave Crenshaw (The
myth of multitasking)

If you do something else in class ® I will pick on you:
You need to prove to me that you can multitask.

189

An example of SQL semantics

SELECT R.A
FROM R, S
WHERE R.A = S.BA

1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross
Product

A B C
3 3 4
3 3 5

A
3
3

Apply
ProjectionApply

Selections /
Conditions

Output

S

R

190

Note the semantics of a join

Recall: Cross product (A X B) is the set of all
unique tuples in A,B

Ex: {a,b,c} X {1,2}
= {(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)}

= Filtering!

= Returning only some attributes

We have seen that remembering this order is critical
to understanding the output of certain queries

1. Take cross product:
! = #×%

2. Apply selections / conditions:
& = ',) ∈ ! '. , = '. -}

3. Apply projections to get final output:
/ = (1. ,,) 34' 1 ∈ &

SELECT R.A
FROM R, S
WHERE R.A = S.B

191

Note: we say “semantics” not “execution order”

• The preceding slides show what a join means

• Not actually how the DBMS executes it under the covers

192

Data independence

• Logical data independence:
- specify a set of attributes, not the logical navigation path to compute the connection

among them
• Physical data independence:
- specify a query, not the physical access paths to compute it

193

Big IMDB schema (Postgres)

Actor
id
fname
lname
gender

Movie
id
name
year

Directors
id
fname
lname

Casts
pid
mid
role

Movie_directors
did
mid

Genre
mid
genre

194

3. Subqueries in WHERE (existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (1, 2)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

195

3. Subqueries in WHERE (existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (SELECT P.cid

FROM Product2 P
WHERE P.price < 25)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Set membership"

315

196

3. Subqueries in WHERE (existential)

Existential quantifiers $

Using EXISTS:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname

FROM Company2 C

WHERE EXISTS (SELECT *

FROM Product2 P

WHERE C.cid = P.cid

and P.price < 25)

Product2 (pname, price, cid)

Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Test for empty relations"

Correlated subquery

EXISTS is true iff the subquery's result is not empty

315

197

3. Subqueries in WHERE (existential)

Existential quantifiers $

Using ANY (also some):

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname

FROM Company2 C

WHERE 25 > ANY (SELECT price

FROM Product2 P

WHERE P.cid = C.cid)

Product2 (pname, price, cid)

Company2 (cid, cname, city)

SQLlite does not support "ANY" L

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

"Set comparison"

Correlated subquery

315

198

3. Subqueries in WHERE (existential)

Existential quantifiers $

Now, let's unnest:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C, Product2 P
WHERE C.cid = P.cid

and P.price < 25

Existential quantifiers are easy ! J

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

199

3. Subqueries in WHERE (universal)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Q: Find all companies for which all products have price < 25!

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

same as:

Product2 (pname, price, cid)
Company2 (cid, cname, city)

315

200

3. Subqueries in WHERE (exist not -> universal)

2. Find all companies s.t. all their products have price < 25!

1. Find the other companies: i.e. they have some product ³ 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (SELECT P.cid

FROM Product2 P
WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product2 P
WHERE P.price >= 25)

Q: Find all companies that make only products with price < 25!
315

201

3. Subqueries in WHERE (exist not -> universal)

Using NOT EXISTS:

SELECT DISTINCT C.cname

FROM Company2 C

WHERE NOT EXISTS (SELECT *

FROM Product2 P

WHERE C.cid = P.cid

and P.price >= 25)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Product2 (pname, price, cid)

Company2 (cid, cname, city)

315

202

3. Subqueries in WHERE (exist not -> universal)

Using ALL:

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE 25 > ALL (SELECT price

FROM Product2 P
WHERE P.cid = C.cid)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SQLlite does not support "ALL" L

315

203

Question for Database Fans & Friends

• How can we unnest the universal quantifier query ?

This topic goes beyond the course objectives;
only for those who are really interested

(computer science, research, grad school)

204

Queries that must be nested

• Definition: A query Q is monotone if:
- Whenever we add tuples to one or more of the tables…
- … the answer to the query cannot contain fewer tuples

• Fact: all unnested queries are monotone
- Proof: using the "nested for loops" semantics

• Fact: Query with universal quantifier is not monotone
- Add one tuple violating the condition. Then "all" returns fewer tuples

• Consequence: we cannot unnest a query with a universal quantifier

This topic goes beyond the course objectives;
only for those who are really interested

(computer science, research, grad school)

205

The drinkers-bars-beers example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

Find drinkers that frequent only bars that serve only beer they like.

x: $y. $z. Frequents(x, y)ÙServes(y,z)ÙLikes(x,z)

x: "y. Frequents(x, y)Þ ($z. Serves(y,z)ÙLikes(x,z))

x: "y. Frequents(x, y)Þ "z.(Serves(y,z) Þ Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

x: $y. Frequents(x, y)Ù"z.(Serves(y,z) Þ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Challenge: write these in SQL.
Solutions: http://queryviz.com/online/

331

http://queryviz.com/online/

206

Null Values

207

3-valued logic example

• Three logicians walk into a bar. The bartender asks:
"Do all of you want a drink?"

• The 1st logician says: "I don't know."
• The 2nd logician says: "I don't know."
• The 3rd logician says: "Yes!"

208

Nulls in SQL

• Whenever we don't have a value, we can put a NULL

• Can mean many things:
- Value does not exists
- Value exists but is unknown
- Value not applicable
- Etc.

• The schema specifies for each attribute if it can be NULL (nullable
attribute) or not

• How does SQL cope with tables that have NULLs ?
2
0
8

209

Null Values

• In SQL there are three Boolean values:
- FALSE, TRUE, UNKNOWN

• If x= NULL then
- Arithmetic operations produce NULL. E.g: 4*(3-x)/7

- Boolean conditions are also NULL. E.g: x='Joe'

- aggregates ignore NULL values

• Logical reasoning:
- FALSE = 0 x AND y = min(x,y)

- TRUE = 1 x OR y = max(x,y)

- UNKNOWN = 0.5 NOT x = (1 – x)
2
0
9

210

Null Values: example
SELECT *

FROM Person

WHERE (age < 25)

and (height > 6 or weight > 190)

Age Height Weight

20 NULL 200

NULL 6.5 170

Person

211

Null Values: example
SELECT *

FROM Person

WHERE (age < 25)

and (height > 6 or weight > 190)

Rule in SQL:
include only tuples that
yield TRUE

Age Height Weight

20 NULL 200

NULL 6.5 170

Person

212

Null Values: example
SELECT *

FROM Person

WHERE (age < 25)

and (height > 6 or weight > 190)

Rule in SQL:
include only tuples that
yield TRUE

Age Height Weight

20 NULL 200

NULL 6.5 170

SELECT *

FROM Person

WHERE age < 25 or age >= 25

Person

213

Null Values: example
SELECT *

FROM Person

WHERE (age < 25)

and (height > 6 or weight > 190)

Rule in SQL:
include only tuples that
yield TRUE

Age Height Weight

20 NULL 200

NULL 6.5 170

SELECT *

FROM Person

WHERE age < 25 or age >= 25

Unexpected behavior

SELECT *

FROM Person

WHERE age < 25 or age >= 25 or age IS NULL

Test NULL
explicitly

Person

214

Null Values and Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT gid,
MAX(val) maxv,
MIN(val) minv,
COUNT(*) ctr,
COUNT(val) ctv,
COUNT(DISTINCT val) ctdv

FROM T
GROUP BY gid
ORDER BY gid

T

373

?

215

ctdv
0
3
2

Null Values and Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT gid,
MAX(val) maxv,
MIN(val) minv,
COUNT(*) ctr,
COUNT(val) ctv,
COUNT(DISTINCT val) ctdv

FROM T
GROUP BY gid
ORDER BY gid

T

gid
1
2
3

maxv
NULL
z
Z

ctv
0
4
3

ctr
2
5
3

minv
NULL
B
A

NULL is ignored by
aggregate functions
if you reference the
column specifically.
Exception: COUNT !

373

216

Null Values and Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT val,
COUNT(*) ctr

FROM T
GROUP BY val

T

val
A
B
Z
a
z
NULL

ctr
2
1
1
1
2
3

NULL is included by "GROUP BY".
Relate sorting of NULL by
"ORDER BY" is DBMS-specific

373

217

Side topic: sorting of strings

ASCII # char
48 0
49 1
... ...
57 9
65 A
... ...
90 Z
97 a
... ...
122 z

SELECT 'A' < 'a' as eval

ASCII encoding

eval
true

SELECT '1' < 'A' as eval

SELECT 'a' < 'ab' as eval

SELECT 'a' < 'A' as eval eval
false

lexicographical order

218

Inner Joins
vs. Outer Joins

219

etext eid fid ftext
One 1 1 Un
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

SELECT *
FROM English JOIN French
ON eid = fid

Same as:

An "inner join":

"JOIN"
same as

"INNER JOIN"

220

etext eid fid ftext

One 1 1 Un

Two 2 NULL NULL

Three 3 3 Trois

Four 4 4 Quatre

Five 5 5 Cinq

Six 6 6 Siz

NULL NULL 7 Sept

NULL NULL 8 Huit

Illustration
fid fText

1 Un

3 Trois

4 Quatre

5 Cinq

6 Siz

7 Sept

8 Huit

English
eText eid

One 1

Two 2

Three 3

Four 4

Five 5

Six 6

French

SELECT *

FROM English FULL JOIN French

ON English.eid = French.fid

SQLite does not support "FULL OUTER JOIN"s L (but "LEFT JOIN")

SELECT *

FROM English JOIN French

ON eid = fid

"FULL JOIN"
same as

"FULL OUTER JOIN"

361

221

2 7,81,3,
4-6

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

Source: Fig. 7-2, Hoffer et al., Modern Database Management, 10ed ed, 2011.

= FULL (OUTER) JOIN

= (INNER) JOIN

361

222Source: http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

Check this web page for illustrating examples

Detailed Illustration with Examples (follow the link)

http://www.codeproject.com/Articles/33052/Visual-Representation-of-SQL-Joins

