
79

L03: SQL: Intermediate

CS3200 Database design (fa18 s2)
https://northeastern-datalab.github.io/cs3200/
Version 9/13/2018

https://northeastern-datalab.github.io/cs3200/

80

Announcements!

• It is ok to make mistakes in class. Making mistakes in class is the best thing
that can happen to you. You learn and will never make it again.
- "Create a Culture in Which It Is Okay to Make Mistakes and Unacceptable Not to Learn

from Them" ... "Recognize that mistakes are a natural part of the evolutionary process."
... "Don’t feel bad about your mistakes or those of others. Love them!"
Ray Dalio. Principles. 2017

• Continue bringing your name tags

• Thanks for posting Q&As on Piazza!

• Make use of office hours (OHs)

• Steve Ballmer: another attempt

81

OHs (Office Hours)

We are here to help.
Reach out to us!

82

Table Alias (Tuple Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

Person (pName, address, works_for)
University (uName, address)

312

83

Table Alias (Tuple Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

SELECT DISTINCT Person.pName, University.address
FROM Person, University
WHERE Person.works_for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

which address?
Error!

Note that "as" is optional !!

Person (pName, address, works_for)
University (uName, address)

312

84

Column Alias (rename attributes)

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

Person (pName, address, works_for)
University (uName, address)

SELECT DISTINCT X.pName as name, Y.address adr
FROM Person as X, University Y
WHERE X.works_for = Y.uName

312

85

SELECT cName
FROM
WHERE

Quiz

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture
products in the 'Gadgets' category!

302

86

SELECT cName
FROM Product P, Company
WHERE country = 'USA'

and P.category = 'Gadgets'
and P.manufacturer = cName

Quiz

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture
products in the 'Gadgets' category!

Cname

GizmoWorks

GizmoWorks

302

87

SELECT DISTINCT cName
FROM Product P, Company
WHERE country = 'USA'

and P.category = 'Gadgets'
and P.manufacturer = cName

Quiz

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture
products in the 'Gadgets' category!

Cname

GizmoWorks

302

88

Meaning (Semantics) of conjunctive SQL Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

SELECT a1, a2, …, ak

FROM R1 as x1, R2 as x2, …, Rn as xn

WHERE Conditions

Conceptual evaluation strategy (nested for loops):

89

Meaning (Semantics) of conjunctive SQL Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..
for xn in Rn do

if Conditions
then Answer = Answer È {(a1,…,ak)}

return Answer

att1 att2 ... attk
...

...

...

...

R1
att1 att2 ... attk
...

...

...

...

R2
att1 att2 ... attk
...

...

...

...

R3

90

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the following
conceptual evaluation strategy:
- FROM: Compute the cross-product of relation-list.
- WHERE: Discard resulting tuples if they fail qualifications.
- SELECT: Delete attributes that are not in target-list.
- If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way to compute a query!
An optimizer will find more efficient strategies to compute the same
answers.

91

Quiz

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

302

92

Quiz

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and P.price < 20
and P.price > 25
and P.manufacturer = cName

Wrong! Gives empty
result: There is no
product with price
<20 and >25

302

93

Quiz

P.price < 20 and
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P

not possible!
-> Empty result

P.price < 20

C

P1

P2 P.price > 25

302

country='USA' country='USA'

94

Quiz

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and (P.price < 20
or P.price > 25)
and P.manufacturer = cName

Returns companies
with single product
w/price (<20 or >25)

P.price<20 or
P.price>25

C

P

302

95

Quiz

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

302

96

Quiz
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P1

Company
CName StockPrice Country

GizmoWorks 25 USA

...

Cname

GizmoWorks

PName Price Category Manufacturer

...

Powergizmo $29.99 Gadgets GizmoWorks

P2

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

302

97

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Jones 33 33 Engineering
Smith 34 34 Clerical
Steinberg 33 33 Engineering
Rafferty 31 31 Sales

Inner Joins
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID

Source: http://en.wikipedia.org/wiki/Join_(SQL)#Cross_join

344

http://en.wikipedia.org/wiki/Join_(SQL)

98

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Rafferty 31 31 Sales
Jones 33 31 Sales
Steinberg 33 31 Sales
Smith 34 31 Sales
Robinson 34 31 Sales
Rafferty 31 33 Engineering
Jones 33 33 Engineering
Steinberg 33 33 Engineering
Smith 34 33 Engineering
Robinson 34 33 Engineering
Rafferty 31 34 Clerical
Jones 33 34 Clerical
Steinberg 33 34 Clerical
Smith 34 34 Clerical
Robinson 34 34 Clerical
Rafferty 31 35 Marketing
Jones 33 35 Marketing
Steinberg 33 35 Marketing
Smith 34 35 Marketing
Robinson 34 35 Marketing

Cross Joins: usually not what you want L
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID

344

99

Definitions (for job interviews?)

• An equi-join is a join in which the joining condition is based on
equality between values in the common columns; common columns
appear redundantly in the result table

• A natural join is an equi-join in which one of the duplicate columns
is eliminated in the result table

• A cross join returns the Cartesian product of rows from tables in the
join
- (i.e. it will produce rows which combine each row from the first table with

each row from the second table, that's usually *not* what you want)

100

Definitions (for job interviews?)
Equi-join
E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Jones 33 33 Engineering
Smith 34 34 Clerical
Steinberg 33 33 Engineering
Rafferty 31 31 Sales

E.LastName DepartmentID D.DepartmentName
Robinson 34 Clerical
Jones 33 Engineering
Smith 34 Clerical
Steinberg 33 Engineering
Rafferty 31 Sales

Natural join

Cross join
E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Rafferty 31 31 Sales
Jones 33 31 Sales
Steinberg 33 31 Sales
Smith 34 31 Sales
Robinson 34 31 Sales
Rafferty 31 33 Engineering
...

101

Alternative JOIN Syntax
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID
AND E.DepartmentID = 34

SELECT *
FROM Employee E JOIN Department D

ON E.DepartmentID = D. DepartmentID
WHERE E.DepartmentID = 34

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Smith 34 34 Clerical

344

102

NATURAL JOIN Syntax
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID
AND E.DepartmentID = 34

SELECT *
FROM Employee E NATURAL JOIN Department D

WHERE E.DepartmentID = 34

LastName DepartmentID DepartmentName
Robinson 34 Clerical
Smith 34 Clerical

344

Syntax is not supported by
all DBMS's and not
recommended

(someone reading the query
does not see the join keys.
That makes is harder to
debug queries or to modify &
enhance them)

103

Using the Formal Semantics

SELECT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T
a

2

a

1

a

1

2

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

104

Using the Formal Semantics

SELECT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Returns ∅
if S = ∅ or T = ∅

What do these queries compute?

SELECT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

Can seem counterintuitive! But remember conceptual evaluation
strategy: Nested loops. If one table is empty -> no looping

R
a

1

2

S
a

1

T2
a

R(a), S(a), T2(a)

a

1

a

305

105

Illustration with Python

The comparison gets never evaluated

305

"Premature optimization
is the root of all evil."
Donald Knuth (1974)

106

CREATE Tables
&

INSERT Values

107

(Relational Database) Schema

Product
PName
Price
Category
Manufacturer

Company
Cname
Stockprice
Country

Product(pname, price, category, manufacturer)
Company(cname, stockprice, country)

Product.manufacturer is FK to Company

"Schema": describes the
structure of data in terms of
the relational data model.

A schema includes tables,
columns, PKs, FKs, and other
constraints

302

108

302---------------------------
-- Create the tables

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

PRIMARY KEY (PName),
FOREIGN KEY (Manufacturer) REFERENCES Company(CName));

109

302---------------------------
-- Create the tables

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

PRIMARY KEY (PName),
FOREIGN KEY (Manufacturer) REFERENCES Company(CName));

110

302---------------------------
-- Create the tables

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

PRIMARY KEY (PName),
FOREIGN KEY (Manufacturer) REFERENCES Company(CName));

111

302---------------------------
-- Create the tables

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

PRIMARY KEY (PName),
FOREIGN KEY (Manufacturer) REFERENCES Company(CName));

112

302---------------------------
-- Create the tables

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

PRIMARY KEY (PName),
FOREIGN KEY (Manufacturer) REFERENCES Company(CName));

113

302---------------------------
-- Create the tables

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

PRIMARY KEY (PName),
FOREIGN KEY (Manufacturer) REFERENCES Company(CName));

-- Drop tables if they already exist

DROP TABLE IF EXISTS Product;
DROP TABLE IF EXISTS Company;

114

302

-- Populate the tables

insert into Company values ('GizmoWorks', 25, 'USA');
insert into Company values ('Canon', 65, 'Japan');
insert into Company values ('Hitachi', 15, 'Japan');

insert into Product values ('Gizmo', 19.99, 'Gadgets', 'GizmoWorks');
insert into Product values ('PowerGizmo', 29.99, 'Gadgets', 'GizmoWorks');
insert into Product values ('SingleTouch', 149.99, 'Photography', 'Canon');
insert into Product values ('MultiTouch', 203.99, 'Household', 'Hitachi');

115

1. Aggregates
2. Groupings
3. Having

116

Aggregation

SELECT count(*)
FROM Car
WHERE price > 100

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Car
WHERE maker='Toyota'

SQL supports several aggregation operations:

sum, count, min, max, avg

Car (name, price, maker) 348

117

Aggregation

SELECT avg(price)
FROM Car
WHERE maker='Toyota'

Car
Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

(No column name)

75

Database creates new attribute
name (for SQLserver)

348

118

Aggregation with rename

SELECT count(*) as n
FROM Car
WHERE price > 100

Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

n
2

Car

Database creates *our*
new attribute name

"as" optional

348

119

SELECT count(maker)
FROM Car
WHERE price > 100

Aggregation: Count Distinct

Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

Car

We probably want to ignore duplicates:

SELECT count(DISTINCT maker)
FROM Car
WHERE price > 100

Same as count(*)

(No column name)
1

348

120

Simple Aggregation 1/3

SELECT sum(price * quantity)
FROM Purchase

Purchase (product, price, quantity)

SELECT sum(price * quantity)
FROM Purchase
WHERE product = 'Bagel'

What do these
queries mean?

308

121

Simple Aggregation 2/3
Purchase

SELECT sum(price * quantity)
FROM Purchase
WHERE product = 'Bagel'

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3 * 20 = 60
2 * 20 = 40

sum: 100

(No column name)
100

Database creates
new attribute name

308

122

Simple Aggregation 3/3
Purchase

SELECT sum(price) * sum(quantity)
FROM Purchase
WHERE product = 'Bagel'

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3
2

sum: 5 *

(No column name)
200

20
20

sum: 40 = 200

308

123

Grouping and Aggregation

Product TotalSales
Bagel 40
Banana 20

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Find total quantities for all purchases with price over $1
grouped by product.

Purchase

Notice: we use "sales" for
total number of products sold

308

124

From ® Where ® Group By ® Select

SELECT product, sum(quantity) as TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity

Bagel 3 20

Bagel 2 20

Banana 1 50

Banana 2 10

Banana 4 10

1
2
3

4

Select contains
• grouped attributes
• and aggregates

Purchase
308

125

Let's confuse the database engine

SELECT product, quantity
FROM Purchase
GROUP BY product

Product Quantity
Bagel ?
Banana ?

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

What quantity should the
DB return for Banana?

The DB engine is confused, there
is no single quantity for banana
(it's an ill-defined query). It
should thus return an error (only
SQLite misbehaves and returns
something, but which makes no
sense). Please think this through
carefully!

Purchase
308

