LO3: SQL: Intermediate

CS3200 Database design (fal8 s2)
https://northeastern-datalab.github.io/cs3200/

Version 9/13/2018

79

https://northeastern-datalab.github.io/cs3200/

Announcements!

« Itis ok to make mistakes in class. Making mistakes in class is the best thing
that can happen to you. You learn and will never make it again.

— "Create a Culture in Which It Is Okay to Make Mistakes and Unacceptable Not to Learn
from Them" ... "Recognize that mistakes are a natural part of the evolutionary process.'
... 'Don’t feel bad about your mistakes or those of others. Love them!"
Ray Dalio. Principles. 2017

PRINCIPLES

e Continue bringing your name tags
e Thanks for posting Q&As on Piazza!
o Make use of office hours (OHs)

Steve Ballmer: another attempt
80

OHs (Office Hours

We are here to help.
Reach out to us!

OFFICE HOURS

If you don’t undarstand something, please ask questions. We love questions. One of the benefits of attending a univarsity as opposad to reading a book is that you
get to interact with faculty, TAs, and your peers. Please reach out to us with your questions on our Piazza site or stop by for office hours.

cs3200fa18s2
Teday [[EI) B0 Sep9- 15,2018 ~ Week Month Agenda
Sun Q8 Men 970 Tue 811 Wed 912 Thu 813 Fri 914 Sal 915
Bam
10am
1]
11am
11145 - Li125p 1145 - L125p
12om Class Class
Ricards Hal 236 Richards Hall 236
1em
Zpm 2p - 3p
OH Walfaana
450 WH
Jpm
4pm
som
Bpm op - 7p
OH Niklas
462 WuH
Tam
Bam
Equn
Evants shawn in bre zcne: Eastemn Trra - New York B3 Google Calencar

31

Table Alias (Tuple Variables)

Person (pName, address, works_for)
University (uUNamé, address)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works for = uName

&b

7 312

32

Gl

Table Alias (Tuple Variables) @312

Person (pName, address, works_for)
University (uUNamé, address)

which address?
— Error!

SELECT DISTINCT pName, address
FROM Person, University
WHERE works for = uName

SELECT DISTINCT Person.pName, University.address
> |FROM Person, University
WHERE Person.works for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName "~

Note that "as" is optional !!

U

33

Column Alias (rename attributes)

Person (pName, address, works_for)
University (uUNamé, address)

SELECT DISTINCT X.pName as name, Y.address adr

> |FROM Person as X, University Y
WHERE X.works for = Y.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works for = Y.uName

&b

7 312

34

Quiz

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Company

CName StockPrice | Country
GizmoWorks | 25 USA
Canon 65 Japan
Hitachi 15 Japan

Product

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo | $29.99 Gadgets GizmoWorks
SingleTouch | $149.99 | Photography | Canon
MultiTouch | $203.99 | Household Hitachi

Q: Find all US companies that manufacture

products in the 'Gadgets' category!

SELECT cName
FROM
WHERE

[@

@’ 302

85

Quiz

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Product Company
PName Price Category Manufacturer CName StockPrice | Country
Gizmo $19.99 Gadgets GizmoWorks '7/ GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets GizmoWorks 1 Canon 65 Japan
SingleTouch | $149.99 Photography | Canon Hitachi 15 Japan
MultiTouch $203.99 Household Hitachi
Q: Find all US companies that manufacture
products in the 'Gadgets' category!
SELECT cName
FROM Product P, Company $ Cname
WHERE country = "'USA' GizmoWorks
and P.category = 'Gadgets' GizmoWorks
and P.manufacturer = cName

(it

T’ 302

36

Quiz

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Product Company

PName Price Category Manufacturer CName StockPrice | Country
Gizmo $19.99 Gadgets GizmoWorks GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets GizmoWorks Canon 65 Japan
SingleTouch | $149.99 Photography | Canon Hitachi 15 Japan
MultiTouch | $203.99 | Household Hitachi

Q: Find all US companies that manufacture
products in the 'Gadgets' category!

SELECT

FROM

WHERE
and
and

DISTINCT cName

Product P, Company

Cname
GizmoWorks

country = 'USA

P.category = 'Gadgets'
P.manufacturer = cName

(it

T’ 302

87

Meaning (Semantics) of conjunctive SQL Queries

SELECT aq, a,, ..., a,
FROM R;asxq, Ryasx,, ..., R, as x,
WHERE Conditions

Conceptual evaluation strategy (nested for loops):
Answer = {}
for x, in R, do

for x, in R, do

“mfor X, In R, do
if Conditions
then Answer = Answer U {(ay,...,a,)}

return Answer

38

Meaning (Semantics) of conjunctive SQL Queries
R1 R2 R3

l att, | att, | ... | att, | att, | att, | ... | att, l att, | att, | ... | att,

Answer = {}
for x, in R, do
for x, in R, do

“mfor X, In R, do
if Conditions
then Answer = Answer U {(ay,...,a,)}

return Answer

Conceptual Evaluation Strategy

« Semantics of an SQL query defined in terms of the following
conceptual evaluation strategy:
— FROM: Compute the cross-product of relation-list.
— WHERE: Discard resulting tuples if they fail qualifications.
— SELECT: Delete attributes that are not in target-list.
— If DISTINCT is specified, eliminate duplicate rows.

e This strategy is probably the least efficient way to compute a query!
An optimizer will find more efficient strategies to compute the same
answers.

90

Quiz

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

SELECT DISTINCT cName
FROM
WHERE

7302

91

Quiz e300

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

DISTINCT cName

Wrong! Gives empty
result: There is no
product with price
<20 and >25

92

[@

Quiz Cew’302

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

v
c wf%CO L%*[ryz'USA'

v A
country="USA'

P.price < 20 and ?

ice <
P.price > 25 Pprice < 20

not possible! P.price > 25 °

-> Empty result
93

Quiz e300

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product

below $20 and a product above $25. _
Returns companies

~. //with single product
w/price (<20 or >25)

WHERE cou
and (P.pu

P.price<20 or
P.price>25

94

Quiz

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = "'USA'

and P1.price <20

and P2.price > 25

and P1.manufacturer = cName

and P2.manufacturer = cName

7302

95

P1 |

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
P2

PName Price Category Manufacturer
Powergizmo | $29.99 Gadgets GizmoWorks

SELECT DISTINCT cName
Product as P1, Product as P2, Company
country = 'USA

FROM

WHERE
and
and
and
and

P1.price < 20
P2.price > 25

RN

P1.manufacturer = cName
P2.manufacturer = cName

Company
CName StockPrice | Country
GizmoWorks | 25 USA

)

Cname

GizmoWorks

(it

T’ 302

96

Inner Joins

=

Employee Department

LastName | DepartmentID DepartmentID | DepartmentName
Rafferty <31) 31 Sales

Jones 33 33 Engineering
Steinberg |33 3 Clerical
Robinson | 34 7(35 Marketing

Smith 34

SELECT *

FROM Employvee E, Department D
WHERE (E.DepartmentID = D. DepartmentIDj

E.LastName |E.DepartmentID|D.DepartmentlD | D.DepartmentName
Robinson 34 34 Clerical

Jones 33 33 Engineering

Smith 34 34 Clerical

Steinberg 33 33 Engineering

Rafferty 31 31 Sales

Source: http://en.wikipedia.org/wiki/Join (SQL)#Cross _join

97

http://en.wikipedia.org/wiki/Join_(SQL)

Cross Joins: usually not what you want ®
Employee Department

LastName | DepartmentID DepartmentID | DepartmentName

—3 | Rafferty 31 131 Sales
Jones 33 (33 Engineering

Steinberg | 33 2638 34 Clerical

Robinson |34 77~ 35 Marketing

Smith 34

SELECT *
FROM Employee E, Department D

—WHERE—E-DepartmentiD=-D-DepartmenttD——

E.LastName |E.DepartmentID|D.DepartmentlD | D.DepartmentName
Rafferty 31 31 Sales
_\ Jones 33 31 Sales
Steinberg 33 31 Sales
Smith P Sales
Robinson (% / 31) Sales
Rafferty Nao” \ Engineering
Jones 33 33 Engineering
Steinberg 33 33 Engineering
Smith 34 33 Engineering
Robinson 34 33 Engineering
Rafferty 31 34 Clerical
Jones 33 34 Clerical
Steinberg 33 34 Clerical
Smith 34 34 Clerical
Robinson 34 34 Clerical
Rafferty 31 35 Marketing
Jones 33 35 Marketing
Steinberg 33 35 Marketing
Smith 34 35 Marketing
Robinson 34 35 Marketing

Definitions (for job interviews?)

e An equi-join is a join in which the joining condition is based on
equality between values in the common columns; common columns
appear redundantly in the result table

e A natural join is an equi-join in which one of the duplicate columns
is eliminated in the result table

e A cross join returns the Cartesian product of rows from tables in the
join
— (i.e. it will produce rows which combine each row from the first table with
each row from the second table, that's usually *not* what you want)

99

Definitions (for job interviews?)

Equi-join /

E.LastName E.Department|D D.Department}é D.DepartmentName
Robinson 34 34 / Clerical

Jones 33 33 / Engineering

Smith 34 34 / Clerical

Steinberg 33 33 / Engineering

Rafferty 31 31 / Sales

/
Natural join

E.LastName |DepartmentlD |D.DepartmentName
Robinson 34 Clerical

Jones 33 Engineering

Smith 34 Clerical

Steinberg 33 Engineering

Rafferty 31 Sales

Cross join

E.LastName |E.DepartmentID|D.DepartmentIlD | D.DepartmentName

Rafferty 31 31 Sales
Jones 33 31 Sales
Steinberg 33 31 Sales
Smith 34 31 Sales
Robinson 34 31 Sales
Rafferty 31 33 Engineering

100

Alternative JO

Employee

LastName

Department|D

Rafferty

31

N Syntax

Jones

33

Steinberg

Robinson

Smith

SELECT
FROM
WHERE
AND

SELECT

FROM
ON

WHERE

*

33 34
34 7 35
34

Department
DepartmentID DepartmentName
31 Sales
33 Engineering
Clerical
Marketing

Employee E, Department D
E.DepartmentID = D. Department|D
E.DepartmentID = 34

*

Employee E JOIN Department D
E.DepartmentID = D. Department|D
E.DepartmentID = 34

E.LastName

E.DepartmentID

D.DepartmentID

D.DepartmentName

Robinson

34

34

Clerical

Smith

34

34

Clerical

@ 344

101

_&570

NATURAL JOIN Syntax 344

Employee Department

LastName Department|D DepartmentID DepartmentName

Rafferty 31 31 Sales

Jones 33 33 Engineering

Steinberg 33 ; 34 Clerical

Robinson 34 7 35 Marketing

Smith 34

SELECT * _

FROM Employee E, Department D Syntax is not supported by
WHERE E.DepartmentID = D. DepartmentID all DBMS's and not

AND E.DepartmentID = 34

recommended

SELECT *

FROM Employee E NATURAL JOIN Department D (someone reading the query
WHERE E.DepartmentlD = 34 does not see the join keys.

That makes is harder to

LastName Department|D DepartmentName debug queries or to modify &
Robinson 34 Clerical enhance them)

Smith 34 Clerical

102

Using the Formal Semantics

What do these queries compute?

SELECT R.a
FROM R,S
WHERE R.a=S.a

SELECT R.a

FROM R,S, T

WHERE R.a=S.a
or R.a=T.

-

R(a), S(a), T(a)

S

T

a

a

|

(intersection)

- +Z

a| Returns RS

o

a| ReturnsRn (SuUT)
fS#@0and T#0Q

G

7 305

103

Using the Formal Semantics

What do these queries compute?

SELECT R.a
FROM R,S
WHERE R.a=S.a

SELECT R.a
FROM R,S,T2asT
WHERE R.a=S.a

or R.a=T.a

-

R(a), S(a), T2(a)

o

S T2

a a

I\J—\mx

Returns R S
(intersection)

Returns @
fS=@orT=0

|

Can seem counterintuitive! But remember conceptual evaluation
strategy: Nested loops. If one table is empty -> no looping

104

Illustration with Python

éprint "—-- 1st nested loop ---"
for i in xrange(2):

for j in xrange(3); . § -
for k in xrande(2): §)
print "i=sa, J=%d, k=%d: " % (i, j, k), - i=1, j=1, k=0: TRUE

if 1= j or i==k:
print “"TRUE",
print

éprint "\n--- 2nd nested loop ---"
for 1 in xrange(2):

if i=jori=%k:
print “TRUE",
print

éprint "\n--- 3rd nested loop ---"
for i in xrange(2):

- /Library/Frameworks/Python. framework/Versio
- === 1st nested loop ——-
- 1=0, j=0, k=0: TRUE

- 1=0, j=0, k=1: TRUE

- 1=0, j=1, k=0: TRUE

- 1=0, j=1, k=1:

- 1=0, j=2, k=0: TRUE

- 1=0, j=2, k=1:

i=1, j=0, k=0

i=1, j=0, k=1: TRUE

(i=1, j=1, k=1: TRUE
i=1, j=2, k=0:
=1, j=2, k=1: TRUE

> -== 2nd nested loop =—-

- i=0, j=0, k=0: TRUE

for j in xrange(3)g . - 1=0, j=1, k=0: TRUE

for k in xrande(1): - 1=0, j=2, k=0: TRUE
print "i=!;;:;;;a, k=%d: " % (i, j, k), i=1, j=0, k=0:

-1=1, j=1, k=0: TRUE
i=1, j=2, k=0:

. Proces

for j in xrange(3)2 ,
for k in xrande(0):
print "i=%d, j=wd, k=%d: " % (i, j, k),

if i=jori=%k:
print “TRUE",
print

4' ~== 3rd nested loop ——-

inished with exit code 0

| The comparison gets never evaluated

"Premature optimization
is the root of all evil."
Donald Knuth (1974)

105

CREATE Tobles
&
INSERT Values

[@

(Relational Database) Schema w300

"Schema": describes the
structure of data in terms of

PName Chame

_) the relational data model.
Price Stockprice
Category Country A schema includes tables,
Manufacturer columns, PKs, FKs, and other

constraints

Product(pname, price, category, manufacturer)
Company(cname, stockprice, country)

Product.manufacturer is FK to Company

107

&b

7 302

create table Company (

create table Product (

108

G
=" 302

create table Company (
CName char(20) ,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

109

_ &b
=" 302

create table Company (
CName char(20) PRIMARY KEY,

StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),

110

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,
Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),
PRIMARY KEY (PName)

111

create table Company (
CName char(20) PRIMARY KEY,
StockPrice int,

Country char(20));

create table Product (
PName char(20),
Price decimal(9, 2),
Category char(20),
Manufacturer char(20),
PRIMARY KEY (PName),
FOREIGN KEY (Manufacturer) REFERENCES Company(CName));

112

DROP TABLE IF EXISTS Product;
DROP TABLE IF EXISTS Company;

113

values
values
values

into
into
into

insert
insert
insert

Company
Company
Company

values
values
values
values

Product
Product
Product
Product

into
into
into
into

insert
insert
insert
insert

('GizmoWorks', 25,
('Canon', 65,
('"Hitachi', 15,

('Gizmo', 19.99,
('PowerGizmo', 29.99,
('SingleTouch', 149.99,
("MultiTouch', 203.99,

. -‘Ir B

302

'USA');
'Japan');
'Japan');

'Gadgets', 'GizmoWorks');

'Gadgets', 'GizmoWorks');
'Photography', 'Canon');
'Household', 'Hitachi');

114

. Aggregates
2. Groupings
3. Having

G

Aggregation Car (name, price, maker) S 348

SELECT avg(price) SELECT count(*)
FROM Car FROM Car
WHERE maker="Toyota' WHERE price > 100

SQL supports several aggregation operations:

sum, count, min, max, avg

Except count, all aggregations apply to a single attribute

116

Aggregation

SELECT avg(price)
FROM Car

WHERE maker="Toyota' Prius

Car
Name Price |Maker
= M3 120 BWVHWA/
M5 156 BV
50 Toyota
Lexus1 |75 Toyota
Lexus2 |[100 Toyota

Database creates new attribute
name (for SQLserver)

)

—

)

(No columnr-rame)

75

117

Aggregation with rename

"as" optional

SELECT count(*) as n
FROM Car
WHERE price > 100

Car
Name Price |Maker
M3 120 BMW
M5 150 BMW
Prius 560 Toyota—
+exust—+5 Joyeta
us2—+3400 Toyeta

Database creates *our”
new attribute name

)

N

118

Aggregation: Count Distinct

Car
Name Price |Maker
SELECT count(maker) M3 120 BMW
FROM Car M5 150 BMW
WHERE price > 100 TPrius 560 Toyota—7—
+Eexust—5 Toyeta
Same as count(”) | us2— 1100 Toyeta
I ' | ;
We probably want to ignore dup Baft.esc c
SELECT count(DISTINCT maker)
FROM Car > (1”°)
WHERE price > 100

U348

119

Simple Aggregation 1/3

Purchase (product, price, quantity)

SELECT sum(price * quantity)
FROM Purchase

What do these
gueries mean?

SELECT sum(price * quantity)
FROM Purchase
WHERE product = 'Bagel’

120

G

Simple Aggregation 2/3 “e’308

Purchase
Product |Price |Quantity
Bagel 3 20 3*20=60
Bagel 2 20 2*20=40
—Banana—1 50 sum: 100
anana— 2 10
—Banana—+4 10
Database creates
new attribute name
SELECT sum(price * quantit \
FROM Purc(rF\)ase CI d $ (1[;; column name)
WHERE product = 'Bagel’

121

Simple Aggregation 3/3 %308

Purchase
Product |Price |Quantity
Bagel 3 20 3 20
Bagel 2 20 2 20
—Banana—1 50 sum: 5 * sum:40 = 200
Banana—2 10
—Banana—+4 10

(No column name)
200

FROM Purchase
WHERE product = 'Bagel’

SELECT sum(price) * sum(quantité>)

122

Grouping and Aggregation %308

Purchase

Product | Price’ ||Quantity Product | TotalSales
Bagel 3 20 :> Bagel 40

Bagel 2 20 Banana |20
—Banana—1 50

Banana |2 10

Banana |4 10 Notice: we use "sales" for

total number of products sold

Find total quantities for all purchases with price over $1
grouped by product.

123

From — Where — Group By — Select

Purchase

Product |Price |Quantity Product | TotalSales
Bagel |3 20 3 Bagel |40
Bagel 2 20 Banana |20
—Banana—1 50

Banana (2 10

Banana |4 10 Select contains

e grouped attributes
/- and aggregates
4 |SELECT msum(quantity) as TotalSales
1 FROM Purchase

2 |WHERE price > 1
3 | GROUP BY product

124

Let's confuse the database engine

Purchase

Product |Price

Quantity

Bagel 3

Bagel

Banana

2
1
Banana |2
Banana |4

20 j\> Bagel ?
20 Banana /1?

SELECT
FROM
GROUP BY

product, quantity
Purchase
product

Product | Quantity

50
10 What quantity should the
10 DB return for Banana?

The DB engine is confused, there
is no single quantity for banana
(it's anill-defined query). It
should thus return an error (only
SQLite misbehaves and returns
something, but which makes no
sense). Please think this through
carefully!

125

