
Any-k Algorithms for Exploratory Analysis
with ConjunctiveQueries∗

Xiaofeng Yang, Mirek Riedewald, Rundong Li, Wolfgang Gatterbauer†
College of Computer and Information Science, Northeastern University, Boston, MA, USA

{xiaofeng,mirek,rundong,wolfgang}@ccs.neu.edu

ABSTRACT
We recently proposed the notion of any-k queries, together with the
KARPET algorithm, for tree-pattern search in labeled graphs. Any-
k extends top-k by not requiring a pre-specified value of k . Instead,
an any-k algorithm returns as many of the top-ranked results as
possible, for a given time budget. Given additional time, it produces
the next-highest ranked results quickly as well. It can be stopped
anytime, but may have to continue until all results are returned. In
the latter case, any-k takes times similar to an algorithm that first
produces all results and then sorts them. We summarize KARPET
and argue that it can be extended to support any-k exploratory
search for arbitrary conjunctive queries.
ACM Reference Format:
Xiaofeng Yang, Mirek Riedewald, Rundong Li, Wolfgang Gatterbauer. 2018.
Any-k Algorithms for Exploratory Analysis with Conjunctive Queries. In Ex-
ploreDB 2018 : 5th International Workshop on Exploratory Search in Databases
and the Web , June 15, 2018, Houston, TX, USA. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3214708.3214711

1 INTRODUCTION
Top-k queries are well-suited for exploratory analysis: by exploiting
that the user is interested only in the top-ranked results, query cost
can be significantly reduced [2–5]. Unfortunately, it is difficult to set
the value for k in practice. Especially for exploratory search, when
users try to get a better understanding of the data, they cannot
determine in advance when they will have seen enough results.

To address this challenge, we proposed the notion of any-k
queries in the context of pattern search in labeled graphs [6]. Intu-
itively, any-k is an anytime ranking algorithm that:

(1) returns the top-ranked result as quickly as possible;
(2) then returns the second-ranked result next, followed by the

third-ranked, and so on, until the user terminates the process;
(3) if not stopped, returns all results in a time comparable to an

approach that first produces all results and then ranks them.
In other words, the ranked enumeration can be stopped anytime

and should then return as many top results as possible. Notice the
difference to top-k which requires k to specified upfront. While
∗Summary paper
†Authors listed in inverse alphabetical order. Be nice to the letter Z!

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ExploreDB 2018 , June 15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5847-7/18/06. . . $15.00
https://doi.org/10.1145/3214708.3214711

user3

photo1

group1 group2

user1 user2

Figure 1: Example query on a photo-sharing network

progressive top-k algorithms exist, we are not aware of any that
(1) can be applied to graph-pattern search and general conjunctive
queries and (2) provide strong guarantees for the time-to-first result,
time-to-next result, and full result enumeration.

We first summarize our recent results for any-k pattern search
in labeled graphs, then outline how to extend them to conjunctive
queries (CQs). CQs are common in databases and data warehous-
ing. Intuitively, a CQ over a set of relations computes a subset of
the Cartesian product that satisfies a conjunction of conditions
on relation attributes. In Datalog notation, we can express such
queries as rules like Q�x ,y,z,u,v� ��R�x ,y,z�,S�y,u�,T �z,v�. In
SQL, assuming schema R�A,B,C�, S�B,D�, andT �C,E�, this query
is SELECT * FROM R, S, T WHERE R.B=S.B AND R.C=T.C.

2 CURRENT RESULT: ANY-K FOR PATTERN
SEARCH IN LABELED GRAPHS

We developed our any-k algorithm, KARPET, in the context of pat-
tern search in labeled graphs and illustrate it here with an example.
Refer to Yang et al. [6] for technical details.

Example 2.1 (Photo-sharing network). Consider a photo-sharing
social network with three vertex type labels: user, photo, and group.
Users are connected to the photos they upload, and photos are
connected to groups when they are posted there. Finally, users can
connect to groups by joining them. To maintain a vibrant com-
munity and alert users about potentially interesting photos, the
social network might run queries of the type shown in Figure 1:
given photo1 and two users, user1 and user2, find alternative groups
(matching nodes for group2) to post the photo in order to reach
user2 without spamming her directly. This is achieved by identify-
ing a user belonging to both groups (user3), who can post the photo
in the other group. There might be hundreds of matching triples
(group1, user3, group2), and there would be many more if user2 was
not given in advance. Under these circumstances, the goal often
is not to find all results, but only the most important ones. Impor-
tance can be determined based on node and edge weights. Then
the query should return the lightest (or heaviest) pattern instances.
For example, the weight of a group may be based on its number
of members, the weight of a user on how active s/he is, and the

https://doi.org/10.1145/3214708.3214711
https://doi.org/10.1145/3214708.3214711

ExploreDB 2018 , June 15, 2018, Houston, TX, USA Xiaofeng Yang, Mirek Riedewald, Rundong Li, Wolfgang Gatterbauer

user3

d1

e2

1

4

2

2

a b f

user1 photo1 user2

group2

d2

11 2

c1 c2 c3

1
1

group1

2
1

e1

1
1

(user3,group2)

(d1,e1) ↦ 1
(d2,e1) ↦ 1
(d2,e2) ↦ 2

(user3,group1)

(d1,c1) ↦ 1
(d2,c2) ↦ 2
(d2,c3) ↦ 4

(group2,user2)

(e2,f) ↦ 1

(group1,user1)

(c1,a) ↦ 1
(c2,a) ↦ 2
(c3,a) ↦ 2

(group1,photo1)

(c1,b) ↦ 1
(c2,b) ↦ 1
(c3,b) ↦ 1

Figure 2: Candidate instances for matching the example query in
Figure 1. Edge sets are named based on the corresponding pairs of
adjacent nodes in the query pattern.

weight of a link on the timestamp when it was established (to give
preference to long-term relationships or more recent photo posts),
or the sum of the PageRanks of its endpoints.

Figure 2 shows an example graph for the photo-sharing network.
KARPET processes acyclic pattern search queries like in the above
example by combining three conceptually separate steps into a two-
phase algorithm; the implementation can be downloaded from [1].
Here we concentrate on the first two steps only: (1) The search space
of possible homomorphic graph patterns is pruned to the provably
smallest representation of the original graph. This uses insights
from the well-known Yannakakis algorithm [7] for evaluating an-
swers to acyclic conjunctive queries to create this representation
in just one bottom-up and a subsequent top-down sweep through
the query tree. (2) Our novel any-k algorithm for enumerating ho-
momorphic tree patterns uses dynamic programming to perform a
bottom-up cost calculation, followed by a top-down guided search.

KARPET combines the two steps into two phases: 1) a bottom-up
sweep from leaves to the root of the query tree, and 2) a top-down
depth-first traversal from root to leaves. The first phase prunes
some of the spurious candidates and creates a candidate graph with
minimum subtree weights. The second phase prunes the remaining
spurious candidates and performs a search guided by the subtree
weights. Here the term spurious candidate refers to a node or edge
of the input graph that does not appear in any of the subgraph-
homomorphism query results.
Bottom-Up Phase. The bottom-up phase processes a query node
only after all its children have been processed, constructing a can-
didate graph consisting of two index structures: (1) CandNode�u�
returns for query node u a hash index that maps a node candidate
c of u to a list of minimum subtrees, each corresponding to a child
node u�. For each minimum subtree, its weight and root node are
both stored. (2) CandEdge�u,u�� returns for each query edge be-
tween a node u and its child u� a hash index that maps a candidate
node c of u to all adjacent candidates c� of u�.

We illustrate the algorithm with Figures 3a, 3b, and 3c. It first
inserts candidate nodes for each query leaf node u into the corre-
sponding candidates CandNode�u�, setting their weights to zero.
In Figure 3a there is a single candidate per leaf, but in practice
it can be a larger subset of graph nodes, depending on the node
constraints. Then, for each query node u, the algorithm (i) finds
possible candidate nodes, (ii) prunes them, and (iii) calculates the
minimum subtree weights.

In more detail: (i) for each query edge �u,u�� to a child u�, it
first finds all candidate edges �c,c��, storing the map CandEdge �

�u,u�� ((︀c (c�⌋︀. (ii) Then, the algorithm only keeps the list of
candidates for each query node that are reachable from candidate
instances in all leaves of the query node: In Figure 3c, the list of
candidates for query node group1 is �c1,c2,c3�. Notice how spuri-
ous candidates not reachable from the leaves, e.g., e1 in group2, are
not even accessed (compare with Figure 2). Similarly, while d1 in
user3 is reachable from the left, it is not reachable from the right
subtree and is thus automatically pruned as well. (iii) Then, the
algorithm finds for each reachable node, the min weight along each
query edge �u,u�� starting at c . For example, in Figure 3c, the left
weight 5 for c2 is computed as the minimum of weights for follow-
ing �d2,c2�, which is 5 as the sum of the weight of edge �d2,c2� (=
2) plus the weight of c2 (= 2+1); or for following �d2,c3�, which is 7
as the sum of the weight of edge �d2,c2� (= 4) plus the weight of
c3 (= 2+1). The latter is obtained from CandNode by looking up the
entry for query node group1 and candidate node c3. The two newly
created indices speed up finding adjacent edges in a subtree of the
query pattern during top-down traversal.
Top-Down Phase. The second part of our algorithm performs top-
down search, starting at the root node and proceeding downward to
the leaves. This is essential for two reasons: First, the pre-computed
subtree weights guide the search to the lightest patterns before
exploring the heavier ones. Second, the top-down traversal im-
plicitly prunes all remaining spurious candidates for sub-graph
homomorphism. Again, pruning actually happens implicitly by not
reaching those candidates. To see the latter, consider group1 can-
didate c1 in Figure 3c. It is spurious, but could not be removed by
the bottom-up sweep. However, it will never be accessed during
top-down traversal, because d1 was never recorded in CandNode.

Initially, all candidates in the query root node are inserted into
a priority queue pq, with their priorities set to the sum of the
candidate’s weights. In Figure 3c, there is a single candidate, d2,
of weight 5 � 3 � 8. Then the algorithm repeatedly pops the top
element from pq and expands the partial pattern using pre-order
traversal. The priority value of each expanded partial match is
defined as the sum of the pattern’s edge weights plus the sum of the
weights of the unexplored subtrees. In the example, partial match
�d2,c2� is inserted into pq with priority 8 = 2 (edge weight) + (2+1)
(weights of c2) + 3 (weight of right subtree of d2). Similarly, partial
match �d2,c3� is inserted with priority 4+(2+1)+3 = 10. (Those
values are updated incrementally during traversal.) Then �d2,c2� is
popped next, and expanded to partial match �d2,c2,a�with priority
8. This pattern is expanded next to �d2,c2,a,b�, �d2,c2,a,b,e2�,
and finally �d2,c2,a,b,e2, f �—all with the same priority of 8. The
latter is output as the minimal-weight solution. Only then will
partial match �d2,c3�with the higher priority value 10 be expanded
analogously.
Summary of Algorithm Properties. The cost of the bottom-up
sweep and weight computation is linear in the product of graph
size and query size. For the top-down traversal, we prove that
for each final result tuple, there is at most one push and at most
one pop operation on priority queue pq. This establishes an upper
bound on space complexity equal to full result size R, i.e., orders of
magnitude smaller than the combinatorial space of possible partial

Any-k Algorithms for Exploratory Analysis
with ConjunctiveQueries ExploreDB 2018 , June 15, 2018, Houston, TX, USA

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

(0) (0) (0)
a b f

user1 photo1 user2

group2group1

(a)

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1,0)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

user3

e2

12

(1,0)

(0) (0) (0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(b)

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1,0)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(5,3)

user3

d1

e2

1

4

2

2

(1,0)

(0) (0) (0)
a b f

user1 photo1 user2

group2

d2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2
1

(c)

Figure 3: Minimal subtree weight computations: (a) after traversing all leaves, (b) after traversing middle level, (c) after finishing at the root.
Numbers above node candidates indicate minimum sub-tree weights stored in CandNode; numbers on edges indicate edge weights.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700

R
u
n
n
in

g
 t

im
e
 (

s)

k

KARPET
Unguided

Figure 4: Running time for increasingk until all results are returned.
The “Unguided” algorithm is optimized for full enumeration.

pattern matches. We also prove for subgraph homomorphism that
the initial latency of the top-down phase to return the top result,
and also the wait time between results, is O�outDegree � logR�.
Here outDegree B R is the greater of (1) the number of candidates
in the root node and (2) the maximum cardinality of the set of
adjacent children for any node candidate in CandEdge.

Figure 4 shows a representative observation for a 5-edge query
pattern on a real graph with millions of edges. As desired, KARPET
starts returning results almost immediately, while the full enumera-
tion incurs a long delay for producing the entire result at once. Our
approach pays a small penalty for the any-k property, even when
all results are requested.

3 FUTUREWORK: ANY-K FOR ARBITRARY
CONJUNCTIVE QUERIES

We argue that the notion of an any-k algorithm can be extended
for exploratory search with any given conjunctive query. Notice
that KARPET can be applied with minimal changes to support any
acyclic conjunctive query over binary relations, i.e., relations with
exactly two attributes. Intuitively, we fold the content of CandNode
into CandEdge to create a hash index similar to CandEdge on the
join attributes for each input relation.
N-ary relations. It should be straightforward to extend the algo-
rithm to N-ary relations. Whenever two relations join on multiple
attributes, the corresponding index hashes on all these attributes.

Queries with cycles. For acyclic queries, our two-phase algorithm
relies on global consistency properties of the Yannakakis algorithm.
With cycles, we need to consider different tree decompositions.
Parallelization. We can reduce time for returning the first re-
sult, and also result-to-result, through parallelization. This can be
achieved by extending index CandNode so that it maps a candidate
node not only to the subtree weight, but also to the child node
candidate that determined this minimal weight. Then the main
thread keeps expanding this “winning” candidate, while all other
branches are pushed to pq by another thread. This requires careful
synchronization whenever a new element is popped off the queue.
Optimality results. We are interested in developing optimality
results for any-k queries where ranking between results is deter-
mined by any monotone function over the answer tuples. Here we
compare the time it takes the any-k algorithm to return the top-1
answer to the best known worst-case time complexity of the corre-
sponding boolean query, i.e., to answer the question if the query has
any answers. Similarly, enumerating all answers should match the
complexity of the best known algorithm for full enumeration, i.e.,
an algorithm designed for efficiently computing the entire result
set.

Acknowledgments. This work was supported in part by the Na-
tional Institutes of Health (NIH) under award number R01 NS091421
and by the National Science Foundation (NSF) under award number
CAREER III-1762268. The content is solely the responsibility of
the authors and does not necessarily represent the official views
of NIH or NSF. We would also like to thank the reviewers for their
constructive feedback.

REFERENCES
[1] Any-k: anytime top-k pattern retrieval in labeled graphs (code)

https://github.com/northeastern-datalab/any-k-karpet, 2018.
[2] R. Akbarinia, E. Pacitti, and P. Valduriez. Best position algorithms for top-k queries.

In VLDB, pp. 495–506, 2007.
[3] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.

J. Comput. Syst. Sci., 66(4):614–656, 2003.
[4] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing

techniques in relational database systems. ACM Comput. Surv., 40(4):11:1–11:58,
2008.

[5] A. Natsev, Y. Chang, J. R. Smith, C. Li, and J. S. Vitter. Supporting incremental join
queries on ranked inputs. In VLDB, pp. 281–290, 2001.

[6] X. Yang, D. Ajwani, W. Gatterbauer, P. K. Nicholson, M. Riedewald, and A. Sala.
Any-k: Anytime top-k tree pattern retrieval in labeled graphs. In WWW, pp.
489–498, 2018. Full version available on https://arxiv.org/abs/1802.06060.

[7] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, pp. 82–94,
1981.

https://arxiv.org/abs/1802.06060

	Abstract
	1 Introduction
	2 Current Result: Any-k for Pattern Search in Labeled Graphs
	3 Future Work: Any-k for Arbitrary Conjunctive Queries
	References

