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Summary Paper

• Based on our 2018 WWW paper in collaboration with Bell 
Labs, Ireland:

Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K. 
Nicholson, Mirek Riedewald, Alessandra Sala. Any-k: Anytime 
Top-k Tree Pattern Retrieval in Labeled Graphs. WWW 2018: 489-
498 (https://arxiv.org/abs/1802.06060) 
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Top-k Queries for Exploration

• Cheaper than finding all results

• Problem: how to set k
– “When will I have seen enough?”

• Solution: anytime ranking algorithm
– When stopped, produce top-i results, for largest possible i
– Not easy: top-k algorithms typically exploit knowledge of k for 

pruning.
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What’s New about Any-k?

• Non-trivial guarantees for
– Time to return top-1 result
– Time between results
– Time for full enumeration
– Space requirement

• Problem types:
– Subgraph isomorphism
– Conjunctive queries (SPJ query with conjunctions of selections only)
• SELECT * FROM R, S, T WHERE R.B = S.B AND R.C = T.C
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Ideal Guarantees

• Time to top-1 vs. O(time for boolean query)
– Boolean query: is there any result?
– Top-1 is at least as hard as boolean
– “Get top-1, but maybe more” is at least as hard as top-1

• Time to all vs. O(resultSize × log resultSize)
– Trivial lower bound (comparison-based sorting); may be loose

• Space: ???
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Current Results: Any-k for Pattern Retrieval in 
Graphs

A Complex Labeled Graph G 
e.g. User-Photo interactions on Flickr, Enron email network

Pattern Query Q

Find the lightest isomorphic subgraphs matching query Q in an Labeled Graph G
Additional information: a, b, and f are known
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Why is this hard?
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QueryCandidate Graph 

Can we early on avoid (1) spurious nodes and (2) heavy results? 



Algorithm Overview

• Classic BFS approach: O(|E||Q| ) is exponential in query size!

• Our approach: two sweeps that prune spurious nodes in O(|E|×|Q|)
– Bottom-up, then top-down

• Advantage: Simple 1-hop neighborhood look-ups, no assembly of patterns
– Avoids combinatorial complexity
– Note: theoretical guarantees are for homomorphism, instead of isomorphism
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Step1: bottom-up 
semi-join reduction
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Min subtree weight from group1
Min subtree weight from group2

Next step: top-down traversal, guided by subtree weights
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Priority queue
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For all results, #push = #pop = #results (rH) 
rH = #homomorphism matches.

This is also the max space used in the 
priority queue.
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Understanding the Any-k Property

• Theoretical guarantees:

– Time to get a homomorphism next 
result
• O(maxDegree + log(rH))

– Time to get all homomorphism
results
• O(rH log(rH))
• Same as lower bound for bulk 

computing!

• In practice: 
– How does our isomorphism

algorithm perform?
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Homomorphism vs. Isomorphism

• Isomorphism: eliminate pattern 
when same node occurs more 
than once

• Small gap for heterogeneous 
graphs
– Guarantee for homomorphism 

carries over to isomorphism
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Summary

• Subgraph isomorphism problem for acyclic queries on labeled 
graphs—solved via subgraph homomorphism

• Strong worst case guarantees (homomorphism):
– Time for bottom-up sweep to get candidate graph: O(|E|×|Q|)
– Time for top-down sweep to return the first/next result: O(maxDegree + 

log(rH))
– Time for top-down sweep to return all results: O(rH log(rH))
– Space for top-down sweep: O(rH)

• Speedup of one or more orders of magnitude on large real-world 
graphs
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Current Work

• Subgraph homomorphism = conjunctive query over binary 
relations

• Extend to N-ary relations
– Graph vs. hyper-graph

• Queries with cycles
– Consider different tree decompositions

• Optimality results for general conjunctive queries
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Thanks!

This work was supported in part by the National Institutes of Health (NIH) under award number R01 NS091421 and by the 
National Science Foundation (NSF) under award number CAREER III-1762268. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of NIH or NSF.

25

https://github.com/northeastern-datalab/Any-k-KARPET

https://github.com/northeastern-datalab/Any-k-KARPET

