
Any-k Algorithms for Exploratory Analysis
with Conjunctive Queries

Xiaofeng Yang, Mirek Riedewald, Rundong Li, Wolfgang Gatterbauer

1

ExploreDB @ SIGMOD 2018
(June 15, 2018)

Summary Paper

• Based on our 2018 WWW paper in collaboration with Bell
Labs, Ireland:

Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K.
Nicholson, Mirek Riedewald, Alessandra Sala. Any-k: Anytime
Top-k Tree Pattern Retrieval in Labeled Graphs. WWW 2018: 489-
498 (https://arxiv.org/abs/1802.06060)

2

https://arxiv.org/abs/1802.06060

Top-k Queries for Exploration

• Cheaper than finding all results

• Problem: how to set k
– “When will I have seen enough?”

• Solution: anytime ranking algorithm
– When stopped, produce top-i results, for largest possible i
– Not easy: top-k algorithms typically exploit knowledge of k for

pruning.

3

What’s New about Any-k?

• Non-trivial guarantees for
– Time to return top-1 result
– Time between results
– Time for full enumeration
– Space requirement

• Problem types:
– Subgraph isomorphism
– Conjunctive queries (SPJ query with conjunctions of selections only)
• SELECT * FROM R, S, T WHERE R.B = S.B AND R.C = T.C

4

time

#results

Full
enumeration

Any-k

Low overhead

Time to first result

Ideal Guarantees

• Time to top-1 vs. O(time for boolean query)
– Boolean query: is there any result?
– Top-1 is at least as hard as boolean
– “Get top-1, but maybe more” is at least as hard as top-1

• Time to all vs. O(resultSize × log resultSize)
– Trivial lower bound (comparison-based sorting); may be loose

• Space: ???

5

Current Results: Any-k for Pattern Retrieval in
Graphs

A Complex Labeled Graph G
e.g. User-Photo interactions on Flickr, Enron email network

Pattern Query Q

Find the lightest isomorphic subgraphs matching query Q in an Labeled Graph G
Additional information: a, b, and f are known

6

group

a

user

group

fb

a

group

a

user

group

fb

Why is this hard?

7

QueryCandidate Graph

c1 c2 c3

a

group

a

user

group

fb

8

QueryCandidate Graph

c1 c2 c3

a b

group

a

user

group

fb

9

QueryCandidate Graph

c1 c2 c3

a b

d1 d2 d3

group

a

user

group

fb

10

QueryCandidate Graph

c1 c2 c3

a b

d1 d2 d3

e2e1

group

a

user

group

fb

11

QueryCandidate Graph

c1 c2 c3

a b

d1 d2 d3

e2

f

e1

group

a

user

group

fb

12

QueryCandidate Graph

Can we early on avoid (1) spurious nodes and (2) heavy results?

Algorithm Overview

• Classic BFS approach: O(|E||Q|) is exponential in query size!

• Our approach: two sweeps that prune spurious nodes in O(|E|×|Q|)
– Bottom-up, then top-down

• Advantage: Simple 1-hop neighborhood look-ups, no assembly of patterns
– Avoids combinatorial complexity
– Note: theoretical guarantees are for homomorphism, instead of isomorphism

13

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

user3

e2

12

2

(0) (0) (0)
a b f

user1 photo1 user2

group2

d3

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

d1

1

4
2

d2

5 2

(8,3)(5,3)

Step1: bottom-up
semi-join reduction

14

Min subtree weight from group1
Min subtree weight from group2

Next step: top-down traversal, guided by subtree weights

e1

Priority queue

user3user3

(5,3)

user3

d2

Key=8
user3user3

(8,3)

user3

d3

Key=11

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(8,3)

user3

e2

1

4

2

2

(0) (0) (0)
a b f

user1 photo1 user2

group2

d3

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2

d2

5 2

(5,3)

push push pop

Step2: top-down

15

Output

Candidate graph with subtree weights
Partial Matches

Priority queue

user3user3

(8,3)

user3

d3

Key=11

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(8,3)

user3

e2

1

4

2

2

(0) (0) (0)
a b f

user1 photo1 user2

group2

d3

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2

d2

5 2

(5,3)

Key=10

user3

group1

user3

c2
(2,1)

group1

(5,3)

user3

d2

c2
(2,1)

group1

2

user3

group1

user3

c3
(2,1)

group1

(5,3)

user3

4

d2

c3
(2,1)

group1

Key=8

push push pop push 16

Output

Candidate graph with subtree weights
Partial Matches

Priority queue

user3user3

(8,3)

user3

d3

Key=11

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(8,3)

user3

e2

1

4

2

2

(0) (0) (0)
a b f

user1 photo1 user2

group2

d3

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2

d2

5 2

(5,3)

Key=10

user3

group1

user3

c3
(2,1)

group1

(5,3)

user3

4

d2

c3
(2,1)

group1

push push pop push

user3

group1

user3

c2
(2,1)

group1

(5,3)

user3
d2

c2
(2,1)

group1

2

Key=8

2

u1
b

photo1

1

e2

2

group2

(1)

user2
f

1

Output

17

Candidate graph with subtree weights
Partial Matches

Priority queue

user3user3

(8,3)

user3

d3

Key=11

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(8,3)

user3

e2

1

4

2

2

(0) (0) (0)
a b f

user1 photo1 user2

group2

d3

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2

d2

5 2

(5,3)

Key=10

user3

group1

user3

c3
(2,1)

group1

(5,3)

user3

4

d2

c3
(2,1)

group1

push push pop push

Output
user3

group1

user3

c2
(2,1)

group1

(5,3)

user3

d2

c2
(2,1)

group1

2

2

user
1

b

photo1

1

e2

2

group2

(1)

user2
f

1

Result 1

18

Candidate graph with subtree weights
Partial Matches

Priority queue

user3user3

(8,3)

user3

d3

Key=11

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(8,3)

user3

e2

1

4

2

2

(0) (0) (0)
a b f

user1 photo1 user2

group2

d3

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2

d2

5 2

(5,3)

Output
user3

group1

user3

c2
(2,1)

group1

(5,3)

user3

d2

c2
(2,1)

group1

2

2

user
1

b

photo1

1

e2

2

group2

(1)

user2
f

1

Result 1 user3

group1

user3

c3
(2,1)

group1

(5,3)

user3

4

d2

c3
(2,1)

group1

2
(0)
a

user
1

1
(0)
b

photo1

e2

2

(1)

group2

user2

1

f

Result 2

push push pop push pop pop 19

Candidate graph with subtree weights
Partial Matches

user3

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2group1

user3

e2

12

(1)

(0,0) (0,0) (0,0)
a b f

user1 photo1 user2

group2

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

(8,3)

user3

e2

1

4

2

2

(0) (0) (0)
a b f

user1 photo1 user2

group2

d3

11 2

c1 c2 c3
(1,1) (2,1) (2,1)

1
1

group1

2

d2

5 2

(5,3)

Output
user3

group1

user3

c2
(2,1)

group1

(5,3)

user3

d2

c2
(2,1)

group1

2

2

user
1

b

photo1

1

e2

2

group2

(1)

user2
f

1

Result 1 user3

group1

user3

c3
(2,1)

group1

(5,3)

user3

4

d2

c3
(2,1)

group1

2
(0)
a

user
1

1
(0)
b

photo1

e2

2

(1)

group2

user2

1

f

Result 2

push push pop push pop pop

user3user3

(8,3)

user3

d3

user3

group1

user3

c2
(2,1)

group1

user3

c2
(2,1)

group1

5

(0)

2

user

1

b

photo1

1

e2

2

(1)

group2

user2

1

f

Result 3

For all results, #push = #pop = #results (rH)
rH = #homomorphism matches.

This is also the max space used in the
priority queue.

20

Candidate graph with subtree weights

Understanding the Any-k Property

• Theoretical guarantees:

– Time to get a homomorphism next
result
• O(maxDegree + log(rH))

– Time to get all homomorphism
results
• O(rH log(rH))
• Same as lower bound for bulk

computing!

• In practice:
– How does our isomorphism

algorithm perform?

21

Running time of isomorphism queries

Homomorphism vs. Isomorphism

• Isomorphism: eliminate pattern
when same node occurs more
than once

• Small gap for heterogeneous
graphs
– Guarantee for homomorphism

carries over to isomorphism

22

Gap between homomorphism and
isomorphism on Enron

Summary

• Subgraph isomorphism problem for acyclic queries on labeled
graphs—solved via subgraph homomorphism

• Strong worst case guarantees (homomorphism):
– Time for bottom-up sweep to get candidate graph: O(|E|×|Q|)
– Time for top-down sweep to return the first/next result: O(maxDegree +

log(rH))
– Time for top-down sweep to return all results: O(rH log(rH))
– Space for top-down sweep: O(rH)

• Speedup of one or more orders of magnitude on large real-world
graphs

23

Current Work

• Subgraph homomorphism = conjunctive query over binary
relations

• Extend to N-ary relations
– Graph vs. hyper-graph

• Queries with cycles
– Consider different tree decompositions

• Optimality results for general conjunctive queries

24

Thanks!

This work was supported in part by the National Institutes of Health (NIH) under award number R01 NS091421 and by the
National Science Foundation (NSF) under award number CAREER III-1762268. The content is solely the responsibility of the
authors and does not necessarily represent the official views of NIH or NSF.

25

https://github.com/northeastern-datalab/Any-k-KARPET

https://github.com/northeastern-datalab/Any-k-KARPET

