2 Íría BIIRMM

Efficient Computation of Quantiles over Joins

PODS 2023

Nikolaos Tziavelis ${ }^{1}$,
Nofar Carmeli ${ }^{2}$, Wolfgang Gatterbauer ${ }^{1}$, Benny Kimelfeld ${ }^{3}$, Mirek Riedewald ${ }^{1}$

Quantile Join Queries

Main question: When can we find the quantile without computing the join?

Example: Event Social Network Query

Statistics for this pattern?

1) Join Query
2) Sort by:

- likes $_{1}+$ likes $_{2}$
- MAX(likes ${ }_{1}$, likes $_{2}$)
- ...

3) Select median query answer

Admin $\bowtie_{\text {Event }}$ Share $\bowtie_{\text {Event }}$ Attend

user	event

user	event	likes

user	event	likes

We show that it can be done in $O(n$ polylog $n)$ without computing the join whose size is $O\left(n^{3}\right)$

Quantile Join Query Problem

Join query
R(A, B), S(B, C), T(C, D)
$\sigma_{\theta}(R \bowtie S \bowtie T)$

Ranking function

- SUM, MIN, MAX over weighted attributes
- (LEX)icographic orders of attributes

\%JQ problem

- Input: database D of size n, relative position $\varphi \in[0,1]$
- Output: query answer at position $[\varphi|Q(D)|\rfloor$ in sorted array

Goal: achieve O (n polylog n) data complexity

- even though join output size is $O\left(n^{d}\right)$

Outline

- Motivation \& Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

Basic Definitions

1. A JQ can be represented by a hypergraph.
R(A, B), S(B, C), T(C, D, F), U(B, E)

Nodes=Variables Hyperedges=Atoms
2. A JQ is acyclic if it admits a join tree.

3. A JQ is self-join-free if no relation appears twice.

- Our prior work characterized precisely the (self-join-free) queries tha tractable (i.e., O (n polylog n) time) for 2 ranking functions: SUM and

The end of the story?
© Limited tractable cases for SUM
© Specialized algorithms for LEX/SUM
© Not clear how to apply to other ranking functions

Outline

- Motivation \& Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

New Results: 1) MIN/MAX

- We develop a general algorithmic framework that applies to all ranking functions mentioned (SUM, MIN, MAX, LEX). We use it to establish all our new results.

Theorem 1: \%JQ with MIN/MAX is tractable for all acyclic queries.

+ Same framework recovers old results up to a log factor

New Results: 2) Partial SUM

- Prior dichotomy assumed the worst-case SUM for each query where all attributes (variables) participate in ranking.
- We refine the SUM dichotomy by considering queries with partial SUMs.
+ Positive: We apply our framework. Prior algorithm specific to 2 relations only.
- Negative: We prove conditional lower bounds.

Theorem 2: \%JQ for self-join-free queries with partial SUM is tractable if and only if:

1. The query is acyclic.
2. There are at most 2 independent SUM variables.
3. Any chordless path between SUM variables is of length at most 3 .

3 maximal hyperedges \rightarrow intractable by prior dichotomy

A $+B$
cyclic

3 independent variables

$A+D$ Chordless path of length 4

New Results: 3) Approximate Quantiles for SUM

- ε-approximate quantiles: Given $\varepsilon \in(0,1)$, return $(\varphi \pm \varepsilon)$-quantile

Same as LEX/MIN/MAX

Theorem 3: ε-approximate \%JQ with (full or partial) SUM is tractable for all acyclic queries.

Outline

- Motivation \& Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

Linear-Time Selection on an Array

Differences with our problem

1. We do not have access to the array of query answers!
2. $O(n \log n) \rightarrow O(n) \quad$ vs $\quad O\left(n^{d}\right) \rightarrow O(n$ polylog $n)$
3. We can use linear-time selection as a subroutine.

Applying the Idea to \%JQs

What do we need to apply the pivot-and-partition idea to \%JQs?

1. Select pivot

- A pivot is one of the query answers.
- It needs to eliminate a constant fraction of remaining answers (to get convergence in logarithmic rounds)

2. Partition the query answers

- We only have access to the database, not the answers!
- Can be achieved by "trimming" inequalities

3. Count the answers in the < and > splits

- can be done in linear time for acyclic JQs

\%JQ Framework

Pivot Selection Algorithm

Message passing, bottom-up in the join tree.
Take (weighted) median at each level.
R(A, B), S(B,C), T(C, D, F), U(B, E)

Outline

- Motivation \& Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

Conclusion

- General framework for \%JQs that reduces the problem of \%JQ to that of trimming inequalities (for appropriately monotone ranking functions).
- Many cases where quantiles can be found in O (n polylog n) without materializing the join output.
- Existing database systems may struggle with computing expensive joins.
- Our algorithms also apply to Conjunctive Queries (i.e., JQs with projections) as long as they are "free-connex".
- Lower bounds for CQs are not 100\% clear.

Thank you!

