

Efficient Computation of Quantiles over Joins

Nikolaos Tziavelis¹,

Nofar Carmeli², Wolfgang Gatterbauer¹, Benny Kimelfeld³, Mirek Riedewald¹

for some constant $d \ge 1$, determined by the AGM bound of the query [A+08]

Main question: When can we find the quantile without computing the join?

Example: Event Social Network Query

We show that it can be done in O(n polylog n)without computing the join whose size is $O(n^3)$

Quantile Join Query Problem

Join query R(A, B), S(B, C), T(C, D) $\sigma_{\theta}(R \bowtie S \bowtie T)$ select R.A, R.B, S.C, T.D, R.A+R.B+S.C+T.D as Σw from R, S, T where R.B=S.B and S.C=T.C order by Σw ASC

Ranking function

- SUM, MIN, MAX over weighted attributes
- (LEX)icographic orders of attributes

%JQ problem

- Input: database D of size n, relative position $\varphi \in [0,1]$
- Output: query answer at position $\lfloor \varphi | Q(D) \rfloor$ in sorted array

Goal: achieve *O*(*n* polylog *n*) data complexity

- even though join output size is $O(n^d)$

- Motivation & Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

Basic Definitions

1. A JQ can be represented by a hypergraph.

3. A JQ is self-join-free if no relation appears twice.

Prior Dichotomy Results

Conditional on hardness hypotheses for certain problem

 Our prior work characterized precisely the (self-join-free) queries that are tractable (i.e., O(n polylog n) time) for 2 ranking functions: SUM and EX

[C+23] Carmeli, Tziavelis, Gatterbauer, Kimelfeld, Riedewald. Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries. *PODS'21, TODS'23* <u>https://doi.org/10.1145/3578517</u>

- Motivation & Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

New Results: 1) MIN/MAX

• We develop a general algorithmic framework that applies to all ranking functions mentioned (SUM, MIN, MAX, LEX). We use it to establish all our new results.

New Results: 2) Partial SUM

- Prior dichotomy assumed the worst-case SUM for each query where all attributes (variables) participate in ranking.
- We refine the SUM dichotomy by considering queries with partial SUMs.
 - + Positive: We apply our framework. Prior algorithm specific to 2 relations only.
 - Negative: We prove conditional lower bounds.

Theorem 2: %JQ for self-join-free queries with partial SUM is tractable if and only if:

- 1. The query is acyclic.
- 2. There are at most 2 independent SUM variables.
- 3. Any chordless path between SUM variables is of length at most 3.

3 maximal hyperedges → intractable by prior dichotomy

cyclic

 $\begin{array}{c|c} A & B & C \\ \hline E & D \\ A + C + E \end{array}$

 $\begin{array}{c|c} A & B & C \\ \hline D & \mathbf{x} \\ A + D \end{array}$

Chordless path of length 4

New Results: 3) Approximate Quantiles for SUM

• ε -approximate quantiles: Given $\varepsilon \in (0,1)$, return ($\varphi \pm \varepsilon$)-quantile

Theorem 3: *ɛ*-approximate %JQ with (full or partial) SUM is tractable for all acyclic queries.

- Motivation & Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

Linear-Time Selection on an Array

Compare counts with k to decide which partition to keep

... until "few" elements left

Differences with our problem

- 1. We do not have access to the array of query answers!
- 2. $O(n \log n) \to O(n)$ vs $O(n^d) \to O(n \operatorname{polylog} n)$
- 3. We can use linear-time selection as a subroutine.

Applying the Idea to %JQs

What do we need to apply the pivot-and-partition idea to %JQs?

- 1. Select pivot
 - A pivot is one of the query answers.
 - It needs to eliminate a constant fraction of remaining answers (to get convergence in logarithmic rounds)
- 2. Partition the query answers
 - We only have access to the database, not the answers!
 - Can be achieved by "trimming" inequalities

$$\begin{array}{c|c}
\hline D & \text{Join Query } Q \\
A + B < A_{\text{pivot}} + B_{\text{pivot}} & & \hline D' & \text{Join Query } Q'
\end{array}$$

- 3. Count the answers in the < and > splits
 - can be done in linear time for acyclic JQs

%JQ Framework

Pivot Selection Algorithm

Message passing, bottom-up in the join tree. Take (weighted) median at each level.

- Motivation & Problem Definition
- Prior Work
- New Results
- Algorithmic Framework
- Conclusion

Conclusion

- General framework for %JQs that reduces the problem of %JQ to that of trimming inequalities (for appropriately monotone ranking functions).
- Many cases where quantiles can be found in O(n polylog n) without materializing the join output.
 - Existing database systems may struggle with computing expensive joins.
- Our algorithms also apply to Conjunctive Queries (i.e., JQs with projections) as long as they are "free-connex".
 - Lower bounds for CQs are not 100% clear.

Thank you!