
Data Mining: Ensembles

Mirek Riedewald

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Key Learning Goals
• Summarize in three sentences the main idea

behind bagging.

• What are the requirements on the individual
models for bagging to improve prediction
quality?

• Write the pseudo-code for training a bagged
ensemble. Try to do it for all three partitioning
approaches.

• Given a concrete example, be able to quantify the
data transfer for training and prediction for a
bagged ensemble.

2

Introduction

• Ensemble methods like bagging are among
the best classification and prediction
techniques in terms of prediction quality.
Their main drawback are high training and
prediction cost. This makes them ideal
candidates for use in a distributed
environment.

3

Ensemble Methods
• Ensemble methods for classification and prediction rely

on a pool of models to make better predictions than
each individual model on its own. Many different types
of ensemble methods exist, the most well-known
general approaches being bagging and boosting.

• This module focuses on bagging, which is particularly
well-suited for distributed computation because each
model in the ensemble can be trained independently
on a different data set Di derived from the given
labeled training data D.

• To make a prediction for a test record, the individual
predictions of all models in the ensemble are
aggregated appropriately.

• The next pages illustrate this idea.

4

Training an Ensemble

5

D

Given training
data set

Training an Ensemble

6

D

D1

Given training
data set

Multiple training
sets derived from D

M1

Induction algorithm

Trained models

Training an Ensemble

7

D

D1

D2

Given training
data set

Multiple training
sets derived from D

M1

Induction algorithm

M2

Induction algorithm
Trained models

Training an Ensemble

8

D

D1

D2

Dj

Given training
data set

Multiple training
sets derived from D

.
.

.

M1

Induction algorithm

M2

Induction algorithm

Mj

Induction algorithm

.
.

.

Trained models

Training an Ensemble

9

M1

M2

Mj

.
.

.

Ensemble model

Making Predictions

10

Ensemble model

r = test
record

Making Predictions

11

M1

Ensemble model

r = test
record

Making Predictions

12

M1

M2

Ensemble model

r = test
record

Making Predictions

13

M1

M2

Mj

.
.

.

Ensemble model

r = test
record

Making Predictions

14

M1

M2

Mj

.
.

.

Ensemble model

r = test
record Combine

predictions

M1(r)

M2(r)

Mj(r)

Prediction
for r

Each model makes a
prediction for r. Individual
predictions can be combined
in different ways, e.g., by
(weighted) averaging for
numerical output or
(weighted) majority vote for
discrete output.

Intuition For Ensembles

• Ensemble methods are based on the following
intuition: Consider a scenario where you seek
advice from your friends about taking CS
6240. Assume each friend individually gives
you good advice most of the time. By asking
more friends and following the majority
recommendation, your probability of getting
good advice will increase significantly.

• Let us make this concrete now.

15

The Power of Friendship
• Assume each friend individually gives helpful advice 60% of

the time, i.e., each friend’s error rate is 0.4. You ask 11
friends about taking CS 6240. Each of them responds with
either Yes or No. You follow the majority advice.

• The error rate of the 11-friend ensemble is the sum of the
probability of exactly 6, 7, 8, 9, 10, or 11 friends giving
unhelpful advice. If each friend’s recommendation is
independent of the others, then this probability can be
expressed as

𝑖=6

11

11
𝑖

0.4𝑖(1 − 0.4)11−𝑖= 0.25

• Stated differently, the ensemble of 11 independent friends
gives helpful advice 75% of the time, which is significantly
better than the 60% of each individual friend. Asking more
such friends will result in even better advice.

16

When Does Model Averaging Work?

• The example illustrates an ensemble approach
called bagging, short for bootstrap aggregation.
For it to improve prediction quality, two
conditions must hold:

– Independence: The individual models (friends in the
example) make their decisions independently. If one
friend influences the others, then the combined
advice will be as good or bad as that individual.

– Better than 50-50: Each model (friend) individually
has an error rate below 50%, otherwise the error rate
actually increases with the number of friends.

17

Model Averaging and Bias-Variance
Tradeoff

• The example of combining advice from multiple friends provides
anecdotal evidence why ensembles improve prediction quality. This
property can also be shown more generally.

• The key to understanding why model averaging improves
predictions lies in the bias-variance tradeoff. Intuitively, a model’s
total prediction error consists of two components affected by the
choice of model: bias and variance. For individual models, lowering
one tends to increase the other. Through model parameters, e.g.,
the height of a decision tree, the tradeoff between bias and
variance can be adjusted.

• Bagging can overcome this tradeoff as follows:
1. Train individual models that overfit, i.e., have low bias, but

potentially high variance.
2. Reduce the variance by averaging many of these models.

• Bagging can be applied to any type of classification and prediction
model. An ensemble may even contain models of different types,
e.g., trees, SVMs, ANNs, and Bayesian networks.

18

Intuition for Model Error
• A prediction model is a function 𝑓: 𝑋 → 𝑌 that returns a prediction 𝑓(𝑥)

for input 𝑥. When the model is trained using training data 𝑑, then we
write 𝑓(𝑥; 𝑑) to highlight the dependence on 𝑑.

• We train 𝑓 to represent an unknown true distribution that we can think of
as a set of pairs (𝑥, 𝑦), where 𝑥 is a vector of 1 or more input-attribute
values and 𝑦 is the output value. (The training data is generally assumed
to be a random sample from this distribution.) To measure model quality
for prediction/regression, we use squared error, defined as the squared
difference 𝑓 𝑥 − 𝑦 2 between predicted and true output for a given
input 𝑥.

• Example: To predict income from age, 𝑋 is age and 𝑌 is income. (When
predicting income from age and highestDegree, 𝑋 is a 2-dimensional
vector (age, highestDegree), and so on.)
– Assume the model predicts 𝑓 age = 30 = 80, while the true distribution has

incomes 50, 70, 70, and 90 associated with age 30.
– Total squared error for age 30 then is

(50 − 80)2+(70 − 80)2+(70 − 80)2+(90 − 80)2= 1200.
– A better prediction would be the average income for age 30, i.e., 70:

(50 − 70)2+(70 − 70)2+(70 − 70)2+(90 − 70)2= 800.

19

Intuition for Model Error (cont.)
• The total model error is the sum of squared errors over the

entire distribution of (𝑋, 𝑌) combinations. For discrete
input this is σ(𝑥,𝑦)∈(𝑋,𝑌) 𝑦 − 𝑓(𝑥; 𝑑) 2. (It would be the
corresponding integral for continuous cases.)

• How can we take the impact of the training data into
account? Let 𝐷 be the set of possible training datasets from
which the actual training dataset 𝑑 is randomly picked.
Then the error over all possible training sets is

𝑑∈𝐷

(𝑥,𝑦)∈(𝑋,𝑌)

𝑦 − 𝑓(𝑥; 𝑑) 2

– It may seem more intuitive to consider the average error per
training set, i.e., divide the above formula by |𝐷|. However,
since all models are evaluated against the same 𝐷, |𝐷| is a
constant that is independent of model choice. It therefore does
not impact the minimization over possible models 𝑓.

20

Mathematical Derivation of the Bias-
Variance Tradeoff

• The bias-variance tradeoff can be derived using statistical decision theory.
Consider 3 random variables 𝑋, 𝑌, and 𝐷, where
– 𝑋 takes on any 𝑚-tuple of real numbers to represent a vector of 𝑚 input-attribute values,
– 𝑌 takes on any real number to represent the output-attribute value, and
– 𝐷 takes on any set of 𝑚 + 1 -tuples of real numbers to represent a training dataset.

• The training data is drawn from the true joint distribution of (𝑋, 𝑌) pairs. We want
to learn this unknown distribution by constructing from the training data a
function 𝑓(𝑋), the prediction model, that returns good approximations of the true
𝑌 for a given input 𝑋. To make the dependence of the model on the training data
explicit, we write 𝑓(𝑋; 𝐷).

• The best model is the one with lowest mean squared error over 𝑋, 𝑌, and 𝐷. How
can we mathematically express this error as a function of model 𝑓?
– Assume model 𝑓 was trained on data 𝐷 = 𝑑. Its prediction error for input 𝑋 = 𝑥 is defined as

𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋 = 𝑥, 𝐷 = 𝑑 , i.e., the expected squared difference between model
prediction 𝑓(x; d) and the true output values 𝑌 associated with input 𝑥.

– When considering all inputs, the expected error is the expectation over 𝑋:
𝐸𝑋 𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋, 𝐷 = 𝑑 .

– When considering all training datasets, the expected error is the expectation over 𝐷:
𝐸𝐷 𝐸𝑋 𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋, 𝐷 .

• The last formula can be rewritten as 𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷 .

21

Why Optimize for this Expectation?

• Here is the formula again: 𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋; 𝐷) 2 | 𝑋, 𝐷
• 𝐸𝑋: We do not want a model that makes good predictions

only for some specific inputs, while producing large errors
for others.

• 𝐸𝐷: Similarly, our induction method should create an
accurate model not only for certain “lucky” training
datasets, while creating a poor model for others.

• 𝐸𝑌: Similarly, we need to consider all possible outputs.
• Optimizing for the expectation over all combinations

ensures that, no matter what training data is presented to
us, we will strive for a model that works well for the entire
distribution of input-output combinations.

• We discuss next how to transform the formula to a format
that clearly shows bias and variance.

22

23

First consider inner term 𝑬𝒀 𝒀 − 𝒇(𝑿;𝑫) 𝟐 | 𝑿, 𝑫 .

Using 𝑌 − 𝑓 𝑋;𝐷 = (Y − E Y X]) + (E[Y X − f X; D), we derive
𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷

= 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + 2𝐸𝑌 𝑌 − 𝐸 𝑌 𝑋] 𝐸[𝑌 𝑋 − 𝑓 𝑋;𝐷 | 𝑋, 𝐷

+ 𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷

The second term 𝐸𝑌 Y − E Y X] E[Y X − f X; D | 𝑋, 𝐷 is equal to

𝐸𝑌 𝑌𝐸 𝑌 𝑋 − 𝑌𝑓 𝑋;𝐷 − 𝐸2 𝑌 𝑋] + 𝐸[𝑌 𝑋 𝑓(𝑋;𝐷) | 𝑋, 𝐷
= 𝐸𝑌 𝑌𝐸 𝑌 𝑋 | 𝑋, 𝐷 − 𝐸𝑌 𝑌𝑓 𝑋;𝐷 | 𝑋, 𝐷
− 𝐸𝑌 𝐸2 𝑌 𝑋] | 𝑋, 𝐷 +𝐸𝑌 𝐸[𝑌 𝑋 𝑓 𝑋;𝐷 | 𝑋, 𝐷

Note that E[Y | X] does not change with Y. And neither Y nor E[Y | X] depend on D, hence
𝐸𝑌 𝑌𝐸 𝑌 𝑋 | 𝑋, 𝐷 = 𝐸 𝑌 𝑋 𝐸𝑌 𝑌 | 𝑋 = 𝐸2 𝑌 𝑋]

Similarly, since f(X; D) does not depend on Y:
𝐸𝑌 𝑌𝑓 𝑋;𝐷 | 𝑋, 𝐷 = 𝑓 𝑋;𝐷 𝐸 𝑌 𝑋

and
𝐸𝑌 𝐸2 𝑌 𝑋] | 𝑋, 𝐷 = 𝐸2 𝑌 𝑋]

and
𝐸𝑌 𝐸[𝑌 𝑋 𝑓 𝑋; 𝐷 | 𝑋, 𝐷 = 𝑓 𝑋;𝐷 𝐸 𝑌 𝑋

Hence the second term cancels out to zero.

24

Reminder: for the inner term of the squared error of the learned model 𝑓 we derived
𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷

= 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + 2𝐸𝑌 𝑌 − 𝐸 𝑌 𝑋] 𝐸[𝑌 𝑋 − 𝑓 𝑋;𝐷 | 𝑋, 𝐷

+ 𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷

and showed 𝐸𝑌 𝑌 − 𝐸 𝑌 𝑋] 𝐸[𝑌 𝑋 − 𝑓 𝑋;𝐷 | 𝑋, 𝐷 = 0.

Now we turn our attention to the third term 𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷 . Since both
E[Y | X] and f(X; D) do not depend on Y, we obtain

𝐸𝑌 E Y X] − f(X; D) 2 | 𝑋, 𝐷 = E Y X] − f(X; D) 2

Putting it all together, we derive
𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷 = 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + E Y X] − f(X; D) 2

This means that so far we have shown for squared error of the model:
𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷
= 𝐸𝑋𝐸𝐷 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + E Y X] − f(X; D) 2

= 𝐸𝑋𝐸𝐷 𝐸𝑌 Y − E Y X] 2 | 𝑋, 𝐷 + 𝐸𝑋𝐸𝐷 E Y X] − f(X; D) 2

Since the first term of the error formula does not depend on D, this simplifies to
𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷

= 𝐸𝑋 𝐸𝑌 Y − E Y X] 2 | 𝑋 + 𝐸𝑋𝐸𝐷 E Y X] − f(X; D) 2

25

Now consider the inner part 𝐸𝐷 E Y X] − f(X; D) 2 of the second term. Analogous to
the derivation for 𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷 , we use

f X; D − E Y X] = f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) + 𝐸𝐷 𝑓(𝑋; 𝐷) − E Y X]
to show that
𝐸𝐷 E Y X] − f(X; D) 2 = 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2 + 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2

Plugging this result into the squared error formula, we obtain
𝐸𝑋𝐸𝐷𝐸𝑌 𝑌 − 𝑓(𝑋;𝐷) 2 | 𝑋, 𝐷
= 𝐸𝑋[

]
𝐸𝑌 Y − E Y X] 2 | 𝑋 + 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2

+ 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2

= 𝐸𝑋 𝐸𝑌 Y − E Y X] 2 | 𝑋

+𝐸𝑋 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2

+𝐸𝑋 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2

The three terms in the expectation formula are called irreducible error, variance, and bias,
respectively. We discuss each in more detail on the next pages.

Irreducible Error
• Note that 𝐸𝑋 𝐸𝑌 Y − E Y X] 2 | 𝑋 does not depend on model 𝑓 or

data sample 𝐷. This means that no matter what model we choose, this
component of the prediction error will remain the same.

• The term therefore measures the inherent noisiness of the data. In
particular, if some input 𝑋 = 𝑥 is associated with different values of 𝑌,
then there cannot be a single “correct” 𝑌 for 𝑥: no matter the prediction
for that 𝑥, any model will make an error.
– Consider a model for predicting income based on GPA; i.e., 𝑋 is GPA and 𝑌 is

income. Assume the following about the (unknown) true joint distribution of
GPA and income: For GPA=3.8, income is always 90K, but for GPA=3.4, income
is 40K or 50K, each with probability 0.5.

– Then E[income | GPA=3.8] = 90K and hence Eincome[(income - E[income |
GPA=3.8])2 | GPA=3.8] = Eincome[(income – 90K)2 | GPA=3.8]. Since for GPA=3.8
the probability of income=90K is 1.0, this expectation is 1.0(90K-90K)2 = 0.

– Now consider GPA 3.4. Here E[income | GPA=3.4] = 0.5(40K+50K) = 45K and
hence Eincome[(income - E[income | GPA=3.4])2 | GPA=3.4] = Eincome[(income –
45K)2 | GPA=3.4]. Since for GPA=3.4 the income is 40K or 50K, each with
probability 0.5, this expectation is 0.5(40K-45K)2+0.5(50K-45K)2 = (5K)2.

26

Model Variance
• Model variance 𝐸𝑋 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2 should not be confused with the notion of

variance of a random variable. It measures how much the predictions of an individual model differ
from the average prediction of all models trained on the different possible training sets.
– Note that 𝑓 𝑋 = 𝑥;𝐷 = 𝑑 is the 𝑌-value returned for input 𝑥 by a model 𝑓 that was trained on training

data 𝑑. Similarly, 𝐸𝐷 𝑓(𝑋 = 𝑥;𝐷) represents the expected prediction for 𝑥, taken over all models trained
on the possible training sets.

• Variance is zero if and only if f X; D = 𝐸𝐷 𝑓(𝑋; 𝐷) for all inputs 𝑥, i.e., the individual model is
identical to the model average over the different training sets.
– Consider model f X; D = 1, which always returns 1. For each input, f X; D = 𝐸𝐷 𝑓(𝑋;𝐷) = 1.

• Variance is high if and only if f X; D is very different from the model average, i.e., when changing
the training data results in large model changes.
– Consider a distribution where a random 50% of inputs have output 2, the others -2. A 1-nearest-neighbor

model predicts for input 𝑥 the output 𝑦′ where (𝑥′, 𝑦′) is the training record with the minimal distance from
𝑥′ to 𝑥 (ties broken arbitrarily). By construction, there is a 50-50 chance that 𝑦′ is -2 or 2, therefore

𝐸𝐷 𝑓(𝑋;𝐷) = 0.5 ∙ (−2) + 0.5 ∙ 2 = 0 and variance simplifies to 𝐸𝑋 𝐸𝐷 f X; D
2

. By construction,

f X; D
2
= 4 and hence 𝐸𝐷 f X; D

2
= 4.

– We can reduce variance by averaging predictions over the 𝑘 > 1 nearest neighbors in the training data. For
𝑘 = 2, with probability 0.25 both nearest neighbors have output -2, with probability 0.5 one is -2 and the
other 2, and with probability 0.25 both are 2. This implies 𝐸𝐷 𝑓(𝑋;𝐷) = 0.25 ∙ −2 + 0.5 ∙ 0 + 0.25 ∙ 2 =
0 and 𝐸𝐷 f X; D

2
= 0.25 ∙ (−2)2+0.5 ∙ 0 + 0.25 ∙ 22 = 2, halving the variance compared to the 1-

nearest-neighbor model.

• In summary, model variance is high if model predictions closely track individual 𝑌-values found in a
training set. By “smoothing” over many “nearby” samples, model variance can be reduced.

27

Model Bias
• Model bias 𝐸𝑋 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2 should not be confused with

the notion of bias for estimators. It measures how well 𝑓 can represent
the (𝑋, 𝑌) combinations of the true data distribution.
– 𝐸 𝑌 𝑋] does not depend on the model, but only on the data distribution—it

is the expected value of the output for a given input.
– 𝐸𝐷 𝑓(𝑋; 𝐷) describes the prediction for some input X, averaged over the

models trained for the different training sets.

• Bias is zero, if and only if 𝐸𝐷 𝑓(𝑋; 𝐷) = 𝐸 𝑌 𝑋] for all 𝑋. For this to hold,
model 𝑓 should be flexible enough to represent the relationship between
𝑋 and 𝑌.
– Consider true distribution 𝑌 = 𝑋 and assume we train a model that fits a line

to the training data. Clearly, this line is 𝑓 𝑋;𝐷 = 𝑋, i.e., it matches the true
distribution. Since by construction 𝐸𝐷 𝑓(𝑋; 𝐷) = 𝑋 = 𝐸 𝑌 𝑋], bias for this
model is zero.

• Bias is high when the model is not flexible enough to represent the data
distribution.
– Consider the same data, but now a constant model 𝑓 𝑋;𝐷 = 𝑐 for some

constant 𝑐. Since 𝐸 𝑌 𝑋] = 𝑋 we obtain 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2 =
(𝑋 − 𝑐)2, i.e., quadratically increasing bias with increasing difference between
𝑋 and 𝑐.

28

Overfitting
• The bias-variance tradeoff is closely related to the

problem of overfitting. A model overfits when it
represents the training sample too closely, and hence
does not generalize well to the (unknown) true
distribution the sample was drawn from.

• In other words, a model that overfits has excessively
high variance and would improve by lowering that
variance.

• In practice, overfitting can be detected by comparing
prediction error on the training data to the error on a
withheld test dataset that was not used for training.
– If training error is “significantly” lower than test error, then

the model likely overfits: it performs well on the data it
was trained on but not other data drawn from the same
distribution.

29

Where is the Tradeoff?
• As discussed above, the simple constant model has

zero variance, but potentially high bias because most
real-world functions are not flat. On the other hand, a
very flexible model like 1-nearest neighbor follows the
idiosyncrasies of the given training sample too closely,
achieving very low bias at the cost of high variance.

• This showcases a typical behavior of machine learning
models: Increasing the “flexibility” of a model allows it
to capture more complex real relationships (lower
bias), but also makes it more sensitive to changes in
the training sample (higher variance). The latter implies
that the model is more likely to pick up spurious
relationships that hold for the given training sample
but not the true distribution.

30

Is There an Optimal Model?
• Somewhat surprisingly, there is! For prediction, the

optimal model is f X; D = 𝐸 𝑌 𝑋].
– For variance 𝐸𝐷 f X; D − 𝐸𝐷 𝑓(𝑋; 𝐷) 2 , this results in
𝐸𝐷 𝐸 𝑌 𝑋] − 𝐸𝐷 𝐸 𝑌 𝑋] 2 = 𝐸𝐷[

]
(

)
𝐸 𝑌 𝑋] −

𝐸 𝑌 𝑋] 2 = 0.
– For bias 𝐸𝐷 𝑓(𝑋; 𝐷) − 𝐸 𝑌 𝑋] 2, this results in

𝐸𝐷 𝐸 𝑌 𝑋] − 𝐸 𝑌 𝑋] 2 = 𝐸 𝑌 𝑋] − 𝐸 𝑌 𝑋] 2 = 0
as well.

• Unfortunately, learning this model accurately would
take a practically infinite amount of training data.
– Notice that for each input, we need to estimate the

expected output. To do so reliably, we need multiple
training records for every possible input value. In practice,
most inputs are not present in the training data at all;
others occur just once.

31

Bias and Variance for Decision Trees
• Consider a binary decision stump, i.e., a tree with a single binary split

node. It partitions the training data into two (large) subsets. The average
of 𝑌 over a large sample is very stable (replacing a few sample points will
not affect that average). This implies very low variance. On the other
hand, the stump represents a simple 2-step function that cannot model
complex interactions between attributes and hence has high bias.

• The other extreme is a deep tree where each training record appears in a
different leaf. Even a small modification of the training data directly affects
the predictions in the corresponding leaves, hence this tree has high
variance. Bias is low because the large tree can model complex decision
boundaries, perfectly separating the different classes from each other.

• In general, a larger number of split nodes results in higher variance and
lower bias.

32
Low variance, high bias High variance, low bias

Best tree: good balance
of bias and variance

Bias-Variance Tradeoff in Action
• The following experiment for the K-nearest neighbor (KNN) prediction technique

shows the bias-variance tradeoff in practice. KNN predicts output Y for a given
input X=x by returning the average Y value over the K data points closest to x in the
training data.
– Larger K averages over a larger neighborhood. This decreases variance (as variations in training

data are averaged out) but increases bias (as local trends are smoothed over).

• Consider quadratic function f(X) = 𝑋2. Given a training set that approximately
reflects this function, the goal is to train a KNN model that learns the function as
accurately as possible.

• Each training set consists of 50 pairs (x,y) generated as follows: Choose values for x
uniformly at random from range −2 ≤ 𝑥 ≤ 2. For each x, generate the
corresponding y as 𝑦 = 𝑥2 + 𝜀, where 𝜀 is the noise, selected uniformly at random
from range [-0.5, 0.5].

• Bias and variance are explored experimentally for KNN with K=1, K=20, and K=100.

33

Test point
Training point
One of the K closest training points2NN 5NN

34

Predictions made by five different KNN models, each trained on a different data sample, for K=1. Notice
that the models reflect the noise in the training data and hence differ significantly from each other. This
reflects their high variance caused by considering only the single nearest neighbor.

35

Average prediction over 200 different KNN models , each trained on a different data sample, for K=1 (red
line) compared to the correct function Y=X2 (green line). This plot shows the bias of the 1NN model. As
expected, since 1NN makes predictions based on very small local neighborhoods, it can closely model any
training data, resulting in very low bias.

36

Predictions made by five different KNN models , each trained on a different data sample, for K=20. It is
clearly visible that the individual models are less “noisy” than for 1NN, because 20NN averages over larger
neighborhoods. (The horizontal lines at the left and right are caused by boundary effects as points near the
extremes have most of their neighbors on one side, instead of evenly distributed on their left and right.)

37

Average prediction over 200 different KNN models , each trained on a different data sample, for K=20 (red
line) compared to the correct function Y=X2 (green line). This plot shows the bias of the 20NN model. Not
surprisingly, by averaging over larger neighborhoods than 1NN, 20NN cannot capture local behavior, in
particular at the center and the extremes of the range.

38

Predictions made by five different KNN models , each trained on a different data sample, for K=50. Since
there are only 50 training records, each prediction is the average over all those 50 points, resulting in a
constant function. The different functions are more similar to each other than for 20NN and 1NN, showing
the lower variance due to the averaging over larger neighborhoods.

39

Average prediction over 200 different KNN models , each trained on a different data sample, for K=50 (red
line) compared to the correct function Y=X2 (green line). This plot shows the high bias of the 50NN model,
which has little in common with the actual quadratic function. Not surprisingly, by averaging over the entire
domain, 50NN cannot capture local behavior for different X values at all.

40

Let us return to bagging and take a closer
look at how it works in practice.

Bagging Reminder

• Bagging stands for bootstrap aggregation.

• Given a training data set D, a bagged
ensemble is trained as follows:

– Create e independent bootstrap samples of D.

– Train e individual models, each separately on a
different sample.

• The bagged model computes the output for a
given input X=x as follows:

– Compute Mi(x) for each of the e models M1,…, Mj.

– Return the average of these individual predictions.

41

What is a Bootstrap Sample?
• Consider a training dataset with n records.
• Each bootstrap sample Di also contains n records.

These records are sampled from D uniformly at
random, using sampling with replacement.

• This implies that some records from D might be
sampled more than once, while others are not
sampled at all.
– Each training record has probability 1 – (1 – 1/n)n of

being selected at least once in a sample of size n. For
large n, this expression converges to 1 – 1/e = 0.63.

42

1 2 3 4 5

Training data D Typical bootstrap samples of D

2 4 1 2 2 5 1 3 1 3 3 4 4 5 2

Bagging Challenges
• The individual models in a bagged ensemble should be independent of

each other. Only then can variance be effectively reduced through model
averaging.

• Independence can be achieved through training on independent data
samples, but in practice we usually settle for less because (1) only a
limited amount of labeled data is available and (2) for each model, the
training set needs to be representative of the overall data distribution.
– Small training data jeopardizes prediction quality, which is dangerous for

ensemble models. Recall that each model must be more than 50% accurate
for the ensemble to improve over an individual model.

• Bootstrap sampling represents a practical solution to obtain many training
sets that are reasonably independent and large. In contrast, simply
partitioning D into j subsets would create more independence, but the n/j
records per partition may not sufficiently represent the data distribution.

• Independence can be increased by diversifying models. For example,
Random Forest improves tree diversity compared to plain bagged trees by
limiting the choice of split attributes to a random subset of the available
attributes, each subset independently chosen for each node. Or one can
include different model types in the same ensemble, e.g., trees, SVMs,
and regression models.

43

Typical Bagging Results
• For bagging to improve significantly over individual models,

the ensemble might need dozens or even hundreds of
individual models. Since bagging reduces variance without
affecting bias, each individual model should overfit, having
low bias even at the cost of high variance.
– For decision trees, choose trees with more split nodes than for

the best individual model. For KNN, choose a smaller K.

• Due to overfitting of individual models, small bagging
ensembles tend to have mediocre prediction quality. As
more models are added, variance is “averaged away” and
prediction quality typically improves until it hits a ceiling. If
it does not, then either individual models overfit too much
to a degree where they are less than 50% accurate; or they
are not sufficiently independent of each other.

• The next pages show real experimental results that
illustrate the typical behavior of bagged ensembles.

44

45

Typical bagging behavior on a real-world problem with bird-observation data. The graph shows
how ensemble accuracy (higher is better) improves as more tree models are added. At about
50 trees the ensemble hits a ceiling.

46

Typical bagging behavior on a real-world problem with bird-observation data. The graph shows
how the root mean squared error (lower is better) of the ensemble improves as more tree
models are added. Even at 100 trees, ensemble error is still improving, suggesting that more
trees should be added.

47

Typical bagging behavior on a real-world problem with bird-observation data. The graph shows
how the area under the ROC curve (higher is better) of the ensemble improves as more tree
models are added. Even at 100 trees, ensemble ROC area is still improving, suggesting that
more trees should be added.

Bagging in MapReduce

• It is easy to parallelize bagging. For model
training, each bootstrap sample and
corresponding individual model can be
created independently. Similarly, for
predictions each model can be evaluated
independently, followed by a simple
computation of the average across models.

• Existing libraries for local (in-memory) model
training can be leveraged by having each
individual model trained completely inside a
task.

48

Parallel Training
• Assume a machine-learning library is available for in-memory training on a single

machine. Each of the j models in the ensemble can be trained in a different task.
This task only needs a bootstrap sample and model parameters to control the
training process.
– Model parameters can be passed to all Reducers using the file cache. Each line in the file

states the model identifier and corresponding parameters.

• Mappers create j copies of each data record and send them to j different Reduce
calls. Each Reduce call creates its own bootstrap sample and then trains the model.
– If training data exceeds memory size, Map can randomly sample to reduce data size, setting p

< 1.0. (This also improves model independence.)

49

map(training record r)
for i = 1 to j do

emit(i, r) with probability p

class Reducer {

setup () { array params = load from file cache}

reduce(i, [r1, r2,…])
R = load [r1, r2,…] into memory
B = MLlibrary.createBootstrapSample(R)
M = MLlibrary.trainModel(B, params[i])
emit(i, M) // Or write to HDFS/S3 file

}
}

Model-parameter file:
ID, list of parameters
1, parameters for model 1
2, parameters for model 2
3, parameters for model 3
…

Alternative Parallel Training
• The previous MapReduce program transfers pj input copies from Mappers

to Reducers. The Map-only program below avoids this transfer.
– The entire training set is copied to all worker machines using the file cache.
– Mappers locally create bootstrap samples and train a model for each sample.

• This program transfers as many input copies from DFS as there are
machines executing Map tasks. But how does each Mapper know how
many models to create and which parameters to use for them?
– We again use the model parameter file, but this time make it the input of the

Map-only job, letting each Map call train the corresponding model.
– Since the input file is small and each line creates a large amount of work for

sampling and model training, the default setting of 1 Map task per file split
would be too coarse-grained, possibly resulting in a single Map task for the
job. The NLineInputFormat class can be used to create smaller input splits.

50

map(model number i, model_parameters) {
read the training data from file cache, creating a sample S that fits in memory, using sampling rate p

B = MLlibrary.bootstrap(S)
M = MLlibrary.trainModel(B, model_parameters)
emit(i, M) // Or write to HDFS/S3 file

}

Making Predictions in Parallel

• Each individual model in the ensemble needs to
compute its predictions for each test record.
Abstractly, this corresponds to the Cartesian
product between the set of models and the set of
test records.

– This is followed by a simple aggregation, computing
the average prediction (or majority vote) for each test
record.

• What is the best way to partition this
computation over multiple tasks? We will discuss
three options and compare their properties.

51

Prediction: Vertical Stripes
• To implement vertical partitioning in MapReduce, the test-record

file is copied to all Mapper machines using the file cache. The file
containing the models is the input of the job.

• Map reads a model and computes its prediction for every test
record. Reduce computes the average prediction per test record.

• Data transfer (without combining and excluding final output):
– HDFS to Map: #mapperMachines * |test data file| + 1 * |model file|
– Map to Reduce: #models * |test data file|

• Combining is effective if a Mapper receives multiple models.

52

Models

R
ec

o
rd

s

Class Mapper {
T = read all test records from file cache

map(model M) {
for each t in T do

emit(t, M(t))
}

}

reduce(t, [M1(t), M2(t),…]) {
for each M(t) in input list

update running sum and count

emit(t, sum/count)
}

Prediction: Horizontal Stripes
• To implement horizontal partitioning in MapReduce, the model file

is copied to all Mapper machines using the file cache. The file
containing the test records is the input of the job.

• Since each Map task has the entire bagged model, it can compute
the average prediction locally, eliminating the need for a Reduce
phase. Map reads a test record and computes its prediction for
every model, keeping track of running sum and count to emit the
average in the end.

• Data transfer (excluding final output):
– HDFS to Map: 1 * |test data file| + #mapperMachines * |model file|

53

Class Mapper {
Models = read all models from file cache

map(test record t) {
for each M in Models do

compute M(t) and update running sum and count

emit(t, sum/count)
}

}

Models

R
ec

o
rd

s

Prediction: Blocks
• To implement partitioning into A-by-B blocks in MapReduce, both test

data and model file must be appropriately partitioned and duplicated. The
algorithm is identical to 1-Bucket-Random, which we discuss in another
module. Note that a post-processing job is needed to aggregate
predictions across the different blocks (not shown below).

• Data transfer (without in-Reducer combining and excluding final output):
– HDFS to Map: 1 * |test data file| + 1 * |model file|
– Map to Reduce: B * |test data file| + A * |model file|
– Reduce to HDFS: B * 2 * #testRecords

• Each test record is assigned to a “row” of B blocks, producing a (sum, count) pair per
block. In-Reducer combining could lower this when multiple blocks are processed in the
same Reducer.

– Post-processing: read from HDFS B * 2 * #testRecords records with prediction
sum and count for each test record

54Models

R
ec

o
rd

s

MapReduce Program for Block Partitioning

55

map(…, object x) {
if (x is a test record) {

// Select a random integer from range [0,…, A-1]
row = random(0, A-1)

// Emit the record for all regions in the selected “row”.
for key = (row * B) to (row * B + B – 1)

emit(key, (x, “S”))
}
else { // x is a model

// Select a random integer from range [0,…, B-1]
col = random(0, B-1)

// Emit the model for all regions in the selected
// “column”. This requires skipping B region numbers
// forward from start region key equal to col.
for key = col to ((A-1)*B + col) step B

emit(key, (x, “T”))
}

}

reduce(regionID, [(x1, flag1), (x2,
flag2),…]) {

initialize S_list and T_list

// Separate the input list by the data set
// the tuples came from
for all (x, flag) in input list do

if (flag = “S”)
S_list.add(x)

else
T_list.add(x)

for each test record t in S_list {
for each model M in T_list

compute M(t) and update running
sum and count

emit(t, sum/count)
}

}

Ensembles in Spark

• The Spark MLlib machine-learning library as of
August 2021 offered two types of ensembles:
Random Forest (variation of bagging) and
Gradient-Boosted Trees (GBT). More will likely
be added over time.

• Challenge question: Find out how distributed
training and prediction is implemented for
these two tree-based methods.

56

Random Forest in MLlib With DataSet
(from Spark 2.3.2 Documentation)

57

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{RandomForestClassificationModel, RandomForestClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}

// Load and parse the data file, converting it to a DataFrame.
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

// Index labels, adding metadata to the label column. Fit on whole dataset to include all labels in index.
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(data)
// Automatically identify categorical features and index them. Set maxCategories so features with > 4 distinct values are treated as continuous.
val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(4).fit(data)

// Split the data into training and test sets (30% held out for testing).
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))

// Train a RandomForest model.
val rf = new RandomForestClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setNumTrees(10)

// Convert indexed labels back to original labels.
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)

// Chain indexers and forest in a Pipeline.
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, rf, labelConverter))

// Train model. This also runs the indexers.
val model = pipeline.fit(trainingData)

Random Forest in MLlib With DataSet
(from Spark 2.3.2 Documentation, cont.)

58

// Make predictions.
val predictions = model.transform(testData)

// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5)

// Select (prediction, true label) and compute test error.
val evaluator = new MulticlassClassificationEvaluator()

.setLabelCol("indexedLabel")

.setPredictionCol("prediction")

.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println(s"Test Error = ${(1.0 - accuracy)}")

val rfModel = model.stages(2).asInstanceOf[RandomForestClassificationModel]
println(s"Learned classification forest model:\n ${rfModel.toDebugString}")

59

Another popular ensemble method is
boosting. How does it differ from bagging
and how can it be parallelized?

Boosting Overview
• There are different boosting variants. We discuss the classic AdaBoost

(Adaptive Boosting) approach.
• Like bagging, it creates an ensemble of 𝑀 models, but each individual

model has a weight according to its prediction accuracy: higher accuracy
means higher weight. The ensemble prediction is the weighted sum of the
individual model predictions.
– Intuitively, instead of treating all models equally, AdaBoost “listens” more to

the more accurate models.

• The other difference to bagging is that AdaBoost trains models iteratively,
one after the other. And while it uses sampling with replacement to create
the training data for an individual model, training records have weights
that control how likely they are to be sampled.
– Initially all training records have the same weight. After each iteration,

AdaBoost increases the weights of records that were misclassified by the
individual model trained in the last iteration, decreasing the weight of those
that were correctly classified.

– This way more and more copies of a misclassified training record will appear in
the training sample, forcing the model to “pay more attention to it to get it
right.”

60

Mathematical View

61

Here we consider a classification model that
can distinguish between any number of
classes, not just two. Given some input 𝑥,
each individual model 𝑀𝑖 votes its weight 𝛼𝑖
for some class. The ensemble tallies the
total per class and returns the class that
received the highest score. (This is weighted
majority voting.)

Note that 𝛿 is an indicator function
returning 1 if 𝑀𝑖 returns prediction 𝑦, and
zero otherwise.

Bootstrap sample

Weighted sample

Weighted sample

Weighted sample

⋮

𝑀1

𝑀2

𝑀3

𝑀𝑗

Ensemble prediction for input 𝑥:

𝑀 𝑥 = argmax
𝑦

𝑖=1

𝑗

𝛼𝑖 ∙ 𝛿 𝑀𝑖 𝑥 = 𝑦

Weighted Sampling Intuition

• Records that were incorrectly classified will
have their weights increased. Records that
were classified correctly will have their
weights decreased.

• Assume record 3 is hard to classify. Its weight
keeps increasing; therefore it is more likely to
be chosen again in subsequent rounds.

62

Given data 1 2 3 4 5 6 7 8 9

Sample in iteration 1 5 9 1 7 3 5 2 5 1

Sample in iteration 2 8 3 2 1 3 9 3 2 8

Sample in iteration 3 3 4 3 7 3 3 1 4 3

AdaBoost Details
• We are given 𝑛 training records

(𝑥𝑙 , 𝑦𝑙)1≤𝑙≤𝑛, which AdaBoost
samples from to train individual
models 𝑀1, … ,𝑀𝑗. Record 𝑙 has
weight 𝑤𝑙, such that σ𝑙𝑤𝑙 = 1.

• The error rate of model 𝑀𝑖 is

𝜀𝑖 =

𝑙=1

𝑛

𝑤𝑙 ∙ 𝛿 𝑀𝑖 𝑥𝑙 ≠ 𝑦𝑙

• 𝛿 is an indicator function that
returns 1 if model 𝑀𝑖 misclassifies
record (𝑥𝑙 , 𝑦𝑙); 0 otherwise.

• The weight of model 𝑀𝑖 (i.e., its
importance in the ensemble) is

𝛼𝑖 = ln
1 − 𝜀𝑖
𝜀𝑖

63

𝛼𝑖 as a function of 𝜀𝑖. Note how a
perfect model (𝜀𝑖 = 0) results in
infinite weight, while error rate above
0.5 results in negative weight. Both
should never happen. The former is
caused by overfitting and requires use
of a model type with lower variance.
The latter triggers a reset of all
training-record weights and a re-
training of this individual model.

AdaBoost Details (cont.)

• After training individual model 𝑀𝑖, the
weights of all training records are updated as

𝑤𝑙
(𝑖+1)

=
𝑤𝑙
(𝑖)

𝑍𝑖
∙ ቐ

𝜀𝑖
1 − 𝜀𝑖

if 𝑀𝑖 𝑥𝑙 = 𝑦𝑙

1 if 𝑀𝑖 𝑥𝑙 ≠ 𝑦𝑙

• 𝑍𝑖 is a normalization factor to ensure that all
new weights for iteration 𝑖 + 1 add up to 1.

• If an iteration’s error rate exceeds 0.5, then all
weights are reverted to 1/n and that iteration
is repeated.

64

Illustrating AdaBoost

65

Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Data points

for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1

New weights

Example based on slides for textbook [Introduction to Data Mining by Tan, Steinbach, and
Kumar. Pearson, 1st edition]. Note that the numbers appear incorrect, but they convey the
flavor of the technique.

Illustrating AdaBoost

66

Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Note: These numbers also appear incorrect.

Bagging vs. Boosting
• Analogy

– Bagging: diagnosis = multiple doctors’ simple-majority vote
– Boosting: weighted vote, based on each doctor’s previous

diagnosis accuracy

• Sampling procedure
– Bagging: records have the same weight; easy to train in parallel
– Boosting: weights a training record higher if a model predicts it

wrong; inherently sequential process

• Overfitting
– Bagging is robust against overfitting
– Boosting is susceptible to overfitting: make sure individual

models do not overfit

• Accuracy is usually significantly better than a single
classifier. And the best boosted model is often better than
the best bagged model.

67

Boosting in Spark

• Boosting differs from bagging in a crucial way:
models are trained one-at-a-time.
– This is caused by the property that the prediction

errors made by the i-th model affect the training
of the (i+1)-st model.

• Hence the only opportunity for parallelism lies
in the training of an individual model.

• Since Spark already offers parallel training of
individual tree models, Gradient-Boosted
Trees in MLlib rely on the parallel training of
individual trees for boosting.

68

Boosting in MLlib With DataSet (from Spark
2.3.2 Documentation)

69

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{GBTClassificationModel, GBTClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}

// Load and parse the data file, converting it to a DataFrame.
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

// Index labels, adding metadata to the label column. Fit on whole dataset to include all labels in index.
val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(data)
// Automatically identify categorical features and index them. Set maxCategories so features with > 4 distinct values are treated as continuous.
val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(4).fit(data)

// Split the data into training and test sets (30% held out for testing).
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))

// Train a GBT model.
val gbt = new GBTClassifier().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(10).setFeatureSubsetStrategy("auto")

// Convert indexed labels back to original labels.
val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)

// Chain indexers and GBT in a Pipeline.
val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, gbt, labelConverter))

// Train model. This also runs the indexers.
val model = pipeline.fit(trainingData)

Boosting in MLlib With DataSet (from Spark
2.3.2 Documentation, cont.)

70

// Make predictions.
val predictions = model.transform(testData)

// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5)

// Select (prediction, true label) and compute test error.
val evaluator = new MulticlassClassificationEvaluator()

.setLabelCol("indexedLabel")

.setPredictionCol("prediction")

.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println(s"Test Error = ${1.0 - accuracy}")

val gbtModel = model.stages(2).asInstanceOf[GBTClassificationModel]
println(s"Learned classification GBT model:\n ${gbtModel.toDebugString}")

Summary
• Ensemble methods achieve high prediction accuracy

and are good candidates for distributed computation
due to their high cost. This applies particularly to
bagging, because its models can be trained and
queried independently.

• Boosting trains the ensemble one-model-at-a time,
hence parallelism only comes from parallel training of
individual models.

• Ensemble prediction follows a cross-product
computation pattern with per-model aggregation.
Depending on the implementation choice, this could
be done without shuffling, a single shuffle phase, or
might even require two shuffles (for block partitioning,
due to the additional aggregation job).

71

References

• Data mining textbook: Jiawei Han, Micheline
Kamber, and Jian Pei. Data Mining: Concepts
and Techniques, 3rd edition, Morgan
Kaufmann, 2011

• Biswanath Panda and Joshua S. Herbach and
Sugato Basu and Roberto J. Bayardo. PLANET:
Massively Parallel Learning of Tree Ensembles
with MapReduce. Proc. Int. Conf. on Very
Large Data Bases (VLDB), 2009
– https://scholar.google.com/scholar?cluster=11753

975382054642310&hl=en&as_sdt=0,22

72

https://scholar.google.com/scholar?cluster=11753975382054642310&hl=en&as_sdt=0,22

